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We present a detailed study of the eUect of spin-orbit coupling on the band structure of single-layer and
bulk transition metal semiconductor dichalcogenides, including explicitly the role of the chalcogen orbitals
and their hybridization with the transition metal atoms. To this aim, we generalize the Slater-Koster tight-
binding (TB) model presented in Ref. 1 by including the eUect of an atomic spin-orbit coupling on all the
atoms. The present framework permits us to study analytically the eUect of the atomic spin-orbit associated
with the chalcogen atom. In particular, we present a scenario where, in the case of strong spin-orbit cou-
pling, the spin/orbital/valley entanglement at the minimum of the conduction band at Q can be probed and
be of experimental interest in samples with the most common electron-doping reported for this family of
compounds.

I. INTRODUCTION

Transition metal dichalcogenides (TMD) have emerged as
a new family of layered materials with a number of remark-
able electrical and optical properties.2 Among them, single
layers of the semiconducting compounds of the group-VIB
MX2 (where M = Mo, W and X = S, Se) are of special
interest because they have a direct band gap in the visi-
ble range of the spectrum,3 which is located in the K and
K’ points of the hexagonal Brillouin zone (BZ).1 The ab-
sence of inversion symmetry in single layer samples lifts
the spin degeneracy of the energy bands in the presence
of spin-orbit coupling (SOC).4 Interestingly, the spin split-
ting in inequivalent valleys must be opposite, as imposed by
time reversal symmetry. This leads to the so called spin-
valley coupling,5 which has been studied theoretically6–10

and observed experimentally.11–16 Although the SOC split-
ting of the bands is particularly large in the valence band
(∼ 150 meV for MoS2 and ∼ 400 meV for WS2), a Vnite
SOC splitting of the conduction band is also allowed by
symmetry,17 as conVrmed by recent density functional the-
ory (DFT) calculations.18–24 In addition, interlayer coupling
plays here also a fundamental role. Indeed, the band struc-
ture dramatically changes from single-layer to multi-layer
samples, involving a transition from a direct gap for single-
layer samples to an indirect gap for multi-layer samples,1 as
it has been observed experimentally.3,25–27

Both numerical Vrst-principle techniques and analytical
approaches have been employed to investigate the role of the
SOC in these materials. Within this context, the spin-orbit
coupling has been mainly included in tight-binding models
valid only in the low-energy range, where the presence of the
p-orbitals of the chalcogen atoms has been integrated out in
an eUective model (Refs. 5,28–32). Alternatively, DFT calcu-

lations can provide a more compelling results, but hamper-
ing a simple model of the SOC. From a more general point
of view, Vnally, most of the recent works on the eUects of
SOC in TMD have been focused on single-layer samples,
whereas fewer investigations have been devoted to the eUect
of SOC on the band structure of multi-layer and bulk sam-
ples of TMD. In particular, a complete tight-binding model
that can account for the eUect of SOC in the whole BZ, in-
cluding explicitly the p-orbitals of the chalcogen atoms, is
lacking. Such a TB model is especially useful to study cases
where DFT methods result too challenging computationally,
as the eUect of disorder, strain, many-body interactions, etc.
In this paper we present, using a combination of tight-

binding and DFT calculations, a complete TB model, in the
whole BZ, of the eUects of SOC on the band structure of
single-layer and multi-layer TMD taking explicitly into ac-
count the p-orbitals of the chalcogen atoms and their rela-
tive atomic spin-orbit interaction. The bands obtained from
the TB model are compared to the corresponding DFT band
structure for single layer and bulk MoS2 and WS2. Such
model provides a useful base not only for the analytical in-
vestigation of the role of the SOC coupling in the presence of
local strain tuning theM -X distance, but also for the inves-
tigation of the microscopical relevant spin-orbit processes.
In particular, we show that the terms associated to second
order spin-Wip processes of the SOC can be safely neglected
for most of the cases of experimental interest. We Vnally
discuss also the peculiarities of the SOC in bilayer MX2.

II. SPIN-ORBIT INTERACTION AND THE
TIGHT-BINDING HAMILTONIAN

In this section we present the analytical structure of the
tight-binding Hamiltonians for single-layer and bulk TMD
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MX2 compounds including the SO interaction. SpeciVc pa-
rameters for realistic materials will be provided in the next
section, as well as a discussion of the physical consequences
of the SOC.

A. Single-layer case

The TMD MX2 are composed, in its bulk conVguration,
of two-dimensionalX−M−X layers stacked on top of each
other, coupled by weak van der Waals forces. TheM atoms
are ordered in a triangular lattice, each of them bonded to
six X atoms located in the top and bottom layers, forming a
sandwiched material. Our starting point will be the 11-band
TB spinless model introduced in Ref. 1. In particular, for the
single-layer, considering the Vve d orbitals of the metal atom
M and the three p orbitals for each of the two chalcogen
atoms X in the top and bottom layer, we can introduce the
Hilbert base deVned by the 11-fold vector:

φ†i = (p†i,x,t, p
†
i,y,t, p

†
i,z,t, d

†
i,3z2−r2 , d

†
i,x2−y2 ,

d†i,xy, d
†
i,xz, d

†
i,yz, p

†
i,x,b, p

†
i,y,b, p

†
i,z,b), (1)

where d†i,α creates an electron in the orbital α of theM atom

in the i-unit cell, p†i,α,t creates an electron in the orbital α of

the top (t) layer atom X in the i-unit cell, and p†i,α,b creates
an electron in the orbital α of the bottom (b) layer atomX in
the i-unit cell. As it was shown in Ref. 1, after an appropriate
unitary transformation, the spinless (sl) representation of the
single-layer (1L) Hamiltonian can be expressed in the block
form

Ĥsl
1L(k) =

(
ĤE 0̂6×5

0̂5×6 ĤO

)
, (2)

where ĤE and ĤO are a 6 × 6 and 5 × 5 blocks with even
(E) and odd (O) parity respectively upon the mirror inversion
z → −z, and 0̂m×n denotes m × n zero matrices.1 In par-
ticular, ĤE is built from hybridizations of the dxy , dx2−y2 ,
d3z2−r2 orbitals of the metal M with the symmetric (anti-
symmetric) combinations of the px, py (pz) orbitals of the
top and bottom chalcogen atoms X . On the other hand, the
odd block, ĤO, is made by hybridizations of the dxz and dyz
orbitals ofM with the antisymmetric (symmetric) combina-
tions of the px, py (pz) orbitals of the X atom in the top and
bottom layers. Explicit expressions for all the matrix ele-
ments in terms of the Slater-Koster parameters, can be found
in Ref. 1. Here we just remind that the 6 × 6 even block ĤE

contains the relevant orbital contribution for the states of the
upper valence band and the lower conduction band.

In the context of the present tight-binding model, we in-
clude the spin-orbit coupling term in the Hamiltonian by
means of a pure intra-atomic spin-orbit interaction acting on
all the atoms. Explicitly we consider here the SOC given by:

ĤSO =
∑
a

λa
h̄
L̂a · Ŝa, (3)

where λa, the intra-atomic SOC constant, depends on the
speciVc atom (a = M,X). L̂a is the atomic orbital an-
gular momentum operator and Ŝa is the electronic spin
operator.33–35 It is convenient to use the representation

ĤSO =
∑
a

λa
h̄

(
L̂+
a Ŝ
−
a + L̂−a Ŝ

+
a

2
+ L̂zaŜ

z
a

)
, (4)

where (omitting now for simplicity the atomic index a):

Ŝ+ =

(
0 1
0 0

)
, Ŝ− =

(
0 0
1 0

)
, Ŝz =

1

2

(
1 0
0 −1

)
.

(5)
In similar way, the orbital angular momentum operator L̂
acts on the states |l,m〉 as

L̂±|l,m〉 = h̄
√
l(l + 1)−m(m± 1) |l,m± 1〉,

L̂z|l,m〉 = h̄m |l,m〉, (6)

where l refers to the orbital momentum quantum number
andm to its z component.
We choose the orbital basis set in the following manner:

|pz〉 = |1, 0〉

|px〉 = − 1√
2

[|1, 1〉 − |1,−1〉]

|py〉 =
i√
2

[|1, 1〉+ |1,−1〉]

|d3z2−r2〉 = |2, 0〉

|dxz〉 = − 1√
2

[|2, 1〉 − |2,−1〉]

|dyz〉 =
i√
2

[|2, 1〉+ |2,−1〉]

|dx2−y2〉 =
1√
2

[|2, 2〉+ |2,−2〉]

|dxy〉 = − i√
2

[|2, 2〉 − |2,−2〉] (7)

We further simplify the problem by introducing the afore-
mentioned symmetric (S) and antisymmetric (A) combina-
tion of the p orbitals of the top (t) and bottom (b) X layers:

|pα,S〉 =
1√
2

[|pα,t〉+ |pα,b〉],

|pα,A〉 =
1√
2

[|pα,t〉 − |pα,b〉]. (8)

The total Hamiltonian, including the SO interaction for
the single-layer, can be now written as

Ĥ1L(k) = Ĥsl
1L(k)⊗ 12 + ĤSO

1L , (9)

where the SOC term ĤSO
1L is

ĤSO
1L =

(
M̂↑↑ M̂↑↓

M̂↓↑ M̂↓↓

)
, (10)
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and where

M̂σσ =

(
M̂σσ

EE 0̂6×5

0̂5×6 M̂σσ
OO

)
, (11)

and

M̂σσ̄ =

(
0̂6×6 M̂σσ̄

EO

M̂σσ̄
OE 0̂5×5

)
. (12)

Here we have chosen the spin notation σ̄ =↓ (σ̄ =↑) when
σ =↑ ( σ =↓).

The diUerent blocks M̂σσ
EE, M̂

σσ
OO, M̂

σσ̄
EO, M̂

σσ̄
OE, that con-

stitute the above 22 × 22 matrix, are explicitly reported in
the Appendix A. We notice here that, in the most general
case, the SO interaction couples the E and O sectors of the
22 × 22 TB matrix. Such mixing arises in particular from
the spin-Wip/spin-orbital processes associated with the trans-
verse quantum Wuctuation described by the Vrst two terms
of Eq. (4). The eUective relevance of these terms can now be
directly investigated in a simple way, pointing out the feasi-
bility of a tight-binding model with respect to Vrst-principle
calculations. The explicit analysis of this issue is discussed
in Section III. We anticipate here that the eUects of the oU-
diagonal spin-Wip terms result to be negligible for all the
cases of interest here. This is essentially due to the fact that
such processes involve virtual transitions towards high-order
energy states.17 At a very high degree of accuracy, we are
thus justiVed in neglecting the spin-Wip terms and retaining
in (4) only the spin-conserving terms ∝ λaL̂

z
aŜ

z
a . An imme-

diate consequence of that is that the even and odd sectors of
the Hamiltonian remain uncoupled, allowing us to restrict
our analysis, for the low-energy states of the valence and
conduction bands, only to the E sector.

B. Bulk case

Once introduced the TB model for a single-layer in the
presence of spin-orbit coupling, it is quite straightforward
to construct a corresponding theory for the bulk and bilayer
systems by including the relevant inter-layer hopping terms
in the Hamiltonian.

Following the formalism introduced in Ref. 1, and consid-
ering that the unit cell is now doubled, we can thus write
the Hamiltonian for bulk MX2 in the presence of SOC in the
matrix form:

ĤBulk(k) = Ĥsl
Bulk(k)⊗ 12 + ĤSO

Bulk, (13)

which is a 44× 44 matrix due to the doubling of the unit cell
with respect to the single-layer case discussed in Sec. II A.

Here Ĥsl
Bulk(k) represents the spinless Hamiltonian for

the bulk system,

Ĥsl
Bulk(k) =

(
Ĥsl

1 Ĥ⊥,Bulk

Ĥ†⊥,Bulk Ĥsl
2

)
, (14)

where Ĥsl
i describes the spinless Hamiltonian (i.e. in the ab-

sence of SOC) for the layer i = 1, 2, while Ĥ⊥,Bulk accounts

for the 11 × 11 Hamiltonian describing interlayer hopping
between X atoms beloging to diUerent layers. We remind
that Ĥsl

2 is related to Ĥsl
1 through the following relation dic-

tated by the lattice structure:1

Hsl
2,α,β(kx, ky) = PαPβH

sl
1,α,β(kx,−ky), (15)

where Pα = +(−)1 if the orbital α has even (odd) symmetry
with respect to y → −y. Furthermore, the (spin-diagonal)
interlayer term Ĥ⊥,Bulk can be written as:

Ĥ⊥,Bulk(k) =

(
ÎE cos ζ ÎEO sin ζ

−ÎT
EO sin ζ ÎO cos ζ

)
, (16)

where ζ = kzc/2 (c being vertical size of the unit cell in
the bulk system), and where the matrices ÎE, ÎO and ÎEO

describe the inter-layer hopping between the p orbitals of
the adjacent chalcogen atoms. As explained in Ref. 1, one
can notice that interlayer hopping leads, for an arbitrary
wave-vector k, to a mixture of the E and O sectors of the
Hamiltonian, which is accounted for by the term ÎEO in (16).
The analysis is however simpliVed at speciVc high-symmetry
points of the BZ, as we discuss below. The explicit expres-
sion of all the matrix elements of the Hamiltonian (14) can
be found in Ref. 1.

Finally ĤSO
Bulk in Eq. (13) accounts for the spin-orbit cou-

pling in the bulk system, and it can be written as:

ĤSO
Bulk =


M̂↑↑ 0 M̂↑↓ 0

0 M̂↑↑ 0 M̂↑↓

M̂↓↑ 0 M̂↓↓ 0

0 M̂↓↑ 0 M̂↓↓

 , (17)

where we can recognize both the spin-diagonal (M̂σσ) and
spin-Wip (M̂σσ̄) processes induced by the atomic spin-orbit
interaction.

Eqs. (13)-(16) provide the general basic framework for
a deeper analysis in more speciVc cases. In particular, as
already mentioned above, the spin-Wip terms triggered by
SOC can be substantially neglected for all the cases of in-
terest. The total Hamiltonian (13) can thus be divided in
two 22 × 22 blocks Ĥσσ

Bulk(k) related by the symmetry
Ĥ↑↑Bulk(k) = Ĥ↓↓Bulk(−k). Further simpliVcations are avail-
able at speciVc symmetry points of the BZ. More speciVcally,
we can notice that for kz = 0 the E and O sectors remain
uncoupled. Focusing, at low-energies for the conduction and
valence bands, only on the E sector, we can write

ĤBulk,E(k, kz = 0) = Ĥsl
Bulk,E(k) + ĤSO

Bulk,E, (18)

where

Ĥsl
Bulk,E(k) =


ĤE,1 ÎE 0 0

Î†E ĤE,2 0 0

0 0 ĤE,1 ÎE
0 0 Î†E ĤE,2

 , (19)
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and

ĤSO
Bulk,E =


M̂↑↑EE 0 0 0

0 M̂↑↑EE 0 0

0 0 M̂↓↓EE 0

0 0 0 M̂↓↓EE

 , (20)

where the explicit expression of each block Hamiltonian is
also reported in Appendix A.

C. Bilayer

The Hamiltonian for the bilayer can also be derived in a
very similar form as in the bulk case. In particular, we can
write:

Ĥ2L(k) = Ĥsl
2L(k) + ĤSO

2L . (21)

We remind that in our model the spin-orbit coupling is
purely local and thus not aUected by the interlayer coupling.
Therefore we have ĤSO

2L = ĤSO
Bulk, where Ĥ

SO
Bulk is deVned in

Eq. (20).
On the other hand, similar to the bulk case in Eq. (14), the

spinless tight-binding term Ĥsl
2L(k) for the bilayer case can

be written as:

Ĥsl
2L(k) =

(
Ĥsl

1 Ĥ⊥,2L

Ĥ†⊥,2L Ĥsl
2

)
, (22)

where now

Ĥ⊥,2L(k) =
1

2

(
ÎE ÎEO

−ÎT
EO ÎO

)
. (23)

Note that Eq. (23) can be obtained as limiting case of Eq. (16)
by setting ζ = π/4, corresponding to the eUective uncou-
pling of bilayer blocks.

III. TIGHT-BINDING PARAMETERS AND COMPARISON
WITH DFT CALCULATIONS

After having developed a suitable tight-binding model for
single and multi-layer MX2 compounds, we compare in this
section the band structure obtained by the TB model to the
corresponding band structure obtained from DFT methods.
We are guided along this task by the set of Slater-Koster
tight-binding parameters already presented in Ref. 1, opti-
mized to reproduce the low-energy properties of the band
structure of the single-layer MoS2. An appropriate set of
tight-binding parameters is here derived also for WS2 by Vt-
ting the low-energy dispersion of the conduction and va-
lence bands of these compounds in the whole BZ, includ-
ing the secondary minimum of the conduction band along
the Γ-K line.1 We generalize these results by including also
the crystal Veld ∆1, obtained by Vxing the minimum at K of
the electronic bands belonging to the odd block to the same

MoS2 WS2

SOC λMo 0.075 0.215
λS 0.052 0.057

Crystal Fields ∆0 -1.512 -1.550
∆1 0.419 0.851
∆2 -3.025 -3.090
∆p -1.276 -1.176
∆z -8.236 -7.836

Intralayer Mo-S Vpdσ -2.619 -2.619
Vpdπ -1.396 -1.396

Intralayer Mo-Mo Vddσ -0.933 -0.983
Vddπ -0.478 -0.478
Vddδ -0.442 -0.442

Intralayer S-S Vppσ 0.696 0.696
Vppπ 0.278 0.278

Interlayer S-S Uppσ -0.774 -0.774
Uppπ 0.123 0.123

TABLE I: Spin-orbit coupling λα and tight-binding parameters for
single-layer MoS2 and WS2 (∆α, Vα) as obtained by Vtting the low
energy conduction and valence bands. Also shown are the inter-
layer hopping parameters Uα relevant for bulk compounds. The
Slater-Koster parameters for MoS2 are taken from Ref. 1, and the
SOC terms from Ref. 4 and 24. All hopping terms Vα, Uα, crystal
Velds ∆α, and spin-orbit coupling λa are in units of eV.

energy of the DFT calculations. The only left unknown pa-
rameters are thus the atomic spin-orbit constants λM and
λX for the transition metal and for the chalcogen atom, re-
spectively. We take the corresponding values from Ref. 4
and 24, and we list the full set of TB parameters for MoS2

and WS2 in Table I. Therefore, we can compare the result-
ing band structure for the full tight-binding model in the
presence of SOC, with corresponding Vrst-principle results
including also spin-orbit interaction.

DFT calculations were performed using the Siesta
code.36,37 The spin-orbit interaction is treated as in Ref.
38. We use the exchange-correlation potential of Ceperley-
Alder39 as parametrized by Perdew and Zunger.40 We use
also a split-valence double-ζ basis set including polarization
functions.41 The energy cutoU and the Brillouin zone sam-
pling were chosen to converge the total energy. Lattice pa-
rameters for MoS2 and WS2 were chosen according to their
experimental values, as reported in Refs. 42 and 43, and they
are listed in Table II.

The representative band structure for monolayer MoS2

and WS2, as well as for the bulk counterpart, are shown
in Fig. 1, for both DFT (dashed red lines) and TB calcula-
tions (solid blue lines). We observe that the TB model with
the set of Slater-Koster parameters provided in Table I leads
to a reasonable Vtting of the DFT band structure. In par-
ticular we see that, for single layer samples [panels (a) and
(b)] the edges of the valence band at K and Γ, as well as the
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edges of the conduction band at K and Q [which position
is marked by a black dot in Fig. 1(a)] are properly captured
by the TB model. Although the TB valence bands are less
dispersive than the DFT bands in the intermediate regions
between high symmetry points, it is important to notice that
the experimental bands measured by ARPES are also Watter
as compared to DFT bands, as it has been recently shown
in Ref. 26. This fact further justiVes the usefulness of the
TB model presented here. The TB band structure for bulk
samples, shown in Fig. 1(c) and (d), have been obtained by
adding only two extra Slater-Koster parameters, Uppσ and
Uppπ , which account for inter-layer hopping between p or-
bitals of the adjacent chalcogen atoms of diUerent layers.
The obtained band structure for the valence band reproduce
reasonably well the DFT band structure, as well as the exper-
imental band structure measured by ARPES,26 and accounts
for the direct- to indirect-gap transition when going from 1L
to bulk materials.1 As for the conduction band, the minimum
at K is also captured by the TB model, but the position of the
minimum at Q does not agree with DFT results. The inclu-
sion of hopping terms between M orbitals of diUerent lay-
ers, as well as next nearest neighbor hopping terms, could
improve such Vtting. However, we notice that no experi-
mental measurements of the conduction band dispersion are
available so far in the literature, making that the DFT bands
themselves should be taken with care.48

In addition to the above remarks, a fundamental advan-
tage of the TB model with respect to Vrst-principles calcu-
lations is that it permits to investigate in an analytical way
the relevance of the microscopic underlying processes. We
have already mentioned above how transverse spin-Wip Wuc-
tuations play here a marginal role and they can be disre-
garded, making the overall modeling of the spin-orbit in-
teraction extremely direct and simple. We can now explic-
itly address and quantify this issue by comparing in the TB
model the band structures obtained by using the full SOC as
described by Eq. (4) and the one obtained considering only
the last spin-diagonal terms L̂zaŜ

z
a . The results are shown

in Fig. 2 where we compare, for single-layer MoS2, the to-
tal band structure (red dashed lines) obtained by considering
the full spin-orbit interaction (4) with the one obtained using
the spin-conserving part [third term in Eq. (4)]. As we can

a u c
MoS2 1L 3.16 1.586 −
MoS2 2L 3.16 1.586 6.14
MoS2 Bulk 3.16 1.586 6.14
WS2 1L 3.153 1.571 −
WS2 2L 3.153 1.571 6.1615
WS2 Bulk 3.153 1.571 6.1615

TABLE II: Lattice parameters used for DFT calculation for single-
layer, bilayer and bulk MoS2 and WS2 systems, as taken from Refs.
42 and 43, respectively. a represents the M -M atomic distance,
u the internal vertical distance between the M plane and the X
plane, and c′ the distance between the M layers. In bulk systems
the z-axis lattice parameter is given by c = 2c′. All values are in Å
units.
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FIG. 1: Band structure of single-layer and bulk MoS2 and WS2 in-
cluding SO interaction. Red dashed lines correspond to DFT calcu-
lations and solid blue lines to tight-binding calculations using the
sets of parameters given in Table I. The black dot in panel (a) indi-
cates the position of the minimum of the conduction band, referred
in the text as Q.

see in Fig. 2(a) there is an almost perfect overlapping of the
band structures for MoS2 obtained including and neglecting
the spin-Wip terms, demonstrating the negligible role of these
processes. The eUect is still weak but more noticeable for the
case of WS2 [Fig. 2(b)], due to the larger intra-atomic SOC
associated to the heavier W atoms, as compared to Mo.

IV. DISCUSSION

The TB model introduced in Sec. II, for single-layer and
multi-layer compounds, and the speciVc Slater-Koster pa-
rameter discussed in Sec. III provides a comprehensive tool
for the study of the electronic properties and the entangle-
ment between diUerent degrees of freedom (spin, orbital, val-
ley, layer, lattice) in these compounds in the presence of a
relevant spin-orbit coupling acting both on the chalcogenX
and on the transition metal atoms M . As we summarize in
the present Section, such physics results to be relevant not
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only for the valence bands, whose band edge in the single
layer materials is mainly built by theM orbitals dxy , dx2−y2 ,
but also for the conduction band and for the secondary ex-
trema of both conduction and valence bands, whose energy
can be eUectively tuned by the interlayer coupling and by
the spin-orbit interaction itself.

A. Spin-polarized pockets in the Fermi surfaces

The role of the spin-orbit coupling on the spin-orbital-
valley entanglement at the band edge at K of the single-layer
and bilayer compounds have been widely discussed in lit-
erature, using mainly low-energy eUective Hamiltonians fo-
cused on the role of the metal-transitionM d-orbitals and of
their corresponding spin-orbit coupling. Such scenario can
be now well reproduced by the present TB model and gener-
alized to the whole BZ.

The spin-orbit coupling, in particular, is expected to be
most relevant for the band edges of the valence band at the
K point, whose orbital content is mainly associated with the
dxy and dx2−y2 orbitals of the transition metal. A large band
splitting induced by the SOC is thus predicted in this case.
Such feature is indeed well captured by the TB model. In
Fig. 3(a), (b) we show the Fermi surfaces obtained with the
present TB model, including atomic spin-orbit coupling, for
a Vnite hole-doping probing the valence band of both single-
layer and bulk compounds. In order to point out the diUerent
physics occuring close to the diUerent band edges at K and Γ
points, we show here Fermi surfaces corresponding to a siz-
able negative Fermi energy cutting both edges at K and Γ. In
particular, the central Fermi pocket located around Γ appear
to be spin degenerate, for both single-layer and bulk systems
since its orbital character is mainly due to the d3z2−r2 or-
bitals of M and to the pz orbitals of X , both of them with
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FIG. 2: Tight-binding band structure of single-layer MoS2 (a) and
WS2 (b) including SO interaction. Red dashed lines corresponds to
the TB bands including the whole SO coupling terms. Black solid
lines correspond to the TB band structure including only the spin-
conserving terms of the SO coupling.

Lz = 0.1 On the other hand, as discussed in Ref. 1, the
pockets around K and K’ are mainly due to the dx2−y2 and
dxy orbitals of the metal M (with |m| = 2), plus a minor
component of px and py orbitals of the chalcogen X (with
|m| = 1). This results in a Vnite SOC splitting of the valence
band at the K and K’ points, due mainly to Vrst order spin-
orbit coupling on the d orbitals ofM . Furthermore, because
of the lack of inversion symmetry in single layer samples (or
in multi-layer samples with an odd number of layers), the
spin degeneracy is lifted, presenting an opposite spin polar-
ization on diUerent valleys.5 This feature is well reproduced
by our model and shown in Fig. 3(a), where Fermi surfaces
with main Sz =↑ character are denoted by solid blue lines,
while Fermi surfaces with main Sz =↓ character are denoted
by dashed black lines. On the other hand, the Fermi surfaces
of hole-doped bulk MoS2, for the sameEF , are shown in Fig.
3(b). Since the maximum of the valence band for the bulk
compound, because of the interlayer coupling, is located at
the Γ point [see the band structure of Fig. 1(c)], the central
pocket in Fig. 3(b) is considerably larger than in Fig. 3(a)
for single layer samples. In addition, the interlayer coupling
leads by itself to a splitting of the valence band close to the K
and K’ points, with bands degenerate in spin, as imposed by
the inversion symmetry of the bulk system. The SOC does
not result thus in this case in any further splitting, and the
double Fermi surfaces in 3(b) are spin degenerate and mainly
driven by the interlayer coupling. A recent set of ARPES
measurements for MoS2 and MoSe2

44 have shown the im-
portance of the SOC in the band structure, obtaining exper-
imental constant energy contours in very much agreement
with those presented in Fig. 3(a) and (b).

Although smaller and less noticed,17–19,22–24 a spin-valley
coupling is present also for the conduction band edge of the
single-layer systems at the K and K’ points. It is important
to remind here that the orbital character in these points of
the BZ is mainly associated with the d3z2−r2 orbital (with
m = 0) of the transition metal M , but with a Vnite con-
tribution from the px and py orbitals of the chalcogen, with
m = ±1).1 The spin-orbit coupling of the chalcogen atomX ,
mainly through the diagonal term LzXS

z
X , results thus in a

smaller but Vnite splitting of the conduction band edge, as it
can be also inferred by the Fermi surfaces for electron-doped
single-layer compounds, as shown in Fig. 3(c). It is worth
to stress that, although the resulting spin-induced splitting
can be quite small, the entanglement between band splitting,
spin and valley degrees appears to be quite strong, so that the
lower band is ↑ polarized and the upper band ↓ polarized (or
viceversa, depending on the valley). Note also that, although
the atomic spin-orbit coupling due to the sulfur in MoS2 or
WS2 is not very large, it can be of importance for Se com-
pounds (with a larger atomic mass than sulfur), as MoSe2 or
WSe2.

Finally, we can note that, as previously discussed in Ref.
4 using Vrst principles calculations, the SOC induces a Vnite
band splitting in single-layer systems also at the Q point,
with a corresponding spin-polarization. Also this feature is
nicely captured by our tight-binding model in the presence
of atomic SOC on both chalcogen and transition metal atoms,
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FIG. 3: Fermi surfaces of MoS2. Panels (a) and (c) correspond to single-layer and panels (b) and (d) to bulk system. Top panels represent
hole-doped systems, with the Fermi energyEF = −1.134 eV in the valence band, whereas bottom panels represent electron-doped systems,
with the Fermi energy EF = 0.95 eV in the conduction band. The hexagonal 2D BZ is shown in (c) by the black solid lines and EF is taken
with respect to E = 0 of the TB Hamiltonian. In the plots for single-layer systems, (a) and (c), solid blue and dashed black lines correspond
to Fermi surfaces with main Sz =↑ and Sz =↓ polarization, respectively. All the Fermi surfaces of the bulk system [panels (b) and (d)] are
degenerate in spin.

as shown in Fig. 3(c) where we plot the Fermi surfaces of an
electron-doped system with a Fermi level cutting only the
lower conduction band at Q. As we can see, the TB model
is able not only to reproduce the band splitting, but also to
point out a strong degree of entanglement also in this point
of the BZ, with Fermi pockets with a strong spin polariza-
tion, and with an alternating polarization of the entangled
spin/valley/orbital degrees of freedom along the six inequiv-
alent valleys. On the microscopic ground, we can notice that
the main orbital character of the conduction bands at the Q
point is due to a roughly equal distribution of the dx2−y2
and dxy orbitals of the transition metal M , and of the px
and py orbitals of the chalcogen atom X . Given the pres-
ence of a large contribution from both p- and d-orbitals, we
expect these states to stem from a strong hybridization be-
tween X and M atoms, and hence to be highly sensitive to
uniform and local strains and lattice distortions.45 In addi-
tion, it should be kept in mind that the minimum of the con-

duction band atQ becomes the eUective band edge in bilayer
andmultilayer compounds (as well as in strained single-layer
systems). These considerations thus suggest that the minima
of the conduction band at the Q point as the most promis-
ing states for tuning the spin/orbital/valley entanglement in
these materials by means of strain engineering45 or (in mul-
tilayer systems) by means of electric Velds.14

B. Contribution of the chalcogen atoms to the SOC.

Most of the existing theoretical works has focused on the
eUects of the spin-orbit interaction associated with the tran-
sition metal atom. Less attention has been paid, in general, to
the SOC induced by the chalcogen atom. As we have seen in
the previous section, however, the role of the SOC can be re-
markably relevant also at the Q point of the BZ, resulting in
a strong spin/orbital/valley entanglement also in this point,
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FIG. 4: Tight-binding band structure of single-layer WS2 includ-
ing SOC (black solid lines) as compared with the hypothetical
band structure (dashed red lines) with the same tight-binding and
SOC parameters but increased spin-orbit coupling of the chalcogen
atoms (λSe = 400 meV instead of λS = 57 meV).

with the advantage to be extremely sensitive to theM -X hy-
bridization and hence to the lattice eUects. In addition, since
the orbital content in this point is a mixture of d and p or-
bitals of the metal and the chalcogen atoms, the spin-orbit
coupling is expected to be signiVcantly driven not only by
the d-orbital of the transition metalM , but also by the p or-
bitals of the chalcogen X atom (see Appendix B), especially
for heavy atoms, as selenium in place of sulfur. In particu-
lar, we can expect in this case a stronger SOC splitting, and
hence a transition from a direct to indirect gap, tuned by the
SOC strength of the chalcogen. Tight-binding models can
be quite useful to investigate this issue since we can easily
tune the atomic SOC, for instance replacing λS with λSe,
keeping Vxed all the Slater-Koster parameters. This permits
thus to highlight the pure eUects of the increased SOC with-
out involving other structural and electronic changes that
are unavoidably in a Vrst-principle calculation. The results
of this theoretical experiment are shown in Fig. 4, where we
plot the tight-binding band structure of WS2 where we have
artiVcially increased the atomic SOC of the chalcogen atom
from λS = 57 meV to λSe = 400 meV, as estimated for
the WSe2 compound.24 We can observe here two main ef-
fects: i) a sizable splitting of the bottom of the conduction
band at K; ii) an enhancement of the SOC splitting at the
Q point of the conduction band. We emphasize that, due to
the large SOC coupling of both W and Se atoms, the splitting
of the conduction band at K shown in Fig. 4 is related not
only to second order spin-Wip processes between metal-d or-
bitals, as discussed in Refs. 17,22, but also to Vrst-order spin-
conserving processes between the chalcogen p-orbitals. This
last eUect is enhanced due to the larger intra-atomic SOC of
the chalcogen Se, as compared to S. As a consequence, we
observe that the two minima of the conduction band at K
and Q have almost the same energy, in agreement with DFT

calculations.24,46

C. Spin-Valley-Layer coupling in BilayerMX2

Of special interest is the case of bilayer TMD, correspond-
ing to a stack of two single layers in-plane rotated by 180◦

with respect to each other, such that the transition metal
atoms of one layer are above the chalcogen atoms of the
other layer. The two layers are bound by means of weak Van
der Waals interactions. The inter-layer hopping of electrons
between diUerent layers leads to a strong modiVcation of the
band structure, driving a transition from a direct gap semi-
conductor in single-layer systems to an indirect gap semi-
conductor in bilayer and multi-layer compounds. As pointed
out in Ref. 1, the inter-layer hopping links mainly the p
orbitals of the chalcogen atoms X of diUerent layers. The
result of this hopping is a splitting of the maximum of the
valence band at the Γ point, which becomes the eUective va-
lence band edge, as well as a splitting of the minimum of the
conduction band at the Q point which becomes the absolute
minimum of the conduction band. This situation is shown in
Fig. 5, where we report the band structure of bilayer MoS2

and WS2 calculated by DFT methods. A qualitative simi-
lar feature is observed also in other bilayer compounds, as
MoSe2 or WSe2.
Contrary to single-layerMX2, bilayerMX2 presents point-

center inversion symmetry.14,16,47 Therefore, as we have dis-
cussed for the bulk case, the corresponding band structure
remains spin degenerate even in the presence of SOC. How-
ever, since the SOC Hamiltonian does not couple orbitals
of diUerent layers, each single band preserves a Vnite en-
tanglement between spin, valley and the layer index. Such
spin-valley-layer coupling has been discussed in Ref. 47,
where the authors focused on the relevance of this eUect
at the K point of the valence band. Here we notice that
the same eUect occurs also for the conduction band, and
it can be thus relevant for electron-doped samples. Indeed
for slightly electron-doped bilayer MoS2 and WS2 the Fermi
surface presents six pockets centered at the inequivalent Q
valleys of the BZ, and no pockets at the K and K’ valleys.
Interestingly, the SOC for the TMD families with stronger
spin-orbit interaction, likeWS2 andWSe2, can be larger than
the inter-layer hopping, enhancing the spin/layer/valley en-
tanglement. Then, although inversion symmetry forces each
Fermi pocket to be spin degenerate, the layer polarization
makes that each layer contributes with opposite spin in al-
ternating valleys. This property can be of interest for val-
leytronics devices: by partially Vlling only one of the two
subbands at the Q point of the conduction band, one would
have a situation in which the upper layer contributes to three
of the six valleys with spin-↑, and with spin-↓ to the other
three valleys, whereas the opposite contribution is inferred
from the bottom layer. This spin-valley coupling scenario re-
sembles that of single-layer and bilayerMX2 discussed in the
literature,5,11–14,16,47 but for electron-doped samples, which is
the kind of doping most commonly reported for those mate-
rials. Although we have focused in this section in the most
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FIG. 5: Band structure of bilayer MoS2 and WS2 obtained from DFT
calculations. The combined eUect of inter-layer hopping and spin-
orbit interaction drives the minimum of the conduction band to the
Q point, and the maximum of the valence band to the Γ point (see
text) .

simple multi-layer compound, which is the bilayer MX2,
the physics discussed above applies also for any multi-layer
TMD with an even number of layers, because they contain
the same symmetry properties as that of bilayer MX2 dis-
cussed here.

V. CONCLUSIONS

In conclusion, we have studied the eUect of SOC in the
band structure of TMD. We have extended the tight-binding
model developed in Ref. 1, including the SO interaction for
both, single-layer samples as well as for multi-layer samples.
The band structure obtained from the TB model has been
compared to DFT calculations for MoS2 and WS2. Based on
the orbital character at each relevant point of the Brilloin
zone, we have discussed the origin and main features of the

SOC at the diUerent band edges for both, single-layer as well
as multi-layer samples. In particular we have found that, for
the cases of interest here, spin-Wip processes are negligible
in the SOC Hamiltonian. This allows to highly simplify the
model, making possible to construct a reduced TB Hamilto-
nian which contains the orbital character and SOC which is
relevant for the description of the system around the gap.
Special attention has been paid to the role of the SOC associ-
ated to the chalcogen atom. In fact, whereas most of the pre-
vious works has focused on the SOC associated to the metal
atom (which is indeed the responsible for the large splitting
of the valence band at the K point) here we have shown that
the SOC associated to the chalcogen atom is important at
the Q point of the conduction band, especially for MoSe2

and WSe2. Finally, we have considered the eUect of SOC in
bilayer TMD.Whereas for single-layerMX2, inversion asym-
metry leads to spin-valley coupling, the band edges of bilayer
TMD are spin degenerate. However, since inter-layer hop-
ping conserves the spin, the spin physics can be exploited
in bilayer MX2 due to spin-valley-layer coupling. Whereas
this issue has been recently studied in detail for hole-doped
samples,47 here we have argued that a similar eUect can be
expected for slightly electron-doped samples.
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Appendix A: SOC Hamiltonian

In this appendix we provide the explicit expression of
the matrices M̂σσ

EE, M̂
σσ
OO, M̂

σσ̄
EO, M̂

σσ̄
OE, describing the local

atomic spin-orbit interaction on both M and X atoms. We
have:

M̂↑↑EE =


0 0 0 0 0 0
0 0 −iλM 0 0 0
0 iλM 0 0 0 0
0 0 0 0 −iλX/2 0
0 0 0 iλX/2 0 0
0 0 0 0 0 0

 ,(A1)

M̂↓↓EE = −M̂↑↑EE, (A2)



10

(a)

G M GK

-1

0

1

2

G M GK

-1

0

1

2

k

En
er
gy
HeVL

(b)

G M GK

-1

0

1

2

G M GK

-1

0

1

2

k

En
er
gy
HeVL

FIG. 6: Tight-binding band structure of MoS2 including SOC. Solid
black lines corresponds to the TB bands using λMo and λS as given
in Table I. Red dashed lines in (a) corresponds to λS = 0.052 eV and
λMo = 0. Red dashed lines in (b) correspond to λMo = 0.075 eV
and λS = 0.

M̂↑↑OO =
1

2


0 −iλM 0 0 0

iλM 0 0 0 0
0 0 0 −iλX 0
0 0 iλX 0 0
0 0 0 0 0

 , (A3)

M̂↓↓OO = −M̂↑↑OO, (A4)

M̂↑↓EO =
1

2


−
√

3λM i
√

3λM 0 0 0
λM iλM 0 0 0
−iλM λM 0 0 0

0 0 0 0 λX
0 0 0 0 −iλX
0 0 −λX iλX 0

 ,(A5)

M̂↓↑OE =
(
M̂↑↓EO

)†
, (A6)

M̂↓↑EO =
1

2



√
3λM i

√
3λM 0 0 0

−λM iλM 0 0 0
−iλM −λM 0 0 0

0 0 0 0 −λX
0 0 0 0 −iλX
0 0 λX iλX 0

(A7)

and

M̂↑↓OE =
(
M̂↓↑EO

)†
, (A8)

In the above matrices we have used the short notation λM
for the SOC of the metal (Mo or W) and λX for the SOC of
the chalcogen (S or Se).

Appendix B: SOC of the metal atom versus SOC of the
chalcogen atom

In order to see better the role of the SOC in the diUer-
ent regions of the valence and conduction bands, as well as
their corresponding atomic origin for each case, in Fig. 6 we
compare the TB bands for single layer MoS2 considering the
contributions from the metal as well as from the chalcogen
atoms, λMo and λS respectively, as given in Table I (full black
lines), with respect to the case with λMo = 0 [dashed red
lines in panel (a)] and λS = 0 [dashed red lines in panel (b)].
By looking at those Vgures, we clearly see that the SO split-
ting in the top of the valence band is due to d−Mo orbitals,
whereas the splitting in the minimum Q of the conduction
band is due to both, Mo and S orbitals.
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