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Abstract 

ERGO (European Robotic Goal-Oriented Autonomous Controller) (http://www.h2020-ergo.eu/) is one of the six 

space robotic projects in the frame of the first call of the PERASPERA SRC. ERGO is aimed to future space 

missions, in which space robots will require a higher level of autonomy (e.g. Exomars or Mars2020). As a 

framework, ERGO provides a set of components that can be reused and tailored for robots space missions (Orbital, 

Deep Space or Planetary Explorations) in which the on-board system has to work autonomously, performing 

complex operations in hazardous environments without human intervention. The concept of autonomy can be applied 

to a whole set of operations to be performed on-board with no human supervision, such as Martian exploration 

rovers, deep space probes, or in-orbit assembly robots. In the last decades, the advantages of increasing the level of 

autonomy in spacecraft have been demonstrated in planetary rovers. At the same time, orbital space missions have 

already successfully applied autonomy concepts on board, in particular for autonomous event detection and on-board 

activities planning. 

ERGO provides a framework for on-board autonomy systems based on a specific paradigm aimed to facilitate an 

easy integration and/or expansion covering future mission needs; by using this paradigm, both reactive and 

deliberative capabilities can be orchestrated on-board. In ERGO, deliberative capabilities are provided via AI 

techniques: automated planning and machine-learning based vision systems. ERGO also provides a set of tools for 

developing safety-critical space mission applications and FDIR systems. Moreover, specific components for motion 

planning, path planning, hazard avoidance and trajectory control are also part of the framework. Finally, ERGO is 

integrated with the TASTE middleware. All ERGO components are now being tested in an orbital and a planetary 

scenario. 

This paper discusses the ERGO components, its main characteristics, and how they have been applied to an 

orbital and a planetary scenario. It provides an overview of the evolution of the ERGO system; its main components 

and the tests that have been performed so far. 
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Acronyms/Abbreviations 

AADL - Architecture Analysis and Design Language 

AI – Artificial intelligence 

ASN.1 - Abstract Syntax Notation One 

BIP – Behaviour, Interaction, Priority 

ECSS - European Cooperation for Space 

Standardization 

ESA – European Space Agency 

FDIR – Fault, Diagnosis, Isolation and Recovery 

GOAC – Goal Oriented Autonomous Controller  

GODA – Goal Oriented Data Analysis component 

GOTCHA - GOAC TRL increase Convenience 

enhancements Hardening and Application extension 

KLOC – Thousands of Lines of Code 

MDA MDE – Model Driven Architecture Engineering 

PDDL - Planning Domain Definition Language 

SDL – Specification and Description Language 

TASTE - The ASSERT Set of Tools for Engineering 

T-REX – Teleo-reactor Executive 

URDF- Unified Robot Description Format 
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1. Introduction 

The ERGO project [1] takes on a set of challenges 

aiming to increase the autonomy of a space robot 

involved in orbital or planetary exploration missions. 

The main challenge is to reach higher levels of 

autonomy, understanding autonomy as “the capability 

of the space segment to continue mission operations and 

to survive critical situations without relying on ground 

segment intervention” [3]. To achieve this goal, the 

framework provides a combined set of software assets, 

to tackle the specific needs related to space robotics 

autonomy. 

The first capability needed in ERGO is the 

possibility to command the system in the form of 

high-level commands or goals. A key element for this 

purpose, is the on-board planner, which is developed 

based on AI techniques. This on-board planner, the so-

called “Stellar”, developed explicitly for ERGO, is 

based on King’s College and University of Basel’s 

expertise in previous planners and heuristic techniques, 

such as Optic  [4] or Temporal Fast Downward [5]. By 

using an on-board planner, the system can be 

commanded from ground by using high-level goals, 

while the steps that are necessary to fulfil the goals are 

derived by the robot itself. The PDDL planning 

language [6] is used to model both the domain and the 

problem (high-level objectives to be achieved). The 

planner’s task is: given a set of high level goals, find a 

sequence of actions to be executed by the robot in order 

to achieve them.  

Another objective in ERGO is to detect, based on 

images, serendipitous events that could trigger 

dynamic replanning. For this purpose, ERGO includes 

the GODA scientific agent. GODA is based on previous 

ESA studies, like PRoViScout [7] or MASTER [8]. 

GODA is a software component that can be trained to 

detect objects having a set of characteristics.  

In addition, in the ERGO framework, a scheduling 

component is provided: this orchestration role is 

handled by a robotic main controller (the so-called 

Agent) implemented by GMV based on the experience 

and expertise obtained from previous autonomy 

research programs such as GOAC [9] and GOTCHA 

[10] . Based on the T-REX paradigm [11] this Agent 

implements an efficient execution environment for 

handling different autonomy levels (from single 

telecommanding–E1 to goal-commanding–E4). Within 

the Agent, different control loops are completely 

coordinated at runtime during the deliberation and 

execution phases, thus guaranteeing a harmonized 

control and execution of reactive and deliberative 

behaviours.   

This main controller includes a generic ground 

control interface component that can be tailored for 

any specific mission.  

Furthermore, ERGO provides support for FDIR 

capabilities, which enhance a robotic system with safe 

functional autonomy. Given the criticality of such 

applications, the FDIR components are developed in a 

rigorous approach based on formal methods. ERGO 

makes use of BIP [12], developed by Verimag, that has 

already been successfully applied on different robotic 

case studies [13],[14]. BIP is a formal language and 

framework that allows real-time component-based 

system design. The framework provides different 

analysis techniques which consolidate the confidence on 

the system’s correctness at different design levels. In 

ERGO, the BIP tools are extended and applied in a 

clearly defined process to design, validate, and 

implement FDIR components specific to each mission. 

For the sake of modularity the whole ERGO is built 

based on the TASTE middleware [2]. TASTE is an open 

source framework, developed by ESA that allows the 

development of embedded, real-time systems. TASTE 

relies on key technologies such as standardized 

modelling languages (e.g., ASN.1 and AADL), code 

generators and real-time systems analysis, in order to 

generate the suitable code skeletons and the system 

executable. Within the ERGO project, we have 

benefited of the help and support of Ellidiss for the 

TASTE extensions needed by the ERGO framework 

The Ground Control Interface, the Agent, the Planner, 

as well as the tools mentioned before: TASTE 

Extensions developed for ERGO and the BIP tools, are 

part of the so-called “ERGO Core Framework”. These 

are generic tools and components that can be used in 

any spacecraft robotic application. ERGO also provides 

components for specific problems, such as motion 

planning for a robotic arm, and guidance for a planetary 

rover. In ERGO a dedicated library for a robotic arm 

equipped with a gripper has been developed by GMV; 

this library that can be tailored to any robotic arm 

provides high-level primitives to perform pick and drop 

operations. In addition, a guidance algorithm is also 

available as part of the framework. Developed by 

Airbus, it is able to perform path planning, trajectory 

control and hazard avoidance. The component is 

developed based on the work performed by Airbus in 

the frame of the ExoMars Rover project. The guidance 

component can be parametrized to work with rovers of 

different characteristics. 

Figure 1 illustrates the reusable components of the 

ERGO framework briefly discussed above. Each 

component is described more thoroughly in the 

remainder of this paper.  
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Figure 1: ERGO Framework packages 

 

2. Stellar, the ERGO planner  

Stellar is the generic mission planner for ERGO. 

This novel component is based on concepts and notions 

from classical planning, timeline-based planning and 

planning with semantic attachments. 

Stellar supports temporal PDDL planning models 

[6]. The task of planning can be seen as finding a time-

stamped sequence of actions that, when executed, 

transforms a given initial state (such as the current state 

of the system) into one which satisfies the goals. 

Fundamentally, this is a combinatorial search problem, 

with the planner searching over intermediate states 

along a path to a goal state. In doing so it considers 

what actions are applicable (according to their 

preconditions) and their effects on the state. Also, it 

uses a heuristic estimate to guide search towards the 

goals. In ERGO, the on-board resource constraints set a 

tight envelope on the way in which this deliberation can 

be carried out on-board. Thus, considering the need to 

perform search, it is important to reduce both the 

overheads of each state generated during search, and the 

number of states generated. We will discuss each of 

these in turn. 

Considering per-state overheads, Stellar adopts 

techniques from the planner Temporal Fast Downward 

[5], translating the planning problem into a SAS+ [15] 

multi-valued variable representation. This reduces the 

memory needed to store each state, by allowing an 

efficient bit-packed representation – each state variable 

is stored in just enough bits to cover the size of its 

domain. To reduce the time overheads incurred for each 

state, Stellar uses a heuristic that guides the search 

quickly towards a goal state. We use a tightly coded 

implementation of the FF heuristic [16], a heuristic that 

focusses on the causal reasoning that dominates the 

class of planning problems it is targeting by ignoring 

delete effects of actions in the heuristic computation.  

Further, to check that states are temporally consistent 

(that time windows and other temporal constraints have 

been met) it uses efficient techniques from the planner 

OPTIC  [4]. 

Considering the size of the search space in itself, 

Stellar employs two powerful techniques for temporal 

planning as forward state-space search. First, it reduces 

the size of the search space that needs to be considered 

through the recognition of ‘compression safe’ actions 

[17]: in many typical cases, this allows a durative action 

(that can be thought of as having a start, and an end) to 

be added to the plan as a single step, rather than two 

steps. Second, it abstracts time window constraints into 

global constraints applied to all plans, rather than 

considering their end-points to be plan steps [18]. 

To allow planning to be coupled with other 

components of the system, such as Rover Guidance and 

Robotic Arm (to be described later in sections 6 and 7 

respectively), Stellar has an external function interface 

that allows to incorporate semantic attachments into the 

planning process [19] .  An example of this is shown in 

Figure 2. 

 

At the start of planning, Stellar dynamically loads 

libraries containing the implementations of the external 

functions; then it calls functions from the library to 

determine the values of variables to be used in planning. 

In the example given in Figure 2, it will load the library 

‘orbitalrarmplanner’, and will call the functions defined 

therein to obtain the values of the given variables (such 

as ‘ra_move_dur’ – the duration of moving the robotic 

arm between the two given positions).  These variables 

are used in planning in three ways: 

▪ To determine the duration of actions: how much 

time will pass between its start and its end) 

▪ To determine the values of variables used in 

preconditions of actions; for instance, if the 

remaining energy is sufficient to perform a given 

operation  

▪ To determine the values of variables used in the 

effects of actions; for instance, how much energy is 

used by a given operation. 

An important consequence of this external interface 

is that it allows the planning model to be written at a 

(:modules 

 (:module ef_orbitalrarmplanner 

  (:function (ra_move_dur ?from ?to - slot)) 

  (:function (ra_move_energy ?to - slot)) 

  (:function (ra_pick_dur ?from ?to - slot)) 

  (:function (ra_pick_energy ?to - slot)) 

  (:function (ra_drop_dur ?from ?to - slot)) 

  (:function (ra_drop_energy ?to - slot)) 

  (:function (ra_home_dur ?from - slot)) 

  (:function (ra_home_energy ?from - slot)) 

 ) 

) 

Figure 2: Example External Functions Definition 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 
 

IAC-18.D1.6.12x46215         Page 4 of 13 

 

higher level of abstraction, where an action encapsulates 

functionality provided by another component in the 

system, such as moving the robot arm or moving a 

planetary rover. Therefore, it suffices that the planner 

has measures of their time and resource needs without 

needing a full low-level model of how they will be 

executed. 

To complete the integration of the Stellar planner 

with the rest of the architecture, a planner ‘reactor’ acts 

as an abstraction layer. The reactor generates PDDL 

models, based on the current state of the system, and 

contains suitable goals for the current tasks (and any 

opportunistic science tasks). These are then given to the 

planner to be solved. The solution plan is then translated 

by the reactor into a Timeline-based representation [10]  

to support plan dispatch and execution monitoring. In 

the case where the observations during execution do not 

match expectations, the reactor generates a new PDDL 

model and invokes the planner again to re-plan for this 

unexpected scenario.  

Whilst in theory temporal planning has a high 

computational complexity [20], Stellar is able to scale 

well to provide planning capabilities on the specific 

scientific missions we have considered. Because the on-

board resources and capabilities are tightly constrained, 

the branching factor over what actions could be 

performed in each state is relatively narrow. This makes 

the planning task simpler, because there are, in practice, 

relatively few real choices to be made about how to 

achieve specific goals. Coupled with an effective 

heuristic to guide the search for a plan that achieves the 

goals, and efficient techniques for managing temporal 

constraints, the planning problems encountered can be 

solved with modest computational resources. 

 

3. GODA: scientific data analysis  

The Goal Orientated Data Analysis (GODA) 

Component is responsible for processing data from the 

perception system and generating new candidate goals 

as input to re-planning activities.  

These goals could vary from flagging particular data 

as pertinent, to directing attention of higher resolution 

imagers to capture serendipitous science, or perhaps 

triggering re-planning in order to acquire images from a 

better position. The key intuition is that intelligent 

analysis of the environment the system finds itself in 

may lead to new goals and actions to be taken, which 

require immediate action and therefore do not allow 

ground-in-the-loop operations. 

 

Figure 3: GODA Design Overview 

Figure 3 shows the seven main elements of the 

GODA system. Of these, the Saliency map, the 

Classifier and the Goal Generator components form the 

core. The Saliency Map component is designed to 

segment the image into regions of interest, which the 

Classifier then classify as known labels. The Goal 

Generator then maps these detections to specific goals 

(for the planner) with attached metrics to evaluate. The 

API forms the interface between GODA and the rest of 

the system and manages the operation of the core 

components of GODA.  

The Mappings, Models and Configurations files 

provide the adaptability of the system to different use 

cases. The models contain the learnt parameters for 

machine-learning based vision systems implemented in 

the Classifier. Training these is a computationally 

expensive offline process which, on the other hand, 

allows for the on-board detector to be of higher 

performance and easily adapted to different 

environments. Similarly, the mapping files manage the 

mapping between detections, goals and metrics and so 

allows for re-configuration of the system to suit 

different objectives. The configurations files are general 

configuration parameters used by the GODA API to 

configure each of the components. They are used to 

abstract the implementation of the functions from any 

hardcoded configuration values and allow for easy 

parametrisation if needed. 

The Saliency Map, the Classifier and the Goal 

Generator components are separated, as whilst the 

operation of the Classifier depends on the output of the 

Saliency Map, both do not depend on the Goal 

Generator. This modular design also allows us to exploit 

advances in the detector performance that future 

projects will produce by avoiding any requirement for 

the Saliency Map or the Classifier to depend on the rest 

of the GODA system. The initial baseline for the 

Classifier is an instantiation of the pipeline produced for 

the MASTER project.  
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Internally to the GODA, the API manages the 

execution of the Saliency Map, Classifier and Goal 

Generator components, passing the data between them 

and performing any conversion necessary to pass 

images in to the Classifier or convert goals form the 

Goal Generator component. The structure of the 

architecture with a wrapping GODA API component 

also facilitates code re-use, allowing us to exploit our 

rich background IPR in the field of autonomous science 

by adapting it to the rest of the system. 

 

4. The ERGO agent and its ground interface  

In the ERGO architecture, in order to guarantee a 

consistent execution of on-board activities, a main 

controller performs the harmonized execution of a set of 

control loops, also known as reactors. These reactors 

interface with the functional layer to command the 

actuators and receive periodically observations from the 

sensors. The reactors, together with the controller, form 

the so-called agent.  

The number of reactors that form the agent depend 

on the particular robotic application. But each of the 

reactors that form the agent perform the control loop 

associated to a specific functionality. For instance, in 

the planetary rover use case of ERGO both the mission 

planner and GODA are reactors that are integrated into 

the agent, meanwhile in the orbital use case there is no 

need for a GODA reactor (since there is no 

serendipitous science to be performed) 

The agent’s controller is responsible of the correct 

interaction among the different components and all the 

messages from/to components are handled by its 

interfaces with the components (reactors). The 

controller uses an internal clock to discretize the time in 

ticks. The duration of a tick can be configured. Time 

constraints associated to actions in the planner (start and 

end times, duration) are defined in ticks. 

Following the T-REX model, the agent uses a state 

variable representation to describe the evolution of state 

over time. We call the instantiated history of such state 

variable evolution over a temporal horizon as timelines 

[11]. Each timeline consists of a sequence of procedures 

which encapsulate and describe state evolution; these 

instantiated atomic entities are known as tokens 

The interfaces among reactors are based on goals 

and observations. A goal specifies an action or state 

desired to be achieved, meanwhile an observation 

represents a fact, obtained via the sensors, or deduced 

on-board based on the information received from the 

functional layer. So, for instance, a high-level goal can 

be to perform an experiment on a given place during the 

current sol (which involves a set of low level goals), 

meanwhile a low-level goal can be going to a new 

position. Both goals and observations are communicated 

using tokens, being each token associated to a timeline. 

The agent is in charge of passing these messages 

(goals and observations) across the different 

components (the so-called reactors) of the architecture 

at discrete moments in time, synchronizing them, and 

providing the tick signal, that instructs the different 

reactors to perform the work required to fulfil the goals 

that have been posted to them. 

To give a particular example, if the GODA reactor 

detects an interesting rock in a wide-angle image, it may 

raise a goal to acquire a high-resolution image of that 

rock. This goal is then posted to the mission planner. If 

the mission planner reactor is able to find a plan that is 

compatible with the fulfilment of all the pending goals, 

the plan will be changed to accommodate these new 

activities, and the system will execute the required tasks 

to acquire the image. This interaction between GODA 

and the mission planner is detailed in Figure 4. 

 

Figure 4: GODA Component interacting with the 

mission planner via the ERGO controller 

As part of the agent, a Ground control interface 

reactor processes the telecommands and sends back the 

telemetry. In ERGO, the communication between 

ground and the spacecraft is based on files. The reason 

for this is to guarantee consistency and robustness when 

the latency of the communications is high and there are 

communication windows (as it is the case in a Martian 

Rover). Files contain a set of telecommands to be 

executed, and the model follows a transactional process: 

either all the commands inside the file are processed or 

none of them is executed and the file is ignored (this can 

happen, for instance, if the file is received corrupted or 

truncated). 

The ERGO system has an internal parameter that 

can be dynamically changed, which defines its level of 

autonomy. This level of autonomy is defined according 

to the ECSS standards [3], that is: 

▪ E1 (direct telecommanding): A file is received 

containing single, low-level commands to be 

executed immediately. 

▪ E2 (time-tag telecommanding): commands are sent 

together with a label that identifies the 
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corresponding time for its execution. These 

commands are executed at their designated time. 

▪ E3 (Event-driven): a plan is uploaded from ground. 

This plan contains the set of lower-level actions to 

be executed, together with event-action tables that 

indicate the commands or on-board procedures to be 

executed whenever an event is triggered. 

▪ E4 (goal commanding): when running in E4 mode, 

the system is commanded via high-level goals, and it 

is the responsibility of the planner to decompose the 

plan into lower-level actions. The plan is then 

scheduled and executed by a combination of reactors 

inside the agent that interface with the functional 

layer (the so-called command-dispatcher reactors) 

and a mission planner reactor in charge of verifying 

that the observations are consistent with the plan’s 

execution. If current observations show that the plan 

is not being accomplished (for instance, we have not 

arrived to a given position at a designated time), the 

agent detects this situation and changes the plan 

dynamically according to a new solution provided 

by the planner, based on the remaining high-level 

goals to be accomplished. 

A specific telecommand can be issued to set the 

autonomy level. In addition, the system is able to 

autonomously degrade the level of autonomy when 

there are conditions that could jeopardize the mission 

(i.e. component failure or lack of a planning solution for 

a set of goals).  

 

5. FDIR Features in ERGO  

In the next generation of autonomous robots, an 

innovative model-based and dependability-oriented 

FDIR development approach is required. FDIR 

components aim to guarantee the safe functioning of a 

system with respect to desired timed RAMS properties 

and despite of the errors occurred. In order to do so, 

FDIR components monitor the events of interest of the 

system and provide a diagnosis about the occurrence of 

faults. In case faults have been detected, the components 

apply functional strategies that bring the system back in 

a safe state. Therefore, FDIR components extend the 

autonomy features at the system and mission levels: at 

system level they allow for a correct functioning and at 

mission level they enable the attainment of the desired 

goals. 

The approach for designing FDIR components 

should be supported by rigorous formal methods, 

providing the possibility of application in the early 

development stages with short automated development 

iterations. It should take into consideration the current 

FDIR architectures and strategies, the development 

phasing and the schedule constraints for the FDIR 

development. Additionally, it should allow the effective 

use of the available software and system designs and the 

corresponding RAMS analysis data.  

As mentioned above, in ERGO we propose and use 

an approach to design FDIR components based on the 

BIP tools. We mention that the BIP tools can be applied 

regardless of the FDIR context for checking the 

satisfaction of real-time RAMS properties by a system 

at different levels of the design.  

The main approach, implemented in the BIP FDIR 

tool, consists of the following manual and automated 

steps:  

1. Design the system including both nominal and 

faulty behaviour as a BIP model. The nominal 

behaviour describes the system’s execution when 

the environment assumptions are satisfied. The 

faulty behaviour describes the actions the system 

executes when faults occur either internally or due 

to the non-satisfaction of environment 

assumptions. It is common practice that the two 

behaviours are obtained as separate models. 

Therefore, the BIP FDIR tool implements a model 

merging algorithm generating an extended model 

on which the FDIR analysis is done. 

2. Design the safety property of interest in BIP. This 

property will be checked by the BIP FDIR tool for 

satisfaction on the nominal model. If the property 

does not hold, the system design should be refined 

by the user based on the provided counter-

example.  

3. If the property holds, the faults of the extended 

model that invalidate it are computed as a fault 

tree. This step, known in the literature as safety 

analysis/assessment, is automated in the tool.  

4. Check that each of the computed faults is 

detectable given the partial observability of the 

system, i.e., the diagnosability condition. By 

partial observability we understand monitoring 

only a subset of the system’s actions sufficient to 

detect faults, which has important implications 

with respect to resource consumption. If this 

automated check fails for a fault, the system design 

should yet be refined by the user.  

5. If all faults are diagnosable, the tool proceeds by 

synthesizing a diagnoser for each of them. The 

diagnoser is the fault monitoring part of the FDIR 

component, given again partial observability.   

6. Design the recovery strategies in the BIP model. 

These correspond to the controller part of the 

FDIR component, which aims to bring the system 

back in a safe state. Then the tool produces the full 

model containing the extended model and the 
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FDIR component, and validates the behaviour of 

the controller. 

7. If the validation is successful, the C++ 

implementation of the FDIR component is 

generated with the BIP compiler and engines. This 

implementation can be integrated and deployed 

with the system. 

For further details about the approach and 

implemented algorithms the reader is referred to [21]. 

We mention that this tool is targeting event-based safety 

properties. For data-based safety properties, an 

alternative approach based on BIP validation tools is 

proposed below. The same approach is used for the 

ERGO uses cases, and more generally in any use case, 

to validate the satisfaction of real-time RAMS 

requirements on a system with the BIP tools. 

An alternative approach to design FDIR 

components, depicted in Figure 5, has been used in the 

ERGO use cases. This approach consists of manually 

modelling the FDIR component and validating it with 

the iFinder/iChecker, BIP compiler and engines, and 

SMC-BIP tools. The reason is that the FDIR 

components in the ERGO uses cases enforce properties 

based on data values which would require adding 

components to transform the property from data-based 

to event-based. This step would be equivalent to 

modelling the diagnoser part. 

On the full BIP model the user can run the iFinder 

tool to compositionally compute (an abstraction of) the 

system’s reachable states as an invariant. With 

iChecker, the user can verify whether a required safety 

property holds on the system design represented by the 

invariant. These safety requirements can cover the 

nominal behaviour, but also the FDIR component 

behaviour. The BIP compiler and engines generate C++ 

code from the BIP model. The code is executable, and 

the system’s real-time RAMS can be validated by 

simulation: interactive, stepwise, real-time, etc. A more 

thorough validation can be achieved with the SMC-BIP 

tool. This statistical model-checking tool runs a relevant 

number of simulations (based on confidence 

parameters) and checks the probability of satisfaction of 

the requirements. The tool answers two types of 

questions: quantitative – what is the probability for 

requirement satisfaction, and qualitative – is the 

probability for requirement satisfaction above/under a 

threshold. In the ERGO use cases we have used SMC-

BIP to validate the behaviour of the FDIR component 

by checking quantitative questions and expecting a 

probability of around 100%.  

Finally, the BIP tools are integrated in the ERGO 

frame via TASTE. A model transformation from 

TASTE to BIP is implemented and seamlessly 

integrated in the TASTE GUI. The generated C++ FDIR 

component can be easily integrated in a TASTE design 

by writing the suitable communication wrappers. 

 

Figure 5: System design process in the context of the 

BIP framework. 

 

6. Rover Guidance  

The Rover Guidance (RG) module is aimed 

specifically to tackle autonomous guidance of planetary 

rovers. Guidance includes navigation, path planning, 

trajectory control, and hazard avoidance. 

The ERGO RG architecture is designed to utilise 

orbital and locally sensed terrain characteristics to 

maximise the travel distance in function of the traversed 

terrain difficulty. Different modes of guidance are 

defined based on the difficulty of the terrain. The RG 

mode is selected autonomously in function of the terrain 

difficulty being traversed. This approach is inspired by 

the ExoMars design studies  [22] and NASA rovers that 

have been operated over the years [23] : using many 

different driving modes with various levels of 

functionalities depending on the surrounding terrain 

being observed. The ERGO Rover Guidance provides: 

1. A framework to enable utilisation of various GNC 

modes suitable for terrains with various 

difficulties; 

2. An autonomous switching between the GNC 

modes, as needed whilst progressing during the 

traverse; 

3. Building blocks required by all the GNC modes to 

provide long term guidance and rover safety (see 

Figure 6). 
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Figure 6:  The rover guidance includes (in blue): 

building of a navigation map, path planning, hazard 

prevention, trajectory control and resources estimation 

The global navigation map created from orbital data 

contains the level of terrain difficulty per terrain area, 

referred as “tiles” (i.e. square areas). Each difficulty 

level is associated a Rover Guidance navigation mode. 

The modes are designed as layers, where the higher 

mode level encompasses the functions of the lower 

modes. The higher the mode number, the more 

planning, mapping and complexity is included, and 

therefore the computation takes longer leading to slower 

rover progress.  

The transition between the modes is performed 

autonomously depending on the tile category. 

Furthermore, according to events while driving, the tile 

can be re-categorised to a different level of difficulty 

 

7. Robotic arm   

The robotic arm component is a general purpose 

library that can be tailored to any kind of robotic arm. 

The library is to be used in combination with a set of 

low-level classes that contain the particularities of the 

arm. These lower-level classes can be generated based 

on a URDF [24] model of the robotic arm, by using an 

URDF parser. 

The library consists of two different, functional 

blocks: 

▪ A planning component generates sequences of 

commands to be sent to the device in order to 

achieve a given heading and position. Our library is 

based on components of the OMPL (Open Motion 

Planning Library) which implements various path 

planning algorithms in a generic and efficient way. 

In particular, the algorithm being used is the RRT 

Connect algorithm [25] in the joint space of the arm 

▪ An executive component is in charge of controlling 

the trajectory of the robotic arm. This executive 

component can include data from a camera, which is 

received in the control loop to adjust the position of 

the end effector. 

 

8. The middleware: TASTE  

TASTE refers both to the middleware used in the 

ESROCOS project and to the development process and 

supporting tool-chain that is used to generate it. 

ESROCOS [26] is the outcome of the first Operational 

Grant in the frame of the PERASPERA SRC, aiming 

the development of a Robotic Operating System able to 

be used in Space. 

Since all the Operational grants of the PERASPERA 

SRC from the 1st call are to be used combined in the 

applications developed in the frame of the 2nd 

PERASPERA call, the design of ERGO is done in such 

a way that its components are provided as TASTE 

components. By using TASTE, designers implement 

their embedded systems using a set of views, abstracting 

the user from the implementation details of the 

underlying platform (e.g., real-time operating system, 

hardware drivers) and guaranteeing the fulfilment of 

real-time properties. TASTE is being developed by the 

European Space Agency together with a set of partners 

from the European space industry and academics. 

TASTE follows a MDE approach: from a set of Views 

(Data View, Interface View, Deployment View) code is 

generated for the main components (the so-called 

TASTE functions). 

The main modelling steps that must be followed to 

build a software application with TASTE are described 

below. They are supported by a set of graphical editors. 

The DataView expresses all the data types that can 

be used for communication links occurring between 

TASTE functions. The DataView is formalized using 

ASN.1 to benefit from the advanced verification and 

processing tools that are available for this language. In 

particular, this choice enables automatic generation of 

binary data encoding and decoding protocols that are 

required for portable and optimized communications. 

The Interface View provides an architectural 

representation of the various subsystems and of their 

corresponding interfaces and connections. Each 

subsystem is represented by a TASTE function. All the 

communications between the TASTE functions will be 

managed by the TASTE run-time middleware, thus 

ensuring that the real-time requirements are fulfilled. 

The language that is used to express TASTE Interface 

Views is standard AADL. 

The Deployment View aims at describing the 

hardware execution platform onto which the software 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 
 

IAC-18.D1.6.12x46215         Page 9 of 13 

 

must run. It mostly consists in selecting a set of 

hardware elements, such as processors, busses and 

devices among those proposed by the TASTE hardware 

library. Doing so ensures that all the required glue code 

will be properly generated by the TASTE build process 

and that all the executable files will be produced in case 

of a distributed software application. The AADL 

language is also used to represent TASTE Deployment 

Views. 

Once these three views have been completed, they 

can be processed together to build the software 

application. This stage is mostly automated and requires 

few user interactions. The build process involves the 

following main steps: 

▪ The generation of the Concurrency View is a model 

transformation that produces a complete AADL real-

time model from the three modelling views that have 

been elaborated by the designer. This AADL model 

can be used to perform early timing analysis and 

simulation using any AADL compliant tool, and to 

adjust real-time attributes if needed. 

▪ The generation of the software applicative and 

middleware glue source code. This step uses the 

freshly generated AADL Concurrency View and the 

various source code fragments that were earlier 

associated with the DataView and Interface View, to 

produce and compile the executable files(s). 

In ERGO the functional blocks of our architecture 

are embedded into TASTE functions. The following 

figure 7 shows the Interface View in TASTE for the 

robotic arm 

 
Figure 7: Design of a robotic arm for an orbital mission 

using TASTE 

In the frame of ERGO, a set of improvements were 

performed to TASTE, namely TASTE editors 

improvements and prototyping: for time and space 

partitioning support (TSP) and for BIP model 

generation via a model transformation from the AADL 

and SDL models associated with the TASTE functions. 

 

9. Testing and validation. Use Cases  

The testing and validation of the ERGO framework 

has been performed based on a set of layers. Each of the 

components described in Section 1 to 8 of this paper 

was contained in a separate repository, and had a single 

company responsible of it. For each component, unitary 

tests have been performed. Since some of the 

components use existing code, the unitary testing has 

been adapted to the degree of maturity of the existing 

SW. 

In addition to unitary testing, integration tests were 

performed. These tests helped to see the problems of 

interaction of different components. The ERGO 

architecture facilitated this task, since it is designed in 

such a way that is it relatively easy to add new 

components when they are available. The following list 

shows the test accomplished for each component. The 

lines of code provided can give an idea to the reader of 

the magnitude of the project. Note that we are 

considering only the components of the ERGO system, 

and that we have excluded from the list the TASTE 

toolset, as well as the code generated in ERGO 

specifically for the use cases (SW3 and SW4 packages). 

The TASTE toolset has been developed for many years 

and it contains a huge number of code lines. 

Table 1: KLOC and IT tests for each ERGO component 

Component  KLOC Its 

Agent   50 12 

FDIR and BIP tools  350 03 

GODA  6.8 02 

Guidance  100 04 

Planner  64 05 

Robotic Arm  80 05 

Final validation of the ERGO framework is being 

performed by applying the framework in demonstration 

scenarios. As of today, ERGO has been applied to two 

different use cases, an orbital mission and a planetary 

mission. These are described hereafter 

9.1 ERGO use case: Planetary mission 

The planetary mission consists of a planetary 

exploration rover, able to pick samples with a robotic 

arm as well as to take images. The reference mission for 

the planetary track is inspired on the Mars Sample 

Return (MSR) mission that covers the concepts and 

requirements of the Martian Long Range Autonomous 

Scientist, which could be split in the following phases: 
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1. Setup Multi-sol operations (Ground Control): 

Ground Control configures the robot and  uploads 

the operations, which might be single or multi-sol. 

Operations received from Ground  Control will be 

based on any of the following described. 

2. Traverse: The rover must perform a long range 

traverse, in the range of 10 km, simulated with a 

maximum range of 1km, from the landing site to 

the location where the Sample Catching Rover 

(SCR) is. A command to take an image with a 

given heading, once the final position has been 

achieved by the rover, can be implicit in the 

traverse operation. 

3. Opportunistic Science: During the long traverse, 

the rover will be allowed to perform opportunistic 

science, limited to close fisheye camera of the 

Sherpa, providing image acquisition which might 

imply deviations from the original path. 

4. Sample collection: the Rover can be requested by 

ground to pick or drop samples at different 

locations by using its robotic arm 

For the test campaign, two different sites are 

foreseen:  

1. At DFKI facilities in Bremen: A pre-testing 

campaign consisting of two separate test periods in 

Bremen has been conducted, aimed to verify that 

the ERGO system is properly integrated and tested 

for the Morocco analogue scenario 

2. At an analogue site in Morocco: The main tests for 

replanning, guidance and navigation capabilities as 

well as scientific detection will be tested at this 

site.  

The robotic platform being used is the SherpaTT 

rover from DFKI. SherpaTT is a 4-wheeled planetary 

exploration rover with an actuated suspension system 

developed for high mobility in irregular terrain. The 

rover is able to use energy efficient wheeled locomotion 

(in contrast to legged locomotion) to cover long 

distances, and at the same time to negotiate difficult 

terrain by dynamically adapting the wheel suspension to 

slopes and obstacles. SherpaTT has an overall weight 

around 150 kg. Due to self-locking gears in the four 

suspension units, the rover is able to cope with high 

additional payload weights without increasing energy 

consumption to maintain the current robot’s body pose. 

The following figure (Figure 8) shows the SherpaTT 

rover while being tested at DFKI facilities 

 

 

Figure 8: Testing ERGO on the SherpaTT at Bremen 

(courtesy DFKI) 

The tests conducted are similar for both the Morocco 

desert and the Bremen Facilities: a first test is designed 

for a nominal mission, in which the rover has 3 separate 

goals for a) taking a sample at a given position b) taking 

an image at a given position and c) performing a 

traverse. This test demonstrates that the system is able 

to build a plan, and execute it. A second tests is aimed 

for a long traverse. For the on-field tests, we indicate 

between brackets the number of repetitions. 

Table 2: Preliminary and field tests – ERGO planetary 

Tests  Preliminary On Field 

Nominal mission    07 03 [3-4] 

Long traverse   01* 01 [3-4] 

Replanning    01 02 [3-4] 

Opportunistic science   00 01 [3-4] 

FDIR tests   02 01 [3-4] 

Autonomy level tests   04 01 [3-4] 

* Long traverse test adapted to testing site 

 9.2 ERGO use case: Orbital mission 

The reference mission for the orbital track is the On-

Orbit Servicing mission, where a damaged spacecraft 

can have one of its modules replaced autonomously by a 

servicer spacecraft. 

The scenario will simulate a servicing S/C mission. 

A servicing or ‘chaser’ spacecraft approaches to a faulty 

or serviced S/C the so-called ‘target’.  The chaser will 

reconfigure the target S/C, so the target must simulate a 

modular S/C with some faulty/damaged modules 

(ATMs) which the chaser will have to replace in orbit. 

The objective of this orbital scenario is the 

evaluation of the autonomy performances, so that the 

architecture and test environment must allow to 
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demonstrate reactivity to scenario modifications caused 

by two different sources: 

1. Failures such as pieces or tools not present in the 

expected place or found in a different attitude, 

obstacles in the visual field, changes in the 

illumination constraints, failure in grasping pieces 

etc. 

2. Deviations with respect to the nominal mission, 

such as reconfiguration of the spacecraft due to 

mission constraints (deadlines exceeded, for 

instance) 

In both cases, re-planning is based on updated 

information from the environment. For that purpose, 

feedback information needs to be obtained by passive 

visual means (camera) and force/torque feedback from 

the robot end-effecter closing control loops at different 

levels.  

The set of tests designed for this use case is shown 

in Table 3. 

Table 3: Preliminary and field tests – ERGO orbital 

Tests  Preliminary On Field 

Nominal mission   01 01 [4-6] 

Faulty APM  01 01 [4-6] 

Errors while 

manipulating Rob. arm 

 01 01 [4-6] 

Chaser deviates from 

target 

 N/A 01 [4-6] 

Autonomy commanding  01 01 [4-6] 

 

10. Conclusions 

The ERGO framework was designed and developed 

having a set of objectives in mind.  

1. Goal commanding: When a set of high level 

commands are sent from ground, the ERGO 

agent is able to dynamically generate plans to 

achieve these goals, deterministically dispatch 

the associated activities for its execution and is 

also able to recover from off-nominal 

conditions, performing re-planning when 

needed. Plan representation and execution 

deals with metric time and resources necessary 

for dealing with planning and execution time 

uncertainty in dynamic environments. The 

lower-level functional layer is tightly 

integrated with the abstract decisional level 

embodied in the agent. Reactive and 

deliberative capabilities are handled in a 

harmonized fashion.   

2. On-board planning capability. The ERGO 

planner, Stellar, combines effectively concepts 

and notions from classical planning, timeline-

based planning and planning with semantic 

attachments. Stellar has been developed for its 

use in space systems, in which computational 

resources are scarce. 

3. Dynamic replanning in the ERGO system can 

be triggered either 1) when new goals are 

received from ground, 2) if the constraints of 

the current plan are being violated during its 

execution, or 3) when GODA, our scientific 

agent, detects an interesting scientific event, 

that requires further analysis (and therefore 

changes in the existing plan). GODA can be 

easily configured to different use cases by 

loading the learnt parameters for machine-

learning based vision systems. GODA can also 

flag the importance of existing on-board 

images. GODA allows any future robotic 

platform developed in ERGO to perform 

serendipitous science gathering. 

4. Selectable levels of autonomy: The level of 

autonomy is selectable by ground and adapts to 

the circumstances of the mission. If the level of 

autonomy of the system is lowered by a 

telecommand sent from ground, the planning 

capability is disabled. This allows ground to 

take control whenever there is any system 

malfunction that requires further analysis, or 

under special, hazardous situations. The agent 

can also autonomously lower the level of 

autonomy, disabling the planning capabilities, 

when the planner is not able to find a solution 

for the current goals, or under special 

circumstances (H/W errors). 

5. Formal verification and validation: ERGO is 

extended with verification and validation 

features via the BIP tools. The BIP tools allow 

checking the satisfaction of real-time RAMS 

properties, which is a critical aspect for 

autonomous systems. Additionally, the BIP 

tools allow generating valid FDIR components 

(implementations) with respect to the system 

design and requirements to satisfy, thus 

increasing the functional autonomy of such 

systems. 

6. Guidance and motion-planning ability: 

ERGO provides the Rover Guidance 

component: providing cost map, path planning, 

hazard avoidance, as well as trajectory control 

to be used in planetary exploration rovers. The 

framework defines different guidance modes. 

Guidance adapts dynamically its computations 
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to the difficulty of the terrain being traversed. 

ERGO also provides a robotic arm library that 

can be tailored to perform motion planning and 

robotic arm control   

7. Model-driven approach: In ERGO the TASTE 

framework is used to define, following a 

model-driven architecture approach, the 

interfaces among the different components, 

integrate all of them into different executables, 

and deploy them in different nodes. TASTE 

automatically generates glue code that 

guarantees the proper delivery and reception of 

messages according to the interfaces defined in 

a format that is language-independent (ASN.1).  

What is also important, the use of TASTE in 

ERGO guarantees its compatibility with 

ESROCOS, one of the first space robotics 

projects in the first call of PERASPERA SRC. 

ESROCOS is aimed to the development of a 

robotic operating system.  The capabilities of 

ESROCOS and ERGO will be used in 

combination in the second call of the 

PERASPERA SRC, for the development of 

different robotic applications.  

ERGO has been applied to two different use cases: 

an orbital and a planetary use case. The project is now 

reaching its last phases, in which the system field tests 

will be performed. Although we will have to wait until 

the finalization of these tests for our final conclusions, 

preliminary field tests have already been executed, and 

the results show that the integration of the different 

components for both use cases has been performed 

successfully. Considering the complexity of the 

different components, and the difficulty of the 

objectives to be achieved, we think that the results are 

very positive. We sincerely expect that this framework 

will pave the way for future developments in space 

missions 
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