
69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 1 of 13

IAC-18.D1.6.12x46215

The ERGO framework and its use in planetary/orbital scenarios

J. Ocón a*, F.J. Colmenero a, J. Estremera a, K. Buckley a, M. Alonso a, E. Heredia a, J.Garciaa,

A. I. Coles b, A. J. Coles b, M. Martínez b, E. Savaş b, F.Pommerening c, T.Keller c, S. Karachalios d, M.

Woods d, I. Dragomir e, S. Bensalem e, P. Dissaux f, A Schach f, R.Marc g, P. Weclewski g

a GMV Aerospace and Defense, Isaac Newton 11 PTM Tres Cantos 28760, Spain, Email :
b Department of Informatics, King’s College London, WC2B 4BG, UK, Email: andrew.coles@kcl.ac.uk
c University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland, Email: {florian.pommerening,tho.keller}@unibas.ch
d SCISYS UK Ltd, Methuen Park Chippenham SN14 0GB, UK, Email: mark.woods@scisys.co.uk
e Université Grenoble Alpes – VERIMAG, 2, avenue de Vignate, Gieres, 38610, France Email:iulia.dragomir@univ-

grenoble-alpes.fr>
f Ellidiss Technologies – 24 Quai de la Douane, Brest, 29200, France Email: Arnaud.Schach@ellidiss.com
g Airbus Defence and Space Ltd., Stevenage, SG1 2AS, United Kingdom, Email: GNC.UK@airbus.com

Abstract

ERGO (European Robotic Goal-Oriented Autonomous Controller) (http://www.h2020-ergo.eu/) is one of the six

space robotic projects in the frame of the first call of the PERASPERA SRC. ERGO is aimed to future space

missions, in which space robots will require a higher level of autonomy (e.g. Exomars or Mars2020). As a

framework, ERGO provides a set of components that can be reused and tailored for robots space missions (Orbital,

Deep Space or Planetary Explorations) in which the on-board system has to work autonomously, performing

complex operations in hazardous environments without human intervention. The concept of autonomy can be applied

to a whole set of operations to be performed on-board with no human supervision, such as Martian exploration

rovers, deep space probes, or in-orbit assembly robots. In the last decades, the advantages of increasing the level of

autonomy in spacecraft have been demonstrated in planetary rovers. At the same time, orbital space missions have

already successfully applied autonomy concepts on board, in particular for autonomous event detection and on-board

activities planning.

ERGO provides a framework for on-board autonomy systems based on a specific paradigm aimed to facilitate an

easy integration and/or expansion covering future mission needs; by using this paradigm, both reactive and

deliberative capabilities can be orchestrated on-board. In ERGO, deliberative capabilities are provided via AI

techniques: automated planning and machine-learning based vision systems. ERGO also provides a set of tools for

developing safety-critical space mission applications and FDIR systems. Moreover, specific components for motion

planning, path planning, hazard avoidance and trajectory control are also part of the framework. Finally, ERGO is

integrated with the TASTE middleware. All ERGO components are now being tested in an orbital and a planetary

scenario.

This paper discusses the ERGO components, its main characteristics, and how they have been applied to an

orbital and a planetary scenario. It provides an overview of the evolution of the ERGO system; its main components

and the tests that have been performed so far.

Keywords: Artificial Intelligence, Space Robotics, Planning, Scheduling, Robotic Controllers

Acronyms/Abbreviations

AADL - Architecture Analysis and Design Language

AI – Artificial intelligence

ASN.1 - Abstract Syntax Notation One

BIP – Behaviour, Interaction, Priority

ECSS - European Cooperation for Space

Standardization

ESA – European Space Agency

FDIR – Fault, Diagnosis, Isolation and Recovery

GOAC – Goal Oriented Autonomous Controller

GODA – Goal Oriented Data Analysis component

GOTCHA - GOAC TRL increase Convenience

enhancements Hardening and Application extension

KLOC – Thousands of Lines of Code

MDA MDE – Model Driven Architecture Engineering

PDDL - Planning Domain Definition Language

SDL – Specification and Description Language

TASTE - The ASSERT Set of Tools for Engineering

T-REX – Teleo-reactor Executive

URDF- Unified Robot Description Format

mailto:andrew.coles@kcl.ac.uk
mailto:tho.keller%257D@unibas.ch
mailto:mark.woods@scisys.co.uk%2520
mailto:Arnaud.Schach@ellidiss.com

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 2 of 13

1. Introduction

The ERGO project [1] takes on a set of challenges

aiming to increase the autonomy of a space robot

involved in orbital or planetary exploration missions.

The main challenge is to reach higher levels of

autonomy, understanding autonomy as “the capability

of the space segment to continue mission operations and

to survive critical situations without relying on ground

segment intervention” [3]. To achieve this goal, the

framework provides a combined set of software assets,

to tackle the specific needs related to space robotics

autonomy.

The first capability needed in ERGO is the

possibility to command the system in the form of

high-level commands or goals. A key element for this

purpose, is the on-board planner, which is developed

based on AI techniques. This on-board planner, the so-

called “Stellar”, developed explicitly for ERGO, is

based on King’s College and University of Basel’s

expertise in previous planners and heuristic techniques,

such as Optic [4] or Temporal Fast Downward [5]. By

using an on-board planner, the system can be

commanded from ground by using high-level goals,

while the steps that are necessary to fulfil the goals are

derived by the robot itself. The PDDL planning

language [6] is used to model both the domain and the

problem (high-level objectives to be achieved). The

planner’s task is: given a set of high level goals, find a

sequence of actions to be executed by the robot in order

to achieve them.

Another objective in ERGO is to detect, based on

images, serendipitous events that could trigger

dynamic replanning. For this purpose, ERGO includes

the GODA scientific agent. GODA is based on previous

ESA studies, like PRoViScout [7] or MASTER [8].

GODA is a software component that can be trained to

detect objects having a set of characteristics.

In addition, in the ERGO framework, a scheduling

component is provided: this orchestration role is

handled by a robotic main controller (the so-called

Agent) implemented by GMV based on the experience

and expertise obtained from previous autonomy

research programs such as GOAC [9] and GOTCHA

[10] . Based on the T-REX paradigm [11] this Agent

implements an efficient execution environment for

handling different autonomy levels (from single

telecommanding–E1 to goal-commanding–E4). Within

the Agent, different control loops are completely

coordinated at runtime during the deliberation and

execution phases, thus guaranteeing a harmonized

control and execution of reactive and deliberative

behaviours.

This main controller includes a generic ground

control interface component that can be tailored for

any specific mission.

Furthermore, ERGO provides support for FDIR

capabilities, which enhance a robotic system with safe

functional autonomy. Given the criticality of such

applications, the FDIR components are developed in a

rigorous approach based on formal methods. ERGO

makes use of BIP [12], developed by Verimag, that has

already been successfully applied on different robotic

case studies [13],[14]. BIP is a formal language and

framework that allows real-time component-based

system design. The framework provides different

analysis techniques which consolidate the confidence on

the system’s correctness at different design levels. In

ERGO, the BIP tools are extended and applied in a

clearly defined process to design, validate, and

implement FDIR components specific to each mission.

For the sake of modularity the whole ERGO is built

based on the TASTE middleware [2]. TASTE is an open

source framework, developed by ESA that allows the

development of embedded, real-time systems. TASTE

relies on key technologies such as standardized

modelling languages (e.g., ASN.1 and AADL), code

generators and real-time systems analysis, in order to

generate the suitable code skeletons and the system

executable. Within the ERGO project, we have

benefited of the help and support of Ellidiss for the

TASTE extensions needed by the ERGO framework

The Ground Control Interface, the Agent, the Planner,

as well as the tools mentioned before: TASTE

Extensions developed for ERGO and the BIP tools, are

part of the so-called “ERGO Core Framework”. These

are generic tools and components that can be used in

any spacecraft robotic application. ERGO also provides

components for specific problems, such as motion

planning for a robotic arm, and guidance for a planetary

rover. In ERGO a dedicated library for a robotic arm

equipped with a gripper has been developed by GMV;

this library that can be tailored to any robotic arm

provides high-level primitives to perform pick and drop

operations. In addition, a guidance algorithm is also

available as part of the framework. Developed by

Airbus, it is able to perform path planning, trajectory

control and hazard avoidance. The component is

developed based on the work performed by Airbus in

the frame of the ExoMars Rover project. The guidance

component can be parametrized to work with rovers of

different characteristics.

Figure 1 illustrates the reusable components of the

ERGO framework briefly discussed above. Each

component is described more thoroughly in the

remainder of this paper.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 3 of 13

Figure 1: ERGO Framework packages

2. Stellar, the ERGO planner

Stellar is the generic mission planner for ERGO.

This novel component is based on concepts and notions

from classical planning, timeline-based planning and

planning with semantic attachments.

Stellar supports temporal PDDL planning models

[6]. The task of planning can be seen as finding a time-

stamped sequence of actions that, when executed,

transforms a given initial state (such as the current state

of the system) into one which satisfies the goals.

Fundamentally, this is a combinatorial search problem,

with the planner searching over intermediate states

along a path to a goal state. In doing so it considers

what actions are applicable (according to their

preconditions) and their effects on the state. Also, it

uses a heuristic estimate to guide search towards the

goals. In ERGO, the on-board resource constraints set a

tight envelope on the way in which this deliberation can

be carried out on-board. Thus, considering the need to

perform search, it is important to reduce both the

overheads of each state generated during search, and the

number of states generated. We will discuss each of

these in turn.

Considering per-state overheads, Stellar adopts

techniques from the planner Temporal Fast Downward

[5], translating the planning problem into a SAS+ [15]

multi-valued variable representation. This reduces the

memory needed to store each state, by allowing an

efficient bit-packed representation – each state variable

is stored in just enough bits to cover the size of its

domain. To reduce the time overheads incurred for each

state, Stellar uses a heuristic that guides the search

quickly towards a goal state. We use a tightly coded

implementation of the FF heuristic [16], a heuristic that

focusses on the causal reasoning that dominates the

class of planning problems it is targeting by ignoring

delete effects of actions in the heuristic computation.

Further, to check that states are temporally consistent

(that time windows and other temporal constraints have

been met) it uses efficient techniques from the planner

OPTIC [4].

Considering the size of the search space in itself,

Stellar employs two powerful techniques for temporal

planning as forward state-space search. First, it reduces

the size of the search space that needs to be considered

through the recognition of ‘compression safe’ actions

[17]: in many typical cases, this allows a durative action

(that can be thought of as having a start, and an end) to

be added to the plan as a single step, rather than two

steps. Second, it abstracts time window constraints into

global constraints applied to all plans, rather than

considering their end-points to be plan steps [18].

To allow planning to be coupled with other

components of the system, such as Rover Guidance and

Robotic Arm (to be described later in sections 6 and 7

respectively), Stellar has an external function interface

that allows to incorporate semantic attachments into the

planning process [19] . An example of this is shown in

Figure 2.

At the start of planning, Stellar dynamically loads

libraries containing the implementations of the external

functions; then it calls functions from the library to

determine the values of variables to be used in planning.

In the example given in Figure 2, it will load the library

‘orbitalrarmplanner’, and will call the functions defined

therein to obtain the values of the given variables (such

as ‘ra_move_dur’ – the duration of moving the robotic

arm between the two given positions). These variables

are used in planning in three ways:

▪ To determine the duration of actions: how much

time will pass between its start and its end)

▪ To determine the values of variables used in

preconditions of actions; for instance, if the

remaining energy is sufficient to perform a given

operation

▪ To determine the values of variables used in the

effects of actions; for instance, how much energy is

used by a given operation.

An important consequence of this external interface

is that it allows the planning model to be written at a

(:modules

 (:module ef_orbitalrarmplanner

 (:function (ra_move_dur ?from ?to - slot))

 (:function (ra_move_energy ?to - slot))

 (:function (ra_pick_dur ?from ?to - slot))

 (:function (ra_pick_energy ?to - slot))

 (:function (ra_drop_dur ?from ?to - slot))

 (:function (ra_drop_energy ?to - slot))

 (:function (ra_home_dur ?from - slot))

 (:function (ra_home_energy ?from - slot))

)

)

Figure 2: Example External Functions Definition

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 4 of 13

higher level of abstraction, where an action encapsulates

functionality provided by another component in the

system, such as moving the robot arm or moving a

planetary rover. Therefore, it suffices that the planner

has measures of their time and resource needs without

needing a full low-level model of how they will be

executed.

To complete the integration of the Stellar planner

with the rest of the architecture, a planner ‘reactor’ acts

as an abstraction layer. The reactor generates PDDL

models, based on the current state of the system, and

contains suitable goals for the current tasks (and any

opportunistic science tasks). These are then given to the

planner to be solved. The solution plan is then translated

by the reactor into a Timeline-based representation [10]

to support plan dispatch and execution monitoring. In

the case where the observations during execution do not

match expectations, the reactor generates a new PDDL

model and invokes the planner again to re-plan for this

unexpected scenario.

Whilst in theory temporal planning has a high

computational complexity [20], Stellar is able to scale

well to provide planning capabilities on the specific

scientific missions we have considered. Because the on-

board resources and capabilities are tightly constrained,

the branching factor over what actions could be

performed in each state is relatively narrow. This makes

the planning task simpler, because there are, in practice,

relatively few real choices to be made about how to

achieve specific goals. Coupled with an effective

heuristic to guide the search for a plan that achieves the

goals, and efficient techniques for managing temporal

constraints, the planning problems encountered can be

solved with modest computational resources.

3. GODA: scientific data analysis

The Goal Orientated Data Analysis (GODA)

Component is responsible for processing data from the

perception system and generating new candidate goals

as input to re-planning activities.

These goals could vary from flagging particular data

as pertinent, to directing attention of higher resolution

imagers to capture serendipitous science, or perhaps

triggering re-planning in order to acquire images from a

better position. The key intuition is that intelligent

analysis of the environment the system finds itself in

may lead to new goals and actions to be taken, which

require immediate action and therefore do not allow

ground-in-the-loop operations.

Figure 3: GODA Design Overview

Figure 3 shows the seven main elements of the

GODA system. Of these, the Saliency map, the

Classifier and the Goal Generator components form the

core. The Saliency Map component is designed to

segment the image into regions of interest, which the

Classifier then classify as known labels. The Goal

Generator then maps these detections to specific goals

(for the planner) with attached metrics to evaluate. The

API forms the interface between GODA and the rest of

the system and manages the operation of the core

components of GODA.

The Mappings, Models and Configurations files

provide the adaptability of the system to different use

cases. The models contain the learnt parameters for

machine-learning based vision systems implemented in

the Classifier. Training these is a computationally

expensive offline process which, on the other hand,

allows for the on-board detector to be of higher

performance and easily adapted to different

environments. Similarly, the mapping files manage the

mapping between detections, goals and metrics and so

allows for re-configuration of the system to suit

different objectives. The configurations files are general

configuration parameters used by the GODA API to

configure each of the components. They are used to

abstract the implementation of the functions from any

hardcoded configuration values and allow for easy

parametrisation if needed.

The Saliency Map, the Classifier and the Goal

Generator components are separated, as whilst the

operation of the Classifier depends on the output of the

Saliency Map, both do not depend on the Goal

Generator. This modular design also allows us to exploit

advances in the detector performance that future

projects will produce by avoiding any requirement for

the Saliency Map or the Classifier to depend on the rest

of the GODA system. The initial baseline for the

Classifier is an instantiation of the pipeline produced for

the MASTER project.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 5 of 13

Internally to the GODA, the API manages the

execution of the Saliency Map, Classifier and Goal

Generator components, passing the data between them

and performing any conversion necessary to pass

images in to the Classifier or convert goals form the

Goal Generator component. The structure of the

architecture with a wrapping GODA API component

also facilitates code re-use, allowing us to exploit our

rich background IPR in the field of autonomous science

by adapting it to the rest of the system.

4. The ERGO agent and its ground interface

In the ERGO architecture, in order to guarantee a

consistent execution of on-board activities, a main

controller performs the harmonized execution of a set of

control loops, also known as reactors. These reactors

interface with the functional layer to command the

actuators and receive periodically observations from the

sensors. The reactors, together with the controller, form

the so-called agent.

The number of reactors that form the agent depend

on the particular robotic application. But each of the

reactors that form the agent perform the control loop

associated to a specific functionality. For instance, in

the planetary rover use case of ERGO both the mission

planner and GODA are reactors that are integrated into

the agent, meanwhile in the orbital use case there is no

need for a GODA reactor (since there is no

serendipitous science to be performed)

The agent’s controller is responsible of the correct

interaction among the different components and all the

messages from/to components are handled by its

interfaces with the components (reactors). The

controller uses an internal clock to discretize the time in

ticks. The duration of a tick can be configured. Time

constraints associated to actions in the planner (start and

end times, duration) are defined in ticks.

Following the T-REX model, the agent uses a state

variable representation to describe the evolution of state

over time. We call the instantiated history of such state

variable evolution over a temporal horizon as timelines

[11]. Each timeline consists of a sequence of procedures

which encapsulate and describe state evolution; these

instantiated atomic entities are known as tokens

The interfaces among reactors are based on goals

and observations. A goal specifies an action or state

desired to be achieved, meanwhile an observation

represents a fact, obtained via the sensors, or deduced

on-board based on the information received from the

functional layer. So, for instance, a high-level goal can

be to perform an experiment on a given place during the

current sol (which involves a set of low level goals),

meanwhile a low-level goal can be going to a new

position. Both goals and observations are communicated

using tokens, being each token associated to a timeline.

The agent is in charge of passing these messages

(goals and observations) across the different

components (the so-called reactors) of the architecture

at discrete moments in time, synchronizing them, and

providing the tick signal, that instructs the different

reactors to perform the work required to fulfil the goals

that have been posted to them.

To give a particular example, if the GODA reactor

detects an interesting rock in a wide-angle image, it may

raise a goal to acquire a high-resolution image of that

rock. This goal is then posted to the mission planner. If

the mission planner reactor is able to find a plan that is

compatible with the fulfilment of all the pending goals,

the plan will be changed to accommodate these new

activities, and the system will execute the required tasks

to acquire the image. This interaction between GODA

and the mission planner is detailed in Figure 4.

Figure 4: GODA Component interacting with the

mission planner via the ERGO controller

As part of the agent, a Ground control interface

reactor processes the telecommands and sends back the

telemetry. In ERGO, the communication between

ground and the spacecraft is based on files. The reason

for this is to guarantee consistency and robustness when

the latency of the communications is high and there are

communication windows (as it is the case in a Martian

Rover). Files contain a set of telecommands to be

executed, and the model follows a transactional process:

either all the commands inside the file are processed or

none of them is executed and the file is ignored (this can

happen, for instance, if the file is received corrupted or

truncated).

The ERGO system has an internal parameter that

can be dynamically changed, which defines its level of

autonomy. This level of autonomy is defined according

to the ECSS standards [3], that is:

▪ E1 (direct telecommanding): A file is received

containing single, low-level commands to be

executed immediately.

▪ E2 (time-tag telecommanding): commands are sent

together with a label that identifies the

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 6 of 13

corresponding time for its execution. These

commands are executed at their designated time.

▪ E3 (Event-driven): a plan is uploaded from ground.

This plan contains the set of lower-level actions to

be executed, together with event-action tables that

indicate the commands or on-board procedures to be

executed whenever an event is triggered.

▪ E4 (goal commanding): when running in E4 mode,

the system is commanded via high-level goals, and it

is the responsibility of the planner to decompose the

plan into lower-level actions. The plan is then

scheduled and executed by a combination of reactors

inside the agent that interface with the functional

layer (the so-called command-dispatcher reactors)

and a mission planner reactor in charge of verifying

that the observations are consistent with the plan’s

execution. If current observations show that the plan

is not being accomplished (for instance, we have not

arrived to a given position at a designated time), the

agent detects this situation and changes the plan

dynamically according to a new solution provided

by the planner, based on the remaining high-level

goals to be accomplished.

A specific telecommand can be issued to set the

autonomy level. In addition, the system is able to

autonomously degrade the level of autonomy when

there are conditions that could jeopardize the mission

(i.e. component failure or lack of a planning solution for

a set of goals).

5. FDIR Features in ERGO

In the next generation of autonomous robots, an

innovative model-based and dependability-oriented

FDIR development approach is required. FDIR

components aim to guarantee the safe functioning of a

system with respect to desired timed RAMS properties

and despite of the errors occurred. In order to do so,

FDIR components monitor the events of interest of the

system and provide a diagnosis about the occurrence of

faults. In case faults have been detected, the components

apply functional strategies that bring the system back in

a safe state. Therefore, FDIR components extend the

autonomy features at the system and mission levels: at

system level they allow for a correct functioning and at

mission level they enable the attainment of the desired

goals.

The approach for designing FDIR components

should be supported by rigorous formal methods,

providing the possibility of application in the early

development stages with short automated development

iterations. It should take into consideration the current

FDIR architectures and strategies, the development

phasing and the schedule constraints for the FDIR

development. Additionally, it should allow the effective

use of the available software and system designs and the

corresponding RAMS analysis data.

As mentioned above, in ERGO we propose and use

an approach to design FDIR components based on the

BIP tools. We mention that the BIP tools can be applied

regardless of the FDIR context for checking the

satisfaction of real-time RAMS properties by a system

at different levels of the design.

The main approach, implemented in the BIP FDIR

tool, consists of the following manual and automated

steps:

1. Design the system including both nominal and

faulty behaviour as a BIP model. The nominal

behaviour describes the system’s execution when

the environment assumptions are satisfied. The

faulty behaviour describes the actions the system

executes when faults occur either internally or due

to the non-satisfaction of environment

assumptions. It is common practice that the two

behaviours are obtained as separate models.

Therefore, the BIP FDIR tool implements a model

merging algorithm generating an extended model

on which the FDIR analysis is done.

2. Design the safety property of interest in BIP. This

property will be checked by the BIP FDIR tool for

satisfaction on the nominal model. If the property

does not hold, the system design should be refined

by the user based on the provided counter-

example.

3. If the property holds, the faults of the extended

model that invalidate it are computed as a fault

tree. This step, known in the literature as safety

analysis/assessment, is automated in the tool.

4. Check that each of the computed faults is

detectable given the partial observability of the

system, i.e., the diagnosability condition. By

partial observability we understand monitoring

only a subset of the system’s actions sufficient to

detect faults, which has important implications

with respect to resource consumption. If this

automated check fails for a fault, the system design

should yet be refined by the user.

5. If all faults are diagnosable, the tool proceeds by

synthesizing a diagnoser for each of them. The

diagnoser is the fault monitoring part of the FDIR

component, given again partial observability.

6. Design the recovery strategies in the BIP model.

These correspond to the controller part of the

FDIR component, which aims to bring the system

back in a safe state. Then the tool produces the full

model containing the extended model and the

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 7 of 13

FDIR component, and validates the behaviour of

the controller.

7. If the validation is successful, the C++

implementation of the FDIR component is

generated with the BIP compiler and engines. This

implementation can be integrated and deployed

with the system.

For further details about the approach and

implemented algorithms the reader is referred to [21].

We mention that this tool is targeting event-based safety

properties. For data-based safety properties, an

alternative approach based on BIP validation tools is

proposed below. The same approach is used for the

ERGO uses cases, and more generally in any use case,

to validate the satisfaction of real-time RAMS

requirements on a system with the BIP tools.

An alternative approach to design FDIR

components, depicted in Figure 5, has been used in the

ERGO use cases. This approach consists of manually

modelling the FDIR component and validating it with

the iFinder/iChecker, BIP compiler and engines, and

SMC-BIP tools. The reason is that the FDIR

components in the ERGO uses cases enforce properties

based on data values which would require adding

components to transform the property from data-based

to event-based. This step would be equivalent to

modelling the diagnoser part.

On the full BIP model the user can run the iFinder

tool to compositionally compute (an abstraction of) the

system’s reachable states as an invariant. With

iChecker, the user can verify whether a required safety

property holds on the system design represented by the

invariant. These safety requirements can cover the

nominal behaviour, but also the FDIR component

behaviour. The BIP compiler and engines generate C++

code from the BIP model. The code is executable, and

the system’s real-time RAMS can be validated by

simulation: interactive, stepwise, real-time, etc. A more

thorough validation can be achieved with the SMC-BIP

tool. This statistical model-checking tool runs a relevant

number of simulations (based on confidence

parameters) and checks the probability of satisfaction of

the requirements. The tool answers two types of

questions: quantitative – what is the probability for

requirement satisfaction, and qualitative – is the

probability for requirement satisfaction above/under a

threshold. In the ERGO use cases we have used SMC-

BIP to validate the behaviour of the FDIR component

by checking quantitative questions and expecting a

probability of around 100%.

Finally, the BIP tools are integrated in the ERGO

frame via TASTE. A model transformation from

TASTE to BIP is implemented and seamlessly

integrated in the TASTE GUI. The generated C++ FDIR

component can be easily integrated in a TASTE design

by writing the suitable communication wrappers.

Figure 5: System design process in the context of the

BIP framework.

6. Rover Guidance

The Rover Guidance (RG) module is aimed

specifically to tackle autonomous guidance of planetary

rovers. Guidance includes navigation, path planning,

trajectory control, and hazard avoidance.

The ERGO RG architecture is designed to utilise

orbital and locally sensed terrain characteristics to

maximise the travel distance in function of the traversed

terrain difficulty. Different modes of guidance are

defined based on the difficulty of the terrain. The RG

mode is selected autonomously in function of the terrain

difficulty being traversed. This approach is inspired by

the ExoMars design studies [22] and NASA rovers that

have been operated over the years [23] : using many

different driving modes with various levels of

functionalities depending on the surrounding terrain

being observed. The ERGO Rover Guidance provides:

1. A framework to enable utilisation of various GNC

modes suitable for terrains with various

difficulties;

2. An autonomous switching between the GNC

modes, as needed whilst progressing during the

traverse;

3. Building blocks required by all the GNC modes to

provide long term guidance and rover safety (see

Figure 6).

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 8 of 13

Figure 6: The rover guidance includes (in blue):

building of a navigation map, path planning, hazard

prevention, trajectory control and resources estimation

The global navigation map created from orbital data

contains the level of terrain difficulty per terrain area,

referred as “tiles” (i.e. square areas). Each difficulty

level is associated a Rover Guidance navigation mode.

The modes are designed as layers, where the higher

mode level encompasses the functions of the lower

modes. The higher the mode number, the more

planning, mapping and complexity is included, and

therefore the computation takes longer leading to slower

rover progress.

The transition between the modes is performed

autonomously depending on the tile category.

Furthermore, according to events while driving, the tile

can be re-categorised to a different level of difficulty

7. Robotic arm

The robotic arm component is a general purpose

library that can be tailored to any kind of robotic arm.

The library is to be used in combination with a set of

low-level classes that contain the particularities of the

arm. These lower-level classes can be generated based

on a URDF [24] model of the robotic arm, by using an

URDF parser.

The library consists of two different, functional

blocks:

▪ A planning component generates sequences of

commands to be sent to the device in order to

achieve a given heading and position. Our library is

based on components of the OMPL (Open Motion

Planning Library) which implements various path

planning algorithms in a generic and efficient way.

In particular, the algorithm being used is the RRT

Connect algorithm [25] in the joint space of the arm

▪ An executive component is in charge of controlling

the trajectory of the robotic arm. This executive

component can include data from a camera, which is

received in the control loop to adjust the position of

the end effector.

8. The middleware: TASTE

TASTE refers both to the middleware used in the

ESROCOS project and to the development process and

supporting tool-chain that is used to generate it.

ESROCOS [26] is the outcome of the first Operational

Grant in the frame of the PERASPERA SRC, aiming

the development of a Robotic Operating System able to

be used in Space.

Since all the Operational grants of the PERASPERA

SRC from the 1st call are to be used combined in the

applications developed in the frame of the 2nd

PERASPERA call, the design of ERGO is done in such

a way that its components are provided as TASTE

components. By using TASTE, designers implement

their embedded systems using a set of views, abstracting

the user from the implementation details of the

underlying platform (e.g., real-time operating system,

hardware drivers) and guaranteeing the fulfilment of

real-time properties. TASTE is being developed by the

European Space Agency together with a set of partners

from the European space industry and academics.

TASTE follows a MDE approach: from a set of Views

(Data View, Interface View, Deployment View) code is

generated for the main components (the so-called

TASTE functions).

The main modelling steps that must be followed to

build a software application with TASTE are described

below. They are supported by a set of graphical editors.

The DataView expresses all the data types that can

be used for communication links occurring between

TASTE functions. The DataView is formalized using

ASN.1 to benefit from the advanced verification and

processing tools that are available for this language. In

particular, this choice enables automatic generation of

binary data encoding and decoding protocols that are

required for portable and optimized communications.

The Interface View provides an architectural

representation of the various subsystems and of their

corresponding interfaces and connections. Each

subsystem is represented by a TASTE function. All the

communications between the TASTE functions will be

managed by the TASTE run-time middleware, thus

ensuring that the real-time requirements are fulfilled.

The language that is used to express TASTE Interface

Views is standard AADL.

The Deployment View aims at describing the

hardware execution platform onto which the software

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 9 of 13

must run. It mostly consists in selecting a set of

hardware elements, such as processors, busses and

devices among those proposed by the TASTE hardware

library. Doing so ensures that all the required glue code

will be properly generated by the TASTE build process

and that all the executable files will be produced in case

of a distributed software application. The AADL

language is also used to represent TASTE Deployment

Views.

Once these three views have been completed, they

can be processed together to build the software

application. This stage is mostly automated and requires

few user interactions. The build process involves the

following main steps:

▪ The generation of the Concurrency View is a model

transformation that produces a complete AADL real-

time model from the three modelling views that have

been elaborated by the designer. This AADL model

can be used to perform early timing analysis and

simulation using any AADL compliant tool, and to

adjust real-time attributes if needed.

▪ The generation of the software applicative and

middleware glue source code. This step uses the

freshly generated AADL Concurrency View and the

various source code fragments that were earlier

associated with the DataView and Interface View, to

produce and compile the executable files(s).

In ERGO the functional blocks of our architecture

are embedded into TASTE functions. The following

figure 7 shows the Interface View in TASTE for the

robotic arm

Figure 7: Design of a robotic arm for an orbital mission

using TASTE

In the frame of ERGO, a set of improvements were

performed to TASTE, namely TASTE editors

improvements and prototyping: for time and space

partitioning support (TSP) and for BIP model

generation via a model transformation from the AADL

and SDL models associated with the TASTE functions.

9. Testing and validation. Use Cases

The testing and validation of the ERGO framework

has been performed based on a set of layers. Each of the

components described in Section 1 to 8 of this paper

was contained in a separate repository, and had a single

company responsible of it. For each component, unitary

tests have been performed. Since some of the

components use existing code, the unitary testing has

been adapted to the degree of maturity of the existing

SW.

In addition to unitary testing, integration tests were

performed. These tests helped to see the problems of

interaction of different components. The ERGO

architecture facilitated this task, since it is designed in

such a way that is it relatively easy to add new

components when they are available. The following list

shows the test accomplished for each component. The

lines of code provided can give an idea to the reader of

the magnitude of the project. Note that we are

considering only the components of the ERGO system,

and that we have excluded from the list the TASTE

toolset, as well as the code generated in ERGO

specifically for the use cases (SW3 and SW4 packages).

The TASTE toolset has been developed for many years

and it contains a huge number of code lines.

Table 1: KLOC and IT tests for each ERGO component

Component KLOC Its

Agent 50 12

FDIR and BIP tools 350 03

GODA 6.8 02

Guidance 100 04

Planner 64 05

Robotic Arm 80 05

Final validation of the ERGO framework is being

performed by applying the framework in demonstration

scenarios. As of today, ERGO has been applied to two

different use cases, an orbital mission and a planetary

mission. These are described hereafter

9.1 ERGO use case: Planetary mission

The planetary mission consists of a planetary

exploration rover, able to pick samples with a robotic

arm as well as to take images. The reference mission for

the planetary track is inspired on the Mars Sample

Return (MSR) mission that covers the concepts and

requirements of the Martian Long Range Autonomous

Scientist, which could be split in the following phases:

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 10 of 13

1. Setup Multi-sol operations (Ground Control):

Ground Control configures the robot and uploads

the operations, which might be single or multi-sol.

Operations received from Ground Control will be

based on any of the following described.

2. Traverse: The rover must perform a long range

traverse, in the range of 10 km, simulated with a

maximum range of 1km, from the landing site to

the location where the Sample Catching Rover

(SCR) is. A command to take an image with a

given heading, once the final position has been

achieved by the rover, can be implicit in the

traverse operation.

3. Opportunistic Science: During the long traverse,

the rover will be allowed to perform opportunistic

science, limited to close fisheye camera of the

Sherpa, providing image acquisition which might

imply deviations from the original path.

4. Sample collection: the Rover can be requested by

ground to pick or drop samples at different

locations by using its robotic arm

For the test campaign, two different sites are

foreseen:

1. At DFKI facilities in Bremen: A pre-testing

campaign consisting of two separate test periods in

Bremen has been conducted, aimed to verify that

the ERGO system is properly integrated and tested

for the Morocco analogue scenario

2. At an analogue site in Morocco: The main tests for

replanning, guidance and navigation capabilities as

well as scientific detection will be tested at this

site.

The robotic platform being used is the SherpaTT

rover from DFKI. SherpaTT is a 4-wheeled planetary

exploration rover with an actuated suspension system

developed for high mobility in irregular terrain. The

rover is able to use energy efficient wheeled locomotion

(in contrast to legged locomotion) to cover long

distances, and at the same time to negotiate difficult

terrain by dynamically adapting the wheel suspension to

slopes and obstacles. SherpaTT has an overall weight

around 150 kg. Due to self-locking gears in the four

suspension units, the rover is able to cope with high

additional payload weights without increasing energy

consumption to maintain the current robot’s body pose.

The following figure (Figure 8) shows the SherpaTT

rover while being tested at DFKI facilities

Figure 8: Testing ERGO on the SherpaTT at Bremen

(courtesy DFKI)

The tests conducted are similar for both the Morocco

desert and the Bremen Facilities: a first test is designed

for a nominal mission, in which the rover has 3 separate

goals for a) taking a sample at a given position b) taking

an image at a given position and c) performing a

traverse. This test demonstrates that the system is able

to build a plan, and execute it. A second tests is aimed

for a long traverse. For the on-field tests, we indicate

between brackets the number of repetitions.

Table 2: Preliminary and field tests – ERGO planetary

Tests Preliminary On Field

Nominal mission 07 03 [3-4]

Long traverse 01* 01 [3-4]

Replanning 01 02 [3-4]

Opportunistic science 00 01 [3-4]

FDIR tests 02 01 [3-4]

Autonomy level tests 04 01 [3-4]

* Long traverse test adapted to testing site

 9.2 ERGO use case: Orbital mission

The reference mission for the orbital track is the On-

Orbit Servicing mission, where a damaged spacecraft

can have one of its modules replaced autonomously by a

servicer spacecraft.

The scenario will simulate a servicing S/C mission.

A servicing or ‘chaser’ spacecraft approaches to a faulty

or serviced S/C the so-called ‘target’. The chaser will

reconfigure the target S/C, so the target must simulate a

modular S/C with some faulty/damaged modules

(ATMs) which the chaser will have to replace in orbit.

The objective of this orbital scenario is the

evaluation of the autonomy performances, so that the

architecture and test environment must allow to

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 11 of 13

demonstrate reactivity to scenario modifications caused

by two different sources:

1. Failures such as pieces or tools not present in the

expected place or found in a different attitude,

obstacles in the visual field, changes in the

illumination constraints, failure in grasping pieces

etc.

2. Deviations with respect to the nominal mission,

such as reconfiguration of the spacecraft due to

mission constraints (deadlines exceeded, for

instance)

In both cases, re-planning is based on updated

information from the environment. For that purpose,

feedback information needs to be obtained by passive

visual means (camera) and force/torque feedback from

the robot end-effecter closing control loops at different

levels.

The set of tests designed for this use case is shown

in Table 3.

Table 3: Preliminary and field tests – ERGO orbital

Tests Preliminary On Field

Nominal mission 01 01 [4-6]

Faulty APM 01 01 [4-6]

Errors while

manipulating Rob. arm

 01 01 [4-6]

Chaser deviates from

target

 N/A 01 [4-6]

Autonomy commanding 01 01 [4-6]

10. Conclusions

The ERGO framework was designed and developed

having a set of objectives in mind.

1. Goal commanding: When a set of high level

commands are sent from ground, the ERGO

agent is able to dynamically generate plans to

achieve these goals, deterministically dispatch

the associated activities for its execution and is

also able to recover from off-nominal

conditions, performing re-planning when

needed. Plan representation and execution

deals with metric time and resources necessary

for dealing with planning and execution time

uncertainty in dynamic environments. The

lower-level functional layer is tightly

integrated with the abstract decisional level

embodied in the agent. Reactive and

deliberative capabilities are handled in a

harmonized fashion.

2. On-board planning capability. The ERGO

planner, Stellar, combines effectively concepts

and notions from classical planning, timeline-

based planning and planning with semantic

attachments. Stellar has been developed for its

use in space systems, in which computational

resources are scarce.

3. Dynamic replanning in the ERGO system can

be triggered either 1) when new goals are

received from ground, 2) if the constraints of

the current plan are being violated during its

execution, or 3) when GODA, our scientific

agent, detects an interesting scientific event,

that requires further analysis (and therefore

changes in the existing plan). GODA can be

easily configured to different use cases by

loading the learnt parameters for machine-

learning based vision systems. GODA can also

flag the importance of existing on-board

images. GODA allows any future robotic

platform developed in ERGO to perform

serendipitous science gathering.

4. Selectable levels of autonomy: The level of

autonomy is selectable by ground and adapts to

the circumstances of the mission. If the level of

autonomy of the system is lowered by a

telecommand sent from ground, the planning

capability is disabled. This allows ground to

take control whenever there is any system

malfunction that requires further analysis, or

under special, hazardous situations. The agent

can also autonomously lower the level of

autonomy, disabling the planning capabilities,

when the planner is not able to find a solution

for the current goals, or under special

circumstances (H/W errors).

5. Formal verification and validation: ERGO is

extended with verification and validation

features via the BIP tools. The BIP tools allow

checking the satisfaction of real-time RAMS

properties, which is a critical aspect for

autonomous systems. Additionally, the BIP

tools allow generating valid FDIR components

(implementations) with respect to the system

design and requirements to satisfy, thus

increasing the functional autonomy of such

systems.

6. Guidance and motion-planning ability:

ERGO provides the Rover Guidance

component: providing cost map, path planning,

hazard avoidance, as well as trajectory control

to be used in planetary exploration rovers. The

framework defines different guidance modes.

Guidance adapts dynamically its computations

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 12 of 13

to the difficulty of the terrain being traversed.

ERGO also provides a robotic arm library that

can be tailored to perform motion planning and

robotic arm control

7. Model-driven approach: In ERGO the TASTE

framework is used to define, following a

model-driven architecture approach, the

interfaces among the different components,

integrate all of them into different executables,

and deploy them in different nodes. TASTE

automatically generates glue code that

guarantees the proper delivery and reception of

messages according to the interfaces defined in

a format that is language-independent (ASN.1).

What is also important, the use of TASTE in

ERGO guarantees its compatibility with

ESROCOS, one of the first space robotics

projects in the first call of PERASPERA SRC.

ESROCOS is aimed to the development of a

robotic operating system. The capabilities of

ESROCOS and ERGO will be used in

combination in the second call of the

PERASPERA SRC, for the development of

different robotic applications.

ERGO has been applied to two different use cases:

an orbital and a planetary use case. The project is now

reaching its last phases, in which the system field tests

will be performed. Although we will have to wait until

the finalization of these tests for our final conclusions,

preliminary field tests have already been executed, and

the results show that the integration of the different

components for both use cases has been performed

successfully. Considering the complexity of the

different components, and the difficulty of the

objectives to be achieved, we think that the results are

very positive. We sincerely expect that this framework

will pave the way for future developments in space

missions

Acknowledgements

We would like to thank the European Commission

and the members of the PERASPERA programme

Support Activity (ESA as coordinator, ASI, CDTI,

CNES, DLR and UKSA) for their support and guidance

in the ERGO activity. We also want to thank Malte

Wirkus and Thomas Vögele, from DFKI, for their

support in the integration of ERGO’s software in the

SherpaTT rover.

The project has received funding from the European

Union’s Horizon 2020 research and innovation

programme under grant agreement No 730086.

References

[1] ERGO web site: http://www.h2020-ergo.eu/

[2] M. Perrotin, J.-L. Terraillon, C. Honvault Taste:

towards a space system development framework,

Oct. 2015

[3] ECSS Secretariat. (ESA/ESTEC), “ECSS-E-70-11

Space Segment Operability” (August, 2005)

[4] J. Benton, A. J. Coles, A. I. Coles, Temporal

Planning with Preferences and Time-Dependent

Continuous Costs, Proceedings of the International

Conference on Automated Planning and Scheduling

(ICAPS), 2012

[5] P. Eyerich, R Mattmüller, G. Röger, Using the

Context-enhanced Additive Heuristic for Temporal

and Numeric Planning, Proceedings of the

International Conference on Automated Planning

and Scheduling (ICAPS), 2009

[6] M. Fox, D Long, PDDL2.1: An Extension of PDDL

for Expressing Temporal Planning Domain, Journal

of AI Research 20 (2003)

[7] G. Paar, M. Woods, C. Gimkiewicz, F. Labrosse, A.

Medina, L. Tyler, D. P. Barnes, G. Fritz, and K.

Kapellos, “PRoViScout: a planetary scouting rover

demonstrator,” Proc SPIE 8301 Intell. Robots

Comput. Vis. XXIX Algorithms Tech., p. 83010A–

83010A–14, 2012.

[8] I. Wallace, M. Woods, "MASTER: A Mobile

Autonomous Scientist for Terrestrial and Extra-

Terrestrial Research, 13th Symposium on Advanced

Space Technologies in Robotics and Automation,

ASTRA 2015

[9] A. Ceballos S. Bensalem, A. Cesta, L. de Silva, S.

Fratini, F. Ingrand, J. Ocón. Orlandini, F. Py, K.

Rajan, R. Rasconi, and M. van Winnendael,

Bensalem, S., , “A Goal-Oriented Autonomous

Controller for space exploration

[10] J. Ocón, J. M. Delfa, T. de la Rosa, A. Garcia, Y.

Escudero, GOTCHA: An Autonomous Controller

for the Space Domain, Proceedings of the

Symposium on Advanced Space Technologies in

Robotics and Automation (ASTRA), 2017

[11] T-REX: A model-based architecture for AUV

control. C McGann, F Py, K Rajan, H Thomas, R

Henthorn, R McEwen. 3rd Workshop on Planning

and Plan Execution for Real-World Systems 2007

[12] A. Basu, M. Bozga, J. Sifakis, Modeling

Heterogeneous Real-Time Components in BIP. In

Fourth IEEE International Conference on Software

Engineering and Formal Methods (SEFM) 2006,

IEEE, 2006, pp. 3 – 12

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18.D1.6.12x46215 Page 13 of 13

[13] S. Bensalem, F. Ingrand, J. Sifakis, Autonomous

Robot Software Design Challenge. In 6th

IARP/IEEE-RAS/EURON Joint Workshop on

Technical Challenge for Dependable Robots in

Human Environments, 2008

[14] A. Basu, M. Gallien, C. Lesire, T. Nguyen, S.

Bensalem, F. Ingrand, J. Sifakis, Incremental

Component-Based Construction and Verification of

a Robotic System. In European Conference on

Artificial Intelligence (ECAI) 2008, IOS Press,

volume 178 of FAIA, pp. 631 – 635

[15] C. Backström, B. Nebel, Complexity Results for

SAS+ Planning, Computational Intelligence 11

(1995)

[16] J. Hoffmann, B. Nebel, The FF Planning System:

Fast Plan Generation Through Heuristic Search,

Journal of AI Research 14 (2001)

[17] A. J. Coles, A. I. Coles, M. Fox, D. Long,

Extending the Use of Inference in Temporal

Planning as Forwards Search", Proceedings of the

International Conference on Automated Planning

and Scheduling (ICAPS), 2009

[18] K. Tierney, A. J. Coles, A. I. Coles, C. Kroer, A.

Britt, R. M. Jensen, Automated Planning for Liner

Shipping Fleet Repositioning.", Proceedings of the

International Conference on Automated Planning

and Scheduling (ICAPS), 2012

[19] C. Dornhege, P.Eyerich, T.Keller, S.Trüg,

M.Brenner, B.Nebel, Semantic Attachments for

Domain-Independent Planning Systems,

Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), 2009

[20] J. Rintanen, Complexity of Concurrent Temporal

Planning, Proceedings of the International

Conference on Automated Planning and Scheduling

(ICAPS), 2007

[21] I. Dragomir, S. Iosti, M. Bozga, S. Bensalem,

Designing Systems with Detection and

Reconfiguration Capabilities: a Formal Approach. In

8th International Symposium On Leveraging

Applications of Formal Methods, Verification and

Validation (ISOLA) 2018, Springer

[22] M. Winter et al., “ExoMars Rover Vehicle:

Detailed Description of the GNC System”,

Proceedings of Space Technologies in Robotics and

Automation (ASTRA), Noordwijk, The

Netherlands, 2015, 11-13 May.

[23] J. J. Biesiadecky et al, The Mars Exploration Rover

Surface Mobility Flight Software: Driving

Ambition, IEEE Aerospace Conference Proceedings,

2006

[24] http://wiki.ros.org/urdf/XML/model

[25] James J. Kuffner, Jr., Steven M. LaValle “RRT-

Connect: An Efficient Approach to Single-Query

Path Planning”. In Proc. 2000 IEEE Int’l Conf. on

Robotics and Automation (ICRA 2000)

[26] M. Muñoz et al; ESROCOS: a robotic operating

system for space and terrestrial applications. (2017)

In: 14th Symposium on Advanced Space

Technologies in Robotics and Automation (ASTRA

2017), 20 June 2017 - 21 June 2017 (Scheltema,

Netherlands)

	Acknowledgements

