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Daniel Lombraña González∗, Francisco Fernández de Vega∗, Leonardo Trujillo†, Gustavo Olague†

Lourdes Araujo‡, Pedro Castillo§, Juan Julián Merelo§ and Ken Sharman¶

∗University of Extremadura,Spain, Email:daniellg@unex.es, fcofdez@unex.es
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Abstract—This paper presents how it is possible to increase
the Genetic Programming (GP) Computing Power (CP) for
free, via Volunteer Computing (VC), using the well known
framework BOINC plus a new “virtualization” layer which adds
all the benefits from the virtualization paradigm. Two different
experiments, employing a standard GP tool and a complex
GP system, are performed –with distributed PCs over several
cities– to show the free achieved CP by means of VC, without
the necessity of modifying or adapting the original GP source
code. The methodology can be easily extended to Evolutionary
Algorithms (EAs).

I. INTRODUCTION

Genetic programming (see [13]) is an automated method

for creating a working computer program from a high-level

problem statement of a problem. GP starts from a high-level

statement of “what needs to be done” and automatically creates

the required computer program.

GP starts with a population of randomly created com-

puter programs. This population of programs is progressively

evolved over a series of generations by using the Darwinian

principal of natural selection (survival of the fittest). The

evolution process analogs various naturally occurring oper-

ations like crossover (sexual recombination), mutation, gene

duplication and/or gene deletion. Finally, the individuals are

evaluated using a fitness function. The fitness function scores

the individuals based on how well the individuals solve the

problem.

When real world optimization problems are faced using

GP, the computing requirements are usually high. The high

requirements and time-consuming features of real world GP

problems are due to: (i) the complexity of fitness functions, (ii)

the large amount of individuals employed and (iii) the number

of iterations which are needed to solve the problem. Therefore,

in order to relieve this issue, different parallel approaches

were used in the past; for instance the parallel transputer

network architecture [4] or a 10 nodes Beowulf style cluster

[6]improved later to 1000 Pentiums nodes1. Nowadays, large

efforts are still carried out to improve and embody parallel

techniques to avoid or tackle the time consuming features of

1For further details see http://www.genetic-programming.com/
machine1000.html

GP [9] and any other EA (see the Introduction to the special

issue on parallel and bioinspired algorithms [11]).

One of the most promising technologies capable of tackling

the high requirements of many applications, and therefore

reducing computing time, is the GRID computing paradigm

(i.e. [12]). In the last few years, the GRID has become a

powerful tool to deal with time-consuming applications from

many different fields (see [12]). The GRID harnesses the

power of super computers, clusters or desktop PCs –which

are distributed over networks– by means of a special software

called middleware. Depending on the harnessed hardware,

there are different GRID approaches. One of the available

GRID techniques is known as Desktop GRID Computing

(DGC) [2]. The main features of DGC are: (i)it employs cheap

hardware (PCs), (ii) it is easy to use and (iii) it has succeeded

on a number research projects. Additionally, the DGC has a

collaborative feature, allowing users from all over the world

to anonymously donate their desktop resources to research

projects. Thanks to this social behavior, the scientific research

projects can obtain CP free (with no cost at all). As a result

of this social characteristic, the DGC model is also known as

Volunteer GRID Computing (VGC).

One of the most successful and well known DGC projects

is SETI@HOME [1], which employs the BOINC middleware

[2]. Thanks to the collaboration of 797600 users, SETI has

been able to create a super virtual computer of 456.330 Ter-

aFLOPS2 for free. There are other available DGC middlewares

such as Xtremweb [10] or Condor [15], however BOINC is

one of the most employed and extended DGC middleware.

In summary, DGC is a good target to run real world

problems and could be also employed to obtain free computing

resources for running GP problems. Nevertheless, this tech-

nology has a main drawback, the fact that it is difficult to run

an application directly without any modification. Therefore,

employing a middleware with GP involves adapting the GP

source code to the desired middleware. This “source code

adapting step” sometimes is so complex and time consuming

that using the chosen DGC middleware simply becomes im-

possible. This is probably one of the main reasons why DGC

2Data obtained from http://boincstats.com
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has not been used with GP before, even when the technology

has been available for a decade. To our best knowledge only

Chávez et al. [8] has presented the model by using a ported

version of LilGP. On the other hand Samples et al. [17] shown

the feasibility of the approach for a typical parameter sweep

application with GP using a pool of desktop PCs. Nevertheless,

the lack of a standard middleware and GP tool has kept this

approach from being commonly adopted by researchers.

Therefore, what we propose in this paper is to use the VGC

BOINC model plus a virtualization layer in order to:

• Harness a large number of BOINC resources (nowadays

BOINC has 2847228 computers collaborating with sci-

entific projects).

• Improve the CP of GP sequential executions thanks to

the parallel environment which VGC provides (976.593

TeraFLOPS3).

• Show the benefits of running a virtual layer inside a VGC

middleware which allows to run customizable execution

environments, without modifying the source code of the

GP application.

To sum up, our proposal is to increase GP computing power

(CP) for free. Moreover, our proposal will, for the first time,

allow to run any GP tool inside DGC without any source

code modification, thanks to the new proposed virtualization

layer inside BOINC. We have chosen to incorporate BOINC

as our VGC environment because BOINC is one of the most

employed DGC middlewares, with millions of users providing

volunteer computing resources. For the virtual layer, we have

chosen the widely used free software VMware. The main

reason for choosing VMware is because it runs on the same

platforms as BOINC.

The rest of the paper includes a description of the BOINC

model in Section II; we present the VGC and the virtual layer

model in Section III; Section IV shows the experiments and

results. We conclude in Section V.

II. THE BOINC MODEL

As described above, BOINC is a middleware that harnesses

commodity computer resources for a given project. BOINC

has two key features: it is multiplatform and open source.

BOINC uses a master-slave model where the server is in

charge of:

• Hosting the scientific project experiments. A project is

composed by a binary (the algorithm) and some input

files. The binary is classified according to the target

platform (Ms. Windows, GNU/Linux, MacOSX) and ar-

chitecture (x86 32-64 bits and sparc).

• Creation and distribution of jobs. In BOINC’s terminol-

ogy a job is called “work unit” (WU). A WU describes

how the experiment must be run by the clients (the name

of the binary, the input/output files and the command line

arguments).

The BOINC client connects to the server and asks for work

(WU). The client downloads the necessary files and starts

3Data obtained from http://boincstats.com under BOINC Combined stats

the computations. Once the results are obtained, the client

uploads them to the server. As BOINC relies on users, BOINC

resources are not reliable. Therefore, BOINC provides a set of

features (checkpointing, digital signature, etc.) to avoid users

from cheating, (i.e. [2]).

A. How to use BOINC with a Scientific Project

A scientific project that wants to use BOINC has to set

up a GNU/Linux server (Apache, MySQL, PHP) and build

a binary for an OS. The binary must be coded in C/C++

or Fortran, thus, two possible methods can be employed to

support BOINC:

• Method 1. To port the code. This is the most used

method. Basically, a researcher has to adapt his applica-

tion source code to support BOINC. The changes could

be simple if the tool is coded in C/C++ or Fortran. In

other cases the researcher will have to rewrite the whole

code.

• Method 2. The Wrapper. The BOINC team provides a

tool called wrapper which enables to run statically linked

applications inside BOINC without needing to modify or

port the application source code. Basically the wrapper

embodies the target software in such a way that for

the BOINC client does only exist one application: the

wrapper.

In conclusion, an application which is not coded in

C/C++/Fortran will use the Method 2. However, if the ap-

plication is coded in C/C++/Fortran some minor changes to

support BOINC will be needed (Method 1).

The first described method can be used when a scientist

has to adapt the GP source code like Chávez et al. presented

in [8]. In this case the only requirement is the programming

language (C++). When a scientist wants to employ a standard

GP tool, like for example ECJ4, there are two options: (i)

to port the source code or (ii) to employ the second method

(Method 2). The porting step could be in some cases difficult

or impossible due to time constraints or the complexity of the

porting step. Nevertheless, this method can only be used when

the applications are statically linked.

The following Section provides a new model that allows a

GP environment (and any other tool) to run within BOINC

when the previous two methods fail to provide sufficient

support.

III. VIRTUALIZING VGC

Very frequently, the complexity of the scientific software

is critical. This complexity leads to not being able to port

the code to BOINC middleware nor using the previous meth-

ods for running applications within the BOINC framework.

Consider, for instance, using the Matlab GP toolbox together

with other toolboxes or external applications. The complexity

is not only related to the different languages employed by

the middleware and the GP code, but also to the different

4See http://www.cs.gmu.edu/∼eclab/projects/ecj/
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Authorized licensed use limited to: Univ Nacional Edu Distancia. Downloaded on October 6, 2009 at 07:48 from IEEE Xplore.  Restrictions apply. 



library versions and other software tools required to solve the

problem.

For this reason, we propose to employ the virtualization

technology (i.e. [5], [16]). Virtualization is a technology which

abstracts the real hardware from a computer and creates a new

virtual machine (VM). In this VM it is possible to load and

run an OS and its applications.

Therefore, what we propose is to employ the virtualization

technology when the previously described methods 1 and 2

(see Section II-A) cannot be used.

A. Extending BOINC with VMware Virtual software

As we have stated in Section I, we have chosen VMware

as our virtualization technology. The main reasons are firstly

that it runs on the same platforms as BOINC does, and

secondly because it is free software. The supported platforms

are very important, because the DGC tries to harness as

much resources as available. Thus, the employed virtualization

technology must run, at least, on the same platforms as the

DGC middleware does.

As a result of using this new layer, BOINC becomes a

customizable execution environment. This execution environ-

ment can run any scientific application independently of its

sources (programming language, complexity, etc.). Thanks

to the virtualization layer, BOINC will be able to run a

virtual host which will match exactly the same environment

as the scientists have for running their experiments. In other

words, the scientist has not to take care of the underlying

BOINC software, and prepare only an image of his executing

environment for running it inside BOINC via VMware.

VMware runs VMs using a set of files which is called an

image. Within these files VMware stores the configuration

of the VM hardware plus the OS and applications. This

set of files will be part of the BOINC project, and will be

downloaded as part of the WU (see Section II). To sum up,

thanks to this technology the scientist will be only in charge of

“photocopying” his running system into a VMware image; an

easy step compared to porting or modifying the source code

for BOINC.

As we have presented, VMware is free software, but not

open source. Hence this leads us to use the second method,

described in Section II-A. This method employs the wrap-

per solution, which allows running legacy applications like

VMware. However, VMware is not itself statically linked, so

the wrapper solution is not sufficient. In order to run VMware

or any similar legacy application, we have to install firstly

the desired target software (the VMware Player software in

this case) on the clients and then launch it from a script or

a program. This new program will be in charge of setting

up everything for the virtualization environment, and then

launching it; for this reason we have named it starter. In other

words, the wrapper solution (Method 2) will be used plus

the new starter program which runs the virtual layer inside

BOINC.

From the point of view of the BOINC side, the VMware

image files are treated as if they were other input files of the

BOINC project5. Hence, the BOINC clients will download

not only the standard BOINC files for this VMware project

(the starter and the wrapper) but also the image files. Once

the BOINC client has downloaded all the necessary files

it will start the execution of the whole system. First, the

wrapper is initiated and then, through the wrapper, the starter

is executed. These steps will launch the VMware software that

runs the virtual environment, which in our case means the GP

application.

An important legal problem arises by using a virtual-

ization technology inside BOINC. The legality of using

BOINC+VMware for running several copies of a licensed

product is out of the scope of this paper and research.

Therefore, our aim is to present an original technology –

BOINC+VMware– to run DGC customizable execution en-

vironments.

IV. EXPERIMENTS AND RESULTS

The experiments presented below are aimed at showing that

VGC is a useful computing platform for running problems in-

dependently of the employed software tool. For accomplishing

this purpose, we are going to use different GP problems. It

is important to state that we are not interested in analyzing

the quality of obtained results, but rather in achieving a good

Computing Power (CP) for free thanks to the VGC technology.

Thus, we provide two test cases: a standard GP framework

and a complex GP environment to show that any of them can

benefit from this approach.

The achieved performance by a BOINC project is obtained

from the following equation presented by Anderson and

Fedack [3]:

CP = Xarrival ∗ Xlife ∗ Xncpus ∗ Xflops ∗ Xeff

∗Xonfrac ∗ Xactive ∗ Xredundancy ∗ Xshare

(1)

For all the following experiments, Xredundancy is equal to

1 because we didn’t use the redundancy facility provided by

BOINC. Xshare is also equal to 1 because none of the clients

shared its resources with other BOINC projects. Xarrival and

Xlife are very important variables due to they measure the

host churn see Fig. 2 (the volunteer computing project’s pool

of hosts is dynamic). The rest of the variables measure specific

hardware features (i.e. [3]).

The following subsections presents two different scenarios

where two different GP tools are used. We show how it is

possible to obtain computing power free by no modifying the

source code and by employing the DGC BOINC software.

A. A Standard GP Framework

The first experiment considers the case of using a widely

adopted GP framework, such as ECJ6. The special features

of ECJ, a complex JAVA EC framework, allows its use with

BOINC altogether thanks to our proposed method, given

5The size of the images are not a big deal in the download process, thanks
to the modern Internet connections provided by ISPs and the new BitTorrent
stack inside BOINC [7].

6For further information see http://cs.gmu.edu/∼eclab/projects/ecj/
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Fig. 1. Distributed infrastructure

TABLE I
OBTAINED RESULTS FOR THE MULTIPLEXER FUNCTION

Bits Active Hosts Time Runs Time per Run CP
11 27 of 45 5.35d 828 134.75s 80GFLOPS
20 11 of 145 48d 60 23449.3s 11.08GFLOPS

that it includes its own Virtual Machine, the Java VM. By

employing the Java Virtual Machine, it is not necessary to

use the VMware VM. Consequently, the ECJ framework runs

“natively” on the BOINC clients.

Therefore ECJ is a good first test case given that it is

widely used and allows the deployment of a GP tool with

BOINC by means of a VM. The second experiment will

consider the worst test case: another GP tool which doesn’t

include the VM, featuring higher complexity in terms of a

porting process. The chosen problem to be solved by ECJ

was the GP benchmark Boolean Multiplexer function, using

the same GP parameters as described in [13]. The goal of

the problem is to create a multiplexer function for k address

bits. In general, the input to the boolean multiplexer function

consist of k address bits ai and 2k data bits di, which has the

form ak−1 · · · a1a0d
k−1

2 · · · d1d0 with length equal to k + 2k.

Therefore, the search space for this function is equal to 2k+2
k

.

This problem has been run in several geographically dis-

tributed laboratory clients belonging to the University of

Extremadura (Cáceres, Badajoz and Mérida). This scenario

was a testbed for the next experiments, due to the environment

(network and laboratories) was controlled.

Tab. I shows a summary of the main results for the 11

multiplexer deployment (k = 3). The experiment employed the

same GP parameters as Koza used [13]. The experiment was

running only a few days, 5.35, so Xlife is measure only from

the first connection to the last communication of hosts that had

not communicated in at least one day. Hence, the obtained CP

is equal to 80 GFLOPS. The obtained CP is large because

we have a controlled environment where the computers were

active most of the time. Furthermore, the needed time per run

was small (134.75s), so the clients always finished their tasks.

We increased the complexity of the problem, and therefore

the running time, with the 20 multiplexer function (k = 4).

The GP parameters were the same as for the 11 multiplexer,

Fig. 2. Host churn – 20 multiplexer function

except for the size of the population: 2000 individuals. Tab. I

shows a summary of the relevant data for the 20 multiplexer.

As said before, our interest is not in solving the problem,

but in setting up a time consuming experiment for testing the

VGC model. For this new experiment, volunteer computers

(145 in total) from other Spanish Universities or institutions

such as: CICA in Sevilla, University of Extremadura (Cáceres,

Badajoz, Mérida), Granada, Valencia, UNED in Madrid, and

Ceta-Ciemat in Trujillo collaborated with the project. Thus,

the computing resources are more heterogeneous and realistic

now, see Fig. 1.

Xlife was adapted again, but in this case taking into account

connections from the first communication to last communica-

tion for hosts that had not communicated in at least 17 days.

Even when we obtained a lower CP because only 11 from

the 145 hosts were actively computing for the project –typical

VGC behavior– the CP obtained is proportional to active hosts,

which would allow to greatly increase it with a larger pool of

users collaborating with the project. Fig. 2 shows how the

dynamic VGC pool of hosts varies during the active period

of this BOINC project. Fig. 3 shows the free available RAM

memory and hard disk space.

B. A Complex GP environment

The second experiment considers a more pessimistic sce-

nario –which is frequently the case– with a complex and not

statically linked GP tool that makes impossible to employ

Method 1 or 2 (see Section II-A). In order to make the

experiment to resemble more realistically a standard scientific

research project, we are deploying here a real life and time-

consuming Computer Vision problem that has already been

solved in a sequential fashion (Interest Point detectors (IPGP),

see [18] bronze medal at Hummies 2007). This GP framework

uses the Matlab environment and several image tool-boxes,

which implies a much more complex system, being therefore

more difficult to deploy it over a BOINC infrastructure.

Hence, we used our new proposed virtualization layer within

BOINC. In other words, the researchers create an image of

their running environment and set up a BOINC project with

it (see Section III). The last requirement for running this

new virtualized BOINC, is that all the clients which want to

collaborate with the project have to install the VMware Player

software in advance. Once this last step is done in all the

PCs, the clients can start working with the given project. For

testing this experiment we set up 10 Ms Windows volunteer

computers. The virtual image was built using a GNU/Linux

422422
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Fig. 3. Available free memory and hard disk space

TABLE II
ACHIEVED COMPUTING POWER

Env. Type GP Tool Problems Hosts CP

Labs.
Standard ECJ 11 Mult. 45 80GFLOPS
Complex Matlab IPGP 10 25.67GFLOPS

Real Standard ECJ 20 Mult. 145 11.08GFLOPS

x86 operating system (for further details see [14]). Thus, a

GNU/Linux scientific environment runs directly inside Ms

Windows thanks to the Virtual-BOINC approach. Moreover,

the computer vision problem was not modified at all. The

10 Windows PCs produced 12 solutions during 48 hours.

The consumed time by each solution was in average of 18

hours. The total time consumed for producing 12 solutions

by a sequential run was 215 hours. Therefore, and using the

equation 1 we achieved a CP of 25.67 GFLOPS for free. Tab.

II shows a summary of the achieved CP for all the experiments.

In conclusion, the BOINC model obtains for free computing

power when time-consuming real life problems are solved by

means of GP. Moreover, thanks to the proposed virtualiza-

tion layer it is possible to run any GP tool, independently

of its complexity or programming language, within BOINC

providing customizable execution environments free as no

modifications are needed. The large number of BOINC users

makes the described proposal as a very promising source of

CP for GP, as shown, but also for any other EA.

V. CONCLUSIONS

We have presented how it is possible to increase the CP free

by means of DGC for GP. We have presented two common

scenarios which show how it is feasible to employ a standard

tool or a complex system within BOINC. Moreover, we have

presented a new methodology, BOINC plus the virtualization

layer, which permits to run any available GP tool –statically

linked or not– inside BOINC without any modification in the

source code. In other words, we have shown how to harness

computing resources for a research project for free because: (i)

it is not necessary to buy expensive supercomputers or clusters

thanks to the DGC and (ii) it is not necessary to modify any

source code line. We have also stated the extra benefits of

having a controlled environment to obtain the best CP for a

GP project. Therefore, this technology can be also used in

controlled environments like computer laboratories and try to

engage additionally volunteers from the large pool of BOINC

hosts. Although tests have been presented for GP, DGC plus

virtualization can provide resources for any application which

requires large amounts of CP.
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