Characterizing a data model for software measurement

L. Chirinos, F. Losavio, and J. Bøegh

Journal of Systems and Software 2005

2006. 7. 19
Yoon, Kyung-A
Contents

- Introduction
- Software measurement elements
- Data model for software measurement
- Considerations for implementing the software measurement data model
- Applying MOSME to a case study
- Comparison with other models
- Conclusion
Many software measurement schemes fail due to poor definition

- Measurement mismatch [PSM ‘02]
 - Picking wrong, ambiguous, or inconsistent measures result in inconclusive data analysis
- Measurements should be objective, empirical and repeatable

Measurement data model

- Identify and define all the elements involved in measurement as well as the relationships existing among them
 - Kitchenham’s software measurement model
 - Bøegh’s data model for software quality measure
- “Everyone understands what the measured values present”
 - Not “the definition of measure is theoretically correct”
In the previous works,

- GQM, Ami
 - Provide methods for identifying the measures
 - Not define how such measures should be collected and stored
- Kitchenham’s work
 - Provide entity-attribute-unit structure (’95)
 - Provide a method for specifying models of software data sets (’01)
 - In order to capture the definitions and possible relationships among software measures
 - Counting rule and measurement context have not been explicitly considered
- In ISO/IEC 15939, the relations defined between elements involved in the measure definition are not normative
Background of MOdel for Software Measurement (MOSME)

- SQUAD(Software QUality Across Different regions)
 - Enrich the existing project database with information on the quality measurements of artifacts produced during the early stages
 - SQUID(Software QUality In the Development process)

- CLeAr and Reliable information For integration (CLARiFi)
 - Create a broker infrastructure to support the application of CBSE in the marketplace
 - Clear software measure concepts was absent with respect to the quality attribute definitions
 - Involving the counting rule to compute the attribute’s values
 - When the finding suitable software components for the planned system was failed
Software measurement elements (1/2)

- Measurement terminology
 - Measure(metric)
 - Rule for assigning a quantitative or categorical value from a defined scale to one or more attributes
 - Refer collectively to base measures, derived measures and indicators
 - Indicator
 - Measurement
 - Use of a measure or mapping to assign a value from the scale to an attribute of an entity
 - Mapping from the empirical world to the formal, relational world
Formalization of measurement elements

- Homomorphism
 \(\mu : (E, R) \rightarrow \mu(R, >) \), where
 \(\forall e \in E, \mu(a(e_1)) \in R \)
 - We require
 \[a(e_1)R a(e_2) \iff \mu(a(e_1)) \succ \mu(a(e_2)) \]

\[\{ (e_1, e_2) \in E \times E \mid a_1R a_2 \} \]
where \(R \) is a relation between objects \(a_1 \) and \(a_2 \) in the real world represented by \(e_1 \) and \(e_2 \) which are entities in the algebraic system.
Data model for software measurement (1/2)
Data model for software measurement (2/2)

- Counting rule
 - Procedure
 - Specify the set of actions to be performed to obtain the value of the attribute on the basis the selected unit
 - Expression method:
 - Descriptive text or formula
 - Context (context of use)
 - Circumstances or context under which the measurement is performed
 - Frequency of the measurement
 - Tools to be used to extract and store the data values
 - Responsible for the data extraction
 - Environmental elements
 - Conditions
 - Conditions on the target values for a specific attribute
Considerations for implementing the software measurement data model (1/3)

Identify and define the elements involved in the measure and their relationships.

Identify the measures that are applicable in a specific project domain providing a context for measurement.
Considerations for implementing the software measurement data model (2/3)

- Main activities for the measure definition
 - 1. Define the algebraic system
 - 1.1 Identify the entity type that shall be analyzed
 - 1.2 Identify and define the attributes involved in the entity type
 - 1.3 Identify the algebraic relations and their empirical interpretations for the entity type with respect to the attributes
 - 2. Construct the underlying numerical system to which the algebraic system will be mapped
 - 3. Define the mapping between the algebraic system and the numerical system (measure):
 - 3.1 Define the unit and scale type
 - 3.2 Specify the counting rule: procedure, context of use (if applied to all the entities) and condition (if applicable)
Considerations for implementing the software measurement data model (3/3)

- Main activities for defining the project measures
 - 1. Identify the project
 - 2. Identify the entity type to be controlled during the development process
 - 3. Assign target values to the attributes
 - 4. Define the entities to be measured in the project and link them to the corresponding entity type according to the development process adopted
 - 5. Define the context of use where the measure will be applied
Applying MOSME to a case study (1/3)

 Problem description

- COMERX
 - Building an Enterprise Application Portal (EAP) to articulate its main business activities (B2C, SCM, CRM)
 - Its main goals are to provide efficient answers to customer’s requests and to guarantee continuous availability of the COMERX functionality

- MOSME is applied
 - To define the measures for the attributes identified for the ISO/IEC 9126-1 quality model adapted to the EAP domain
 - As part of a quality requirements specification process
Applying MOSME to a case study (2/3)

- **Main quality characteristics, sub-characteristics and attributes**

<table>
<thead>
<tr>
<th>External quality characteristics (ISO/IEC 9126-1, 2001)</th>
<th>External quality sub-characteristics</th>
<th>External quality sub-sub-characteristics</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency: the capability of the software product to provide appropriate performance, relative to the amount of resources used, under stated conditions</td>
<td>Time behavior: The capability of COMERX to provide appropriate response and processing times and throughput when performing its function, under stated conditions</td>
<td></td>
<td>• Response time: time taken by COMERX to answer to a user’s request after being processed</td>
</tr>
<tr>
<td>Reliability: the capability of the software product to maintain a specified level of performance when used under specified conditions</td>
<td>Availability: The capability of COMERX to be in a state to perform a required function at a given point in time, under stated conditions of use</td>
<td>Fault tolerance: the capability of COMERX to maintain a specified level of performance in cases of software faults or of infringement of its specified interface</td>
<td>• Throughput (communication capacity): amount of information transmitted through the portal over a given period of time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Size 1: number of interruptions that leave the system out of operation during a specified period of time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Size 2: number of functions implemented with the capacity of avoiding incorrect operations</td>
</tr>
<tr>
<td>Entity type</td>
<td>Attribute</td>
<td>Algebraic relation</td>
<td>Measure name</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Name: Service</td>
<td>Name: Response time</td>
<td>Name: “is more efficient (with respect to response time) than” denoted by ">"</td>
<td>M1RT</td>
</tr>
<tr>
<td>Description: time taken by the application to answer to a service request</td>
<td>Empirical interpretation: the lower response time taken by a service invoked through the portal gives an idea of a greater efficiency of the different components involved in producing the service. It is an indicator that affects the acceptance of the portal in the user’s context</td>
<td>Descriptive text: counting the elapsed time from the application acknowledgement of the service request until the response is obtained</td>
<td></td>
</tr>
<tr>
<td>Context:</td>
<td></td>
<td>• Stage: testing, after completing the service coding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frequency: at the first compilation and after each fault correction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Who: measurement engineer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Operating system: UNIX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Internet data transmission rate: 25 KBps (corresponds to the platform used by enterprise X)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Channel bandwidth:</td>
<td></td>
</tr>
</tbody>
</table>

Measures used in the COMERX Project

<table>
<thead>
<tr>
<th>Entity</th>
<th>Project</th>
<th>Measure</th>
<th>Target value</th>
<th>Actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order management</td>
<td>COMERX</td>
<td>M1RT</td>
<td>5 s</td>
<td>To be determined by simulation or product execution</td>
</tr>
<tr>
<td>Order management</td>
<td>COMERX</td>
<td>M1TT</td>
<td>125 KBps</td>
<td>To be determined by simulation or product execution</td>
</tr>
<tr>
<td>Service request management</td>
<td>COMERX</td>
<td>M1RT</td>
<td>5 s</td>
<td>To be determined by simulation or product execution</td>
</tr>
<tr>
<td>Service request management</td>
<td>COMERX</td>
<td>M1TT</td>
<td>125 KBps</td>
<td>To be determined by simulation or product execution</td>
</tr>
</tbody>
</table>
Comparison with other models (1/3)

- Kitchenham’s software measurement model

![Conceptual E-R model]

< Conceptual E-R model >
Comparison with other models (2/3)

- Measurement information model of ISO/IEC 15939
Comparison with other models (3/3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entity type</td>
<td></td>
<td>○</td>
<td>○</td>
<td>X</td>
<td>○</td>
</tr>
<tr>
<td>Entity</td>
<td>Object of evaluation</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Attribute</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Structure of counting rule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>Textual description or equation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterization of an entity with respect to the attribute</td>
<td>Not explicitly defined</td>
<td>Not explicitly defined</td>
<td>Not explicitly defined</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Context of use</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>○</td>
</tr>
<tr>
<td>Conditions</td>
<td></td>
<td>○</td>
<td>X</td>
<td>X</td>
<td>○</td>
</tr>
<tr>
<td>Scale</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Scale type</td>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Measure type</td>
<td>Direct/Indirect</td>
<td>Direct/Indirect</td>
<td>Base/Derived/Indicator</td>
<td>Direct/Indirect</td>
<td></td>
</tr>
<tr>
<td>Correspondence between empirical and formal worlds</td>
<td>Function</td>
<td>Function</td>
<td>Function</td>
<td>Homomorphism between algebraic and numerical systems</td>
<td></td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Model of the development process</td>
<td></td>
<td></td>
<td></td>
<td>Entities represent the artifacts</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Proposed data model focuses on
 - Definition and modeling of the elements involved in software measurement
 - Particularly the counting rule and the role played by the context of use

- Weak points
 - Exact and theoretically based definition of these critical elements for software data storage, collection and comparison had not been provided
 - Conditional model is not included in the data model in order to simplify this presentation
Critics

- MOSME does not include
 - Nominal, ordinal scale and the special interpretation of their unit
 - Indirect measurement
 - Authors said indirect measure can be described in the procedure part of counting rule in the form of a formula
 - However, MOSME can’t present the relationship between base measures
 - Goal
 - Authors said goal can be described in the context of counting rule
 - However, I think that goal should be the individual element from context
 - Process-oriented measure
 - It only focuses on the product-oriented measure
 - Then, are there any specific elements of process-oriented measure to be added to MOSME?

- Counting rule can be ambiguous