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Abstract. Process improvement is recognized as the main benefit of process 

modelling initiatives. Quality considerations are important when conducting 

a process modelling project. While the early stage of business process design 

might not be the most expensive ones, they tend to have the highest impact 

on the benefits and costs of the implemented business processes. In this con-

text,quality assurance of the models has become a significant objective. In 

particular understandability and modifiability as particular quality character-

istics are of special interest to facilitate evolution of business models given 

the highly dynamic environments in which business operates. These attrib-

utes can only be assessed a posteriori, so it is of central importance for qual-

ity management to identify significant predictors for them. A variety of 

structural metrics have recently been proposed, which are tailored to ap-

proximate these usage characteristics. The aim of this paper is to verify how 

understandable and modifiable BPMN models relate to these metrics by 

means of correlation and regression analyses. Based on the results we deter-

mine threshold values to distinguish different levels of process model qual-

ity. As such threshold values are missing in prior research, we expect to see 

strong implications of our approach on the design of modelling guidelines. 

Keywords: Business process, measurement, correlation analysis, regression 

analysis, BPMN 

1. Introduction 

Organizations are increasingly concerned about business process improvement, 

since organizational excellence is recognized as a determination of business effi-

ciency [1]. A business process is a complex entity, therefore improvement initia-

tives require a prior study of them at each of its lifecycle stages. The early phases 

of business process design might not be the most expensive ones, but they tend to 

have the highest impact on the benefits and costs of the implemented business 

processes [2]. However, process modeling on a large, company-wide scale require 

substantial efforts in terms of investments in tools, methodologies, training and the 
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actual conduct of process modeling [3], resulting in several thousand models and 

involving a significant number of non-expert modellers. It is well known that poor 

quality of conceptual models can increase development efforts or results in a soft-

ware system that does not satisfy user needs [4]. It is therefore vitally important to 

understand the factors of process model quality and to identify guidelines and me-

chanisms to guarantee a high level of quality from the outset. As Mylopoulos [5] 

suggests,‘‘Conceptual modeling is the activity of formally describing some aspects 

of the physical and social world around us for the purposes of understanding and 

communication’’. Therefore, understanding the process is a crucial task in any 

process analysis technique, and the process model itself should be intuitive and 

easy to comprehend [6].  

An important step towards improved quality assurance is a precise assessment of 

quality. In this context, quality can be understood as “the totally of features and 

characteristics of a conceptual model that bear on its ability to satisfy stated or 

implied needs” [7]. We analyze quality from the perspective of understandability 

and modifiability, subcharacteristics of usability and maintainability, respectively 

[8]. Several initiatives about business process metrics were published [9]. Most of 

these metrics focus on structural aspects including size, complexity, coupling and 

cohesion. The significance of these metrics relies on a thorough empirical valida-

tion of their connection with quality attributes [10]. There are, to date, still rather 

few initiatives to investigate the connection between structural process model met-

rics and quality characteristics, so we detect a gap in this area which needs more 

empirical research. 

In accordance with the previously identified issues, the purpose of this paper is 

to contribute to the maturity of measuring business process models. The aim of the 

empirical research presented herein is to validate the connections between an ex-

tensive set of metrics and the ease with which business process models can be un-

derstood (understandability) and modified (modifiability). This was achieved by 

adapting the measures defined in [11] to BPMN business process models [12]. The 

empirical data of six experiments which had been defined for previous works were 

used. A correlation analysis and a regression estimation were applied in order to 

test the connection between the metrics and both the understandability and modifi-

ability of the models.  After the selection of the more suitable metrics for under-

standability and modifiability, we extracted threshold values in order to evaluate 

the measurement results. 

The remainder of the paper is as follows. In Section 2 we describe the theoretical 

background of our research and the set of metrics considered. Section 3 describes 

the series of experiments that were used, and presents the results (correlation and 

regression analysis and threshold values). Section 4 discusses the findings in the 

light of related work. Finally, Section 5 draws conclusions and presents topics for 

future research. 



2. Theoretical Background 

This section presents the background of our research. Section 2.1 discusses theories 

that are relevant when considering structural metrics for process models. Section 

2.2 describes the set of process model metrics that we consider for this research. 

2.1. Theoretical Considerations on Process Model Usability 

The usability of process models can be approached from the perspective of the ISO 

9126 standard on software engineering product quality [8]. This specification iden-

tifies several dimensions of usability and maintainability, of which understandabil-

ity and modifiability are among the most important. The significance of these two 

dimensions relates to several observations.  

The subject of understanding is well-suited to the role of a pillar in the quest for 

theories of process modelling quality. Insights from cognitive research on program-

ming languages point to the fact that `design is redesign' [13]: a computer program 

is not written sequentially; a programmer typically works on different chunks of the 

problem in an opportunistic order. Therefore, the designer has to constantly reinter-

pret the current work context. There are some indications that process modelling 

involves this kind of re-inspection activities [14]. This fact points to understanding 

as an important quality factor. There are also indications that process models have 

to be constantly reworked and modified, and that a lack of maintenance procedures 

can have a detrimental effect on process modelling initiatives [15]. In other words, 

the process model should be constructed in such a way that it reveals its content in 

the best possible manner. Both understandability and modifiability can, therefore, 

be leveraged. 

A set of different factors for process model understanding has been discussed in 

literature, including personal factors, modelling purpose, domain knowledge, and 

modelling notation [16]. Several works have identified structural parameters as 

significant factors in understanding [12-15]. The importance of structural aspects 

stems from cognitive considerations. Research into the cognitive dimensions 

framework defines flow charting languages as being abstraction hating [17]. This 

signifies that languages for process modelling do not provide a direct mechanism 

for grouping activities. Another characteristic is that there are so-called hidden 

dependencies in process models. This entails that attainable states and potential 

transitions have to be inferred by the reader of a process model. These points imply 

that even small changes to the structural level can make a process model much 

more difficult to understand. This raises the question of how structure can be effec-

tively measured. 

2.2. Structural Metrics for Process Models 

There is a wide range of structural metrics for process models. Their advantage is 

that they can be objectively measured by considering the formal graph structure of 



a process model. These metrics are, therefore, also called internal attributes of a 

process model. In our discussion on usability and maintainability we are interested 

in how far these internal attributes can approximate understandability and modifi-

ability. As these aspects cannot be directly measured for the process model at hand, 

they are referred to as external attributes. They need to be determined by empirical 

evaluation through, for example, the help of experiments. Figure 1 shows how this 

experimental data can then be used to correlate internal and external attributes. 

Once clear correlations have been identified, the data can be used to statistically 

estimate prediction models. Such a prediction model is typically derived through 

the use of regression analysis. 
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Fig. 1. Internal and external attributes of BPMN models 

 

In this paper we consider a set of metrics defined in [9] for a series of experi-

ments on process model understanding and modifiability. The hypothetical correla-

tion with understandability and modifiability is annotated in brackets as (+) for 

positive correlation or (-) for negative correlation. The metrics include: 

 Number of nodes (-): This variable is related to the number of activities and 

routing elements in a process model; 

 Diameter (-): The length of the longest path from a start node to an end node 

in the process model; 

 Density (-) relates to the ratio of the total number of arcs in a process model to 

the theoretically maximum number of arcs; 

 The Coefficient of Connectivity (-) relates to the ratio of the total number of 

arcs in a process model to its total number of nodes; 

 The Average Gateway Degree (-) expresses the average of the number of both 

incoming and outgoing arcs of the gateway nodes in the process model; 

 The Maximum Gateway Degree (-) captures the maximum sum of incoming 

and outgoing arcs of these gateway nodes; 

 Separability (+) is the ratio of the number of cut-vertices on the one hand, i.e. 

nodes that serve as bridges between otherwise disconnected components, to 

the total number of nodes in the process model on the other; 

 Sequentiality (+) is the degree to which the model is constructed out of pure 

sequences of tasks. 

 Depth (-) defines the maximum nesting of structured blocks in a process mod-

el; 



 Gateway Mismatch (-) is the sum of gateway pairs that do not match with 

each other, e.g. when an AND-split is followed by an OR-join; 

 Gateway Heterogeneity (-) is the extent to which different types of gateways 

are used in a process model; 

 Cyclicity (-) relates the number of nodes in a cycle to the sum of all nodes;  

 Concurrency(-) captures the maximum number of paths in a process model 

that may be concurrently activate due to AND-splits and OR-splits. 

The series of experiments and their results are described in the following section. 

3. Experimental Findings 

In this section we describe the series of experiments used in this research, which 

were defined for previous works. Section 3.1 defines the research design. Among 

other aspects, we describe the subjects involved, the treatments and questions used, 

the variation of factors, and the response variables considered. Section 3.2 presents 

the results of the correlation analysis and Section 3.3 presents the results of the 

regression analysis. Section 3.4 discusses these results and their corresponding 

implications. 

3.1. Research Design 

This section describes the empirical analysis performed to test which structural 

metrics can be used as predictors of understandability and modifiability for BPMN 

models. Figure 2 shows the chronology of the experiments whose empirical data 

were used for the analysis. A total of six experiments were conducted: three (one 

experiment and two replicas) to evaluate understandability and three (one experi-

ment and two replicas) to evaluate modifiability. Altogether, 127 students from 

four different universities took part in the experiments. 

 

 

Fig. 2. Chronology of the family of experiments 

The experimental material for the first three experiments consisted of 15 BPMN 

models with different structural complexity. Each model included a questionnaire 



related to its understandability. The experiments on modifiability included 12 

BPMN models (selected from the 15 models concerning understandability) and 

each model was related to a particular modification task. A more detailed descrip-

tion of the design and the material used in the family of experiments can be found 

in [18]. 

It was possible to collect the following objective data for each model and each 

task: time of understandability or modifiability for each subject, number of correct 

answers in understandability or modifiability, and efficiency defined as the number 

of correct answers divided by time. 

The first step in validating the error probability measures was to calculate their 

values in each of the 15 BPMN models designed for the family of experiments. The 

results are shown in Table 1: 

Table 1.  Mean and Standard Deviation of the sample models 

Measures Average Standard deviation 

Nº nodes 43.60 24.28 

Diameter 12.20 5.185 

Density .038 .041 

Coefficient of Connectivity .944 .243 

Average gateway degree 2.789 1.263 

Maximum gateway degree 3.333 1.914 

Separability .384 .239 

Sequentiality .492 .271 

Depth 1.733 1.279 

Gateway mismatch 11.60 11.08 

Gateway heterogeneity   -.689   .481 

Cyclicity .053 .124 

Concurrency .200 .414 

 

Once the values had been obtained, the variability of the values was analyzed to 

ascertain whether the measures varied sufficiently to be considered in the study. 

Two measures were excluded as a result of this, namely Cyclicity and Concur-

rency, because the results they offered had very little variability (80% of the mod-

els had the same value for both measures, the mean value was near to 0, as was 

their standard deviation).  The remaining measures were included in the correlation 

analysis. 

The experimental data was accordingly used to test the following null hypothe-

ses for the current empirical analysis, which are:   

 For the experiments on understandability,  

H0,1: There is no correlation between structural metrics and understandability 

 For the experiments on modifiability,  

H0,2: there is no correlation between structural metrics and modifiability 

The following sub-sections show the results obtained for the correlation and regres-

sion analysis of the empirical data.  



3.2. Correlation analysis  

We first discuss the results for understandability and then turn to modifiability. 

Understandability: Understanding time is strongly correlated with most of the 

probability error measures (number of nodes, diameter, density, average gateway 

degree, depth, gateway mismatch, and gateway heterogeneity in all three experi-

ments). There is no significant correlation with the connectivity coefficient, and the 

separability ratio was only correlated in the first experiment.  

With regards to correct answers, size measures, number of nodes (-.704 with p-

value of .003), diameter (-.699, .004), and gateway heterogeneity (.620, .014) have 

a significant and strong correlation. With regard to efficiency, we obtained evi-

dence of the correlation of all the measures with the exception of separability. 

The correlation analysis results indicate that there is a significant relationship 

between structural metrics and the time and efficiency of understandability. The 

results for correct answers are not as conclusive, since there is only a correlation of 

3 of the 11 analyzed measures. In conclusion, measures with a significant correla-

tion value (nº nodes, diameter, density, average gateway degree, maximum gateway 

degree, depth, gateway mismatch and gateway heterogeneity) can be traced back to 

particular BPMN elements, such as number of nodes (task, decision nodes, events, 

subprocesses, and data objects), decision nodes and sequence flow. We have there-

fore found evidence to reject the null hypothesis H0,1. The alternative hypothesis 

suggests that these BPMN elements affect the level of understandability of concep-

tual models in the following way: 

o If there are more nodes, it is more difficult to understand models. 

o If the path from a start node to the end is longer, it is more difficult to un-

derstand models. 

o If there are more nodes connected to decision nodes, it is more difficult to 

understand models.  

o If there is higher gateway heterogeneity, it is more difficult to understand 

models. 

Modifiability: The correlation analysis results of the experiments concerning 

modifiability are described as follows. We observed a strong correlation between 

structural metrics and time and efficiency. For correct answers there is no signifi-

cant connection in general, while there are significant results for diameter, but these 

are not conclusive since there is a positive relation in one case and a negative corre-

lation in another. For efficiency we find significant correlations with average (.745, 

.005) and maximum gateway degree (.763, .004), depth (-.751, .005), gateway 

mismatch (-.812, .001) and gateway heterogeneity (.853, .000). We have therefore 

found some evidence to reject the null hypothesis H0,2. The usage of decision 

nodes in conceptual models apparently implies a significant reduction in efficiency 

in modifiability tasks. In short: 

o If more nodes are connected to decision nodes, it is more difficult to mod-

ify the model. 

o If there is higher gateway heterogeneity, it is more difficult to modify 

models. 



3.3. Regression analysis  

The correlation analysis presented above suggests that it is necessary to investigate 

the quantitative impact of structural metrics on the respective time, accuracy and 

efficiency dependent variables of both understandability and modifiability. This 

goal was achieved through the statistical estimation of a linear regression. The 

regression equations were obtained by performing a regression analysis with 80% 

of the experimental data (obtained from the family of experiments). The remaining 

20% were used for the validation of the regression models. 

 

a) Selection of models 

Table 2 and Table 3 show the prediction models obtained for each experiment. All 

of the regression models obtained were significant with p-values below 0.05.  

 

b) Validation of regression models 

One of the threats to the validity of the findings of a study is that of not satisfying 

the statistical model assumptions. In the case of a linear regression model we must 

determine whether the observed data complies with the theoretical model. We veri-

fied the distribution of residuals, which is the difference between the predicted 

value with the regression equation and the actual value obtained in experiments. 

The residuals were analyzed for normality (Kolmogorov-Smirnov) and independ-

ence of the residuals (Durbin-Watson). The normality of the data is confirmed, 

since in all cases the p-value of Kolmogorov-Smirnov test is below 0.05. If the 

value of the second test (which typically ranges between 0 and 4) is 2, the residue is 

completely independent. Values between 1.5 and 2.5 are considered to be satisfac-

tory. Values of residues for understandability and modifiability followed a normal 

distribution, with the exception of efficiency in E1. In the other cases, we can af-

firm the normality of the residuals obtained after regression analysis. For the verifi-

cation of the independence of the residues we can verify compliance with the ex-

ception of the efficiency of E2 in understandability. As is true in most cases, we 

can state that the regression analysis is applicable to the data of the experiments. 

 

c) Precision of models 

The accuracy of the models was studied by using the Mean Magnitude Relative 

Error (MMRE) [19] and the prediction level Pred(25) and Pred(30) on the remain-

ing 20% of the data, which were not used in the estimation of the regression equa-

tion. These levels indicate the percentage of model estimations that do not differ 

from the observed data by more than 25% and 30%. A model can therefore be 

considered to be accurate when it satisfies any of the following cases: 

 MMRE ≤ 0,25 or 

 Pred (0,25) ≥ 0,75 or  

 Pred (0,30) ≥ 0,70 

Understandability: The corresponding results are shown in Table 2 and Table 3. 

The best model for predicting the understandability time is obtained with the sec-

ond replica E3, which has the lowest MMRE value of all the models. The best 

models with which to predict correct understandability answers originate from the 

first replication E2, and this also satisfies all the assumptions. For efficiency, no 



model was found that satisfied all the assumptions. The model with the lowest 

value of MMRE is obtained in the second replica E3. In general, the results further 

support the rejection of the null hypothesis H0,1. 

Table 2. Prediction models of understandability 
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E1 T1 = 19.11 + 2 nºnodes + 3.2 gateway mis-

match - 25.64 depth + 64.63 coeff. of connec-

tivity -3.2 diameter 

.000 .36 .12 .51 

E2 T2 = 95.91 + 1.51 nºnodes + 3.04 gateway 

mismatch- 17.35 depth - 55.98 sequentiality +  

34.45 gateway heterogeneity 

.000 .33 .47 .54 

E3 T3 = 47.04 + 2.46 nºnodes .000 .32 .51 .58 

C
o
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t 
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n
-
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E1 CA1 = 3.125 - 0.004 nºnodes  

- 0.251 separability  

.000 .21 .71 .71 

E2 CA2 = 3.17 - 0.005 nºnodes  

- 0.38 coeff. of connectivity + 0.17 depth  

- 0.015 gateway mismatch 

.000 .18 .79 .79 

E3 No variable has been selected  --- --- --- 

E
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E1 EF1 = 0.040 - 0.0004 nºnodes  

+ 0.019 sequentiality + 0.014 density 

.000 1.58 .17 .23 

E2 EF2 = -0.065 + 0.005 gateway mismatch  

+ 0.114 sequentiality - 0.001 nºnodes 

.000 4.14 .03 .03 

E3 EF3 = 0.042 - 0.0005 nºnodes  

+ 0.026 sequentiality 

.000 0.84 .22 .25 

Table 3.  Prediction models of modifiability 
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E4 E4 = 50.08 + 3.77 gateway mismatch + 

422.95 density 

.000 .37 .31 .38 

E5 E5 = 143.53 + 16.44 MaxGatewaysDegree .010 .65 .45 .54 

E6 E6 = 175.97 + 3.88 gateway mismatch .000 .54 .41 .50 

C
o
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t 

A
n

sw
er

s E4 CA4 = 1.85 - 3.569 density .000 .23 .82 .83 

E5 CA5 = 0.62 + 0.684 sequentiality  

+ 0.471 connectivity 

.005 .28 .33 .51 

E6 No variable has been selected  --- --- --- 

E
ff
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 E4 EF4 = 0.006 + 0.008 sequentiality .000 .62 .32 .42 

E5 EF5 = 0.009 + 0.008 separability  

- 0.029 density 

.030 .98 .45 .51 

E6 EF6 = 0.013 - 0.0002 gateway mismatch .001 .72 .29 .37 
 

Modifiability: We did not obtain any models which satisfy all of the assumptions 

for the prediction of modifiability time, but we have highlighted the prediction 

model obtained in E4 since it has the best values. However, the model to predict the 



number of correct answers may be considered to be a precise model as it satisfies 

all the assumptions. The best results for predicting efficiency of modifiability are 

also provided by E4, with the lowest value of MMRE. In general, we find some 

further support for rejecting the null hypothesis H0,2. The best indicators for modi-

fiability are gateway mismatch, density and sequentiality ratio. Two of these met-

rics are related to decision nodes. Decision nodes apparently have a negative effect 

on time and the number of correct answers in modifiability tasks. 

3.4. Discussion of Regression Results 

The statistical analyses suggest rejecting the null hypotheses, since the structural 

metrics apparently seem to be closely connected with understandability and modi-

fiability. There are certain metrics that may be considered to be the best owing to 

their significance in different experiments. For understandability these include 

Number of Nodes, Gateway Mismatch, Depth, Coefficient of Connectivity and 

Sequentiality. For modifiability Gateway Mismatch, Density and Sequentiality 

showed the best results. The regression analysis also provides us with some hints 

with regard to the interplay of different metrics. Some metrics are not therefore 

investigated in greater depth owing to their correlations with other metrics. For 

example, average gateways degree was found to correlate with depth (.810, p-

value=.000) and gateway mismatch (.863, p-value=.000), signifying that informa-

tion provided by these measures may be redundant. The contribution of this work is 

the evaluation of structural metrics by considering their relative importance in the 

regression analysis. We conclude that the understandability and modifiability of 

models is related to decision nodes and connections with others elements, which 

are represented in the selected measures. In the next section, we turn to threshold 

values. Thresholds are an important communication tool in order to state towards 

modellers when a process model might be considered to be of bad quality. We will 

focus on those metrics that are significant in the correlation and regression analysis. 

3.5. Acceptable Risk Levels of Error Probability Metrics 

After analyzing which measures are most useful to quantify understandability 

and modifiability, it is interesting to know what values of these measures indicate 

poor quality in models. That means, thresholds values of measures could be used as 

an alarm of detecting low-quality structures in conceptual models. Henderson-

Sellers emphasizes the practical utility of thresholds by stating that “an alarm 

would occur whenever the value of a specific internal measure exceeded some 

predetermined value”[20]. The idea of extracting thresholds is to use them to iden-

tify unsound design structures, thus enabling engineers to gauge the threshold val-

ues to avoid obtaining hazardous structures [21]. The problem of determining ap-

propriate threshold values is made even more difficult by many factors that may 

vary from experiment to experiment [22]. The identification of such threshold val-

ues, therefore, requires methods for quantitative risk assessment [23]. 



The statistical method used to extract threshold values is the method proposed 

by Bender [23]. It obtains thresholds values through a univariate logistic regression 

analysis. In this particular case, we use as a dependent variable the efficiency of 

understandability and modifiability. As a first step it is required to dichotomized 

the variable, signifying that it would be 1 when it was higher than the median and 0 

when it was lower [24].   

The method defines a “value of an acceptable risk level (VARL)”. This value is 

given by a probability p0. This means that when measuring measures values below 

VARL, the risk of the model being non-understandable and non-modifiable is low-

er than p0. This value is calculated as follows:  

 
We consider these p0 values to constitute different levels of understandability 

and modifiability, which is described as follows.  : 

 Level 1: there is a 10% of probability of considering the model efficient 

 Level 2: there is a 30% of probability of considering the model efficient 

 Level 3: there is a 50% of probability of considering the model efficient 

 Level 4: there is a 70% of probability of considering the model efficient 

For each experiment, we obtain different threshold values. They are stated in 

Table 4 and Table 5. 

Table 4 Thresholds for error probability metrics related to understandability 

le
v

el
 Nº nodes Gateway 

mismatch 

Depth Connectivity 

coefficient 

Sequentiality 

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

1 63 67 65 27 30 29 4 4 4 1,7 1,7 1,6 0,1 0,1 0 

2 49 50 50 16 17 16 2 2 2 1,1 1,1 1,1 0,36 0,37 0,32 

3 38 37 37 7 6 6 2 1 1 0,6 0,6 0,6 0,58 0,58 0,64 

4 32 29 30 2 0 0 1 1 1 0,4 0,4 0,4 0,7 0,7 0,84 

Table 5 Thresholds for error probability metrics related to modifiability 

  
le

v
el

 Gateway mis-

match 

Density Sequentiality 

E4 E5 E6 E4 E5 E6 E4 E5 E6 

1 31 75 32 0,2 0,5 1,1 0 0 0 

2 18 31 18 0,1 0,2 0,36 0,3 0,05 0,2 

3 7 0 6 0,004 0 0 0,5 0,8 0,6 

4 1 0 0 0 0 0 0,6 1,2 0,8 

 

The values described in Table 4 and Table 5 could be interpreted as follows: if 

number of nodes of a model is between 30 and 32, gateway mismatch is between 0 

an 2, depth is 1, connectivity coefficient is 0,4 and sequentially is between 0,7 and 

0,84 the probability of considering the model efficient in understandability tasks is 

about 70%, which means model has an acceptable level of quality. It is interesting 



to note that many of the threshold values are rather close to each other. This is a 

good indication that the thresholds can be considered to be rather stable.  

Following the same steps, we extracted threshold values for the whole selected 

group of metrics, and organized them in different levels of understandability and 

modifiability. These levels classify business process models according to their 

quality (see Table 6). The values reported in the different rows are the median val-

ues drawn from the different experiments reported above. 

The information contained in Table 6 can be interpreted as the following: if 

number of nodes is less or equal to 31, gateway mismatch is 1 or depth is 1, the 

model is considered as “very efficient” in understandability tasks, while if gateway 

is 1, density 0 or sequentiality is 0,86, the model is considered as “very efficient” in 

modifiability tasks. In the same way, if a model has more than 65 nodes, gateway 

mismatch is more than 29 or CFCxor is more than 30, the model is considered as 

very inefficient in understandability tasks and if gateway mismatch is about 46 or 

density is 0,6, the models is considered as very inefficient in modifiability tasks. 

Table 6 Threshold values for conceptual model metrics 

 1: very ineffi-

cient 

2: rather inef-

ficient 

3: rather effi-

cient 

4: very effi-

cient 

Understandability 

Nºnodes 65 50 37 31 

GatewayMismatch 29 16 6 1 

Depth 4 2 1 1 

Coefficient of con-

nectivity 

1,7 1,1 0,6 0,4 

Sequentiality 0,1 0,35 0,6 0,7 

TNSF 72 49 34 20 

TNE 20 12 7 2 

TNG 17 10 5 0 

NSFE 28 13 4 0 

NMF 27 15 7 1 

NSFG 40 22 11 0 

CLP 7,5 4,23 2,2 0,2 

NDOIN 31 44 4 0 

NDOOUT 23 11 3 0 

CFCxor 30 17 8 1 

CFCor 9 4 1 0 

CFCand 4 2 0 0 

Modifiability  

GatewayMismatch 46 22 4 1 

Denstiy 0,6 0,22 0,0013 0 

Sequentiality 0 0,18 0,6 0,86 

NSFG 25 13 9 0 

CLA 0,53 0,875 1,1 1,3 

CFCxor 27 16 8 1 

CFCor 9 4 1 0 

CFCand 6 2,3 0 0 



4. Related Metrics for Business Process Models  

The interest in the measurement of business processes has grown in recent years. It 

is consequently possible to find a considerable amount of measurement proposals 

in literature. In previous works [25] we conducted a systematic review by following 

the Kitchenham and Charters protocol [26], as a result of which various relevant 

measurement proposals were selected, which could be grouped according to the 

lifecycle stage they have to be applied to. The most important stages are those of 

design and execution, and we therefore grouped the measures into “design meas-

ures” and “execution measures”. Design measures are more numerous, specifically 

80% of the proposals found. A summary of the proposed measures in selected pub-

lications (updated version of the systematic review until 2010) is shown in Table 4. 

Table 4. Measures for Business Process Models 

Source Measurable Concept Notation 

Vanderfeesten et al [27], [28] Coupling, cohesion, connectivity 

level 

Petri net 

Rolón et al. [29] Understandability and modifiability BPMN 

Mendling [30] Error probability EPC 

Cardoso [31] [32] complexity Graph 

Jung [33] Entropy Petri net 

Latva-koivisto [34] complexity Graph 

Gruhn and Laue [35], [36] complexity UML, BPMN, 

EPC 

Rozinat and van der Aalst [37] compliance model-logs Simulation Logs  

Laue and Mendling [38] Structuredness EPC 

Meimandi and Abdul Azim [39] Activity complexity, control-flow 

complexity, data-flow complexity 

and resource complexity 

BPEL 

Bisgaard and van der Aalst [40] Extended Control Flow Complexi-

ty, extended cyclomatic metric and 

structuredness  

WF-net 

Huan and Kumar [41] Goodness of models respect gener-

ated logs in execution 

Simulation logs  

 

Some validated measures more directly related to this work are those of Cardoso 

[42] and Rolón [29]. Cardoso proposes a Control Flow Complexity metric (CFC). 

This measure takes into account the quantity and characteristics of the gateways 

that the business process presents, in order to provide a numerical indication of the 

complexity of the business process flow. This measure has been empirically vali-

dated through experiments, and a correlation analysis was carried out in [43], in 

which the specific measure was applied to BPMN models. On the other hand, 

Rolón [44] defined other measures that can be applied to BPMN models in order to 

quantify the understandability and modifiability of conceptual models. These 

measures have been validated through a correlation and regression analysis, which 

was published in [45]. We therefore extracted measures from this analysis, which 

are the most useful to measure understandability and modifiability (Table 5). 
 



Table 5.  Others validated understandability and modifiability measures  

Measure Description U* M* 

Measures of Rolón 

TNSF Total Number of sequence flows X  

TNE Total Number of events X  

TNG Total Number of gateways X  

NSFE Number of sequence flows from events X  

NMF Number of message flows X  

NSFG Number of sequence flows from gateways X X 

CLP Connectivity level between participants X  

NDOOut Number of data objects which are outputs of activities  X  

NDOIn number of data objects which are inputs of activities X  

CLA Connectivity level between activities  X 

Measures of Cardoso 

CFC Control flow complexity. Sum over all gateways weighted by 

their potential combinations of states after the split 

X X 

U*: Underttandability, M*: modifiability 

     

A comparison of the correlation values of Cardoso and Rolón measures with re-

spect to structural measures correlations presented in this work in each of  the con-

ducted experiments  show that: CFC for understandability has a correlation value 

about 0.5, specifically CFC-efficiency (.503, .590, .515) and for modifiability it 

does not exceed 0.5: CFC-efficiency (-.412,-.126, -.252). Correlation values of 

Rolón measures are close to 0.6 for understandability, for example, between effi-

ciency and NSFE (-.668, -.621, -.563) or CLA (-.676, -.635, -.600), and 0.4 for 

modifiability, TNG-efficiency (-.381, -.126, -.270) or NSFG-efficiency (-.413, -

.130, -.250)). On the other hand, structural measures have correlation values for 

understandability around 0.8 as correlation values of efficiency and number of 

nodes are (-.835, -.796, -.943) or gateway mismatch are (-.761, -.768, -.737). Modi-

fiability has also higher correlation values, for example (.814, .392, .273) for sepa-

rability-efficiency or (-.573, -.655, -.751) for depth- efficiency. As a result, the 

validated structural measures seem to be better indicators of understandability and 

modifiability. 

Our research on thresholds is informative to research on process modeling guide-

lines. Quality of conceptual process models is discussed by different frameworks 

such as SEQUAL or the Guidelines of Modeling [46, 47]. Many very operational 

guidelines on process modeling can be found in practitioner’s books such as the 

one by Sharp and McDermott [48]. Up until now, we are only aware of the Seven 

Process Modeling Guidelines [49] as a guideline set that tries to define simple rules 

with a solid empirical foundation. This paper extends this stream of research by 

applying a threshold derivation approach from biometrics for the process model 

metrics. We deem this approach to be an important step towards translating statis-

tical insights on correlations between metrics and quality attributes into operational 

design rules. 



5. Conclusions and Future Work 

In this paper we have investigated structural metrics and their connection with the 

quality of business process models, namely understandability and modifiability. We 

have analyzed performance measures including time, correct answers and effi-

ciency from a family of experiments for correlations with an extensive set of struc-

tural process model metrics. Our findings demonstrate the potential of these metrics 

to serve as validated predictors of process model quality. This research contributes 

to the area of process model measurement and its still limited degree of empirical 

validation. Beyond that, we have adapted an approach for threshold derivation for 

process model quality assessment. The threshold approach can be regarded as an 

important step towards translating statistical insights into operational design rules. 

This work has implications both for research and practice. The strength of the 

correlation of structural metrics with different quality aspects (up to 0.85 for gate-

way heterogeneity with modifiability) clearly shows the potential of these metrics 

to accurately capture aspects that are closely connected with actual usage. More-

over, it is possible to find threshold values for selected measures and set these val-

ues in different levels of quality related to understandability and modifiability for 

business process models. From a practical perspective, these structural metrics can 

provide valuable guidance for the design of process models, in particular for select-

ing semantically equivalent alternatives that differ structurally. A first attempt into 

this direction is made in [35]. 

In future research we aim to contribute to the further validation and actual appli-

cability of process model metrics. First, there is a need for more cross validation of 

regression models. In particular, we will investigate in how far the regression mod-

els derived from this family of experiments provide good predictions on data that is 

currently collected in Berlin. Second, there is a need for more formal work on mak-

ing metrics applicable in process modelling tools. Structural metrics provide very 

condensed information such that non-expert modellers will hardly be able to mod-

ify a model to improve the metrics. We see a huge potential for using behaviour-

preserving change operations automatically for generating a model of higher qual-

ity. Techniques from graph-edit distance calculation will be a good starting point 

for this work.  
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