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Physically constrained Fourier transform
deconvolution method
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An iterative Fourier-transform-based deconvolution method for resolution enhancement is presented. This
method makes use of the a priori information that the data are real and positive. The method is robust in the
presence of noise and is efficient especially for large data sets, since the fast Fourier transform can be
employed. © 2009 Optical Society of America
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. INTRODUCTION
imitations on the resolution of physical measurements
ue to convolution with an instrumental response func-
ion, diffraction, or other causes are ubiquitous in the
hysical sciences. A considerable amount of research has
een devoted to methods for deconvolving experimental
ata to obtain a more accurate representation of the origi-
al data. Deconvolution allows more information to be ex-
racted from the data or the same amount of information
o be obtained at lower resolution, allowing the use of
impler instrumentation. The approach employed here
akes use of the a priori information that in many cases

f interest the measured quantities are real and positive,
hich is employed in some of the better known methods

1–5].

. THEORY
onvolution can be performed by multiplying the Fourier

ransform (FT) of the data by the FT of the instrument
esponse convolving function and then applying the in-
erse Fourier transform (IFT). Let D��� represent the
riginal data consisting of N data points and D̃�v� be the
T coefficients of the data. The tilde symbol will be used
hroughout to make it easier to distinguish the FT coeffi-
ients from the corresponding data series. C��� are these
ata after convolution with an instrumental response
unction R���; C��� are the data actually recorded by the
nstrument. The convolved data C��� are mathematically
quivalent to the IFT of the product of the D̃�v� FT coef-
cients and the R̃�v� coefficients:

D̃�v� = N−1�
�=0

N−1

D���exp�− i2��v/N���, �1�

R̃�v� = N−1�
�=0

N−1

R���exp�− i2��v/N���, �2�
1084-7529/09/051191-4/$15.00 © 2
C̃�v� = D̃�v�R̃�v�, �3�

C��� = �
v=0

N−1

C̃�v�exp�i2���/N�v�. �4�

he inverse process of convolution is deconvolution; it can
e accomplished by inverse filtering, which involves divid-
ng the C̃�v� coefficients of the convolved data by the R̃�v�
oefficients of the convolving function and then applying
he IFT. The problem with this simple approach is that in
lmost all cases of interest some of the R̃�v� coefficients
re extremely small or equal to zero; frequently this oc-
urs beyond some cutoff frequency. Information about
hese frequencies is lost and cannot be restored by this
imple inverse filtering process, since it entails dividing
y coefficients that are close to or equal to zero. If the co-
fficients of these frequencies are set equal to zero for lack
f a better choice, the IFT yields a resolution that is
igher than that of the convolved data but much lower
han that of the original data. In addition, the decon-
olved data will display spurious oscillations and may
ake on negative values even though the physical quan-
ity can assume only positive values. The method pre-
ented here uses the a priori knowledge that the original
ata do not have negative values to restore missing fre-
uency coefficients. Let A��� denote the inverse filtered
ata and M be the minimum magnitude of R̃�v� deter-
ined by the signal-to-noise ratio beyond which meaning-

ul inverse filtering is not feasible:

Ã�v� = C̃�v�/R̃�v� if �R�v�� � M,

Ã�v� = 0 if �R�v�� � M. �5�

his choice for Ã�v� avoids infinite or unreasonably large
alues when R̃�v� is close to or equal to zero:
009 Optical Society of America
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A��� = �
v=0

N−1

Ã�v�exp�i2���/N�v�. �6�

et B��� represent the contribution to the data points that
ould be obtained by taking the IFT of the missing coef-
cients designated as B̃�v�:

B��� = �
v=0

N−1

B̃�v�exp�i2���/N�v�. �7�

ince the Fourier coefficients of A��� and B��� are mutu-
lly exclusive, a restriction on the coefficients is

Ã�v�B̃�v� = 0. �8�

Note that for conceptual simplicity the Ã�v� coefficients
an be regarded as nonzero below some cutoff frequency
nd the B̃�v� as nonzero above the cutoff frequency. This
ethod is not restricted to this case however, and the

onvolving-function Fourier coefficients could equal zero
t various frequencies or ranges of frequencies that are
ot necessarily sequential as long as Eq. (8) holds. Ideally
he restoration process should result in D���=A���+B���.
he FT coefficients of A��� are considered to be known

rom Eq. (5), while the FT coefficients of B��� will be esti-
ated. A���+B��� may yield negative values as a result of

rrors in the estimation of the B̃�v� coefficients. This error
ill be used to improve the estimate of the B̃�v� coeffi-

ients. The basic idea behind this method is to try to re-
tore as much of the missing information as possible by
aking use of a priori information about the data, in par-

icular the positive value of many physically measurable
uantities such as, for example, the intensity of spectral
ines. This can be accomplished by minimizing the sum of
he squares of the negative portion of the deconvolved
ata. Proceeding in a manner similar to the approach of
oward [6], the Fourier expansion of a representative co-

fficient is

B̃�v� = N−1�
�=0

N−1

B���exp�− i2��v/N���. �9�

sing the definition of the Heaviside step function H(y),

H�y� = 0 y � 0, H�y� = 1/2 y = 0, H�y� = 1 y � 0,

he sum of the squares of the negative values can be writ-
en as

�
�=0

N−1

�H�− �A��� + B�������A��� + B����2. �10�

he minimization procedure cannot be applied directly to
he Heaviside step function because it is not continuous.
owever, an alternative approximation to this function

an be written that is continuous, making it possible to
ake derivatives. K in this expression is an arbitrary pa-
ameter that in the limit that K→� reproduces the be-
avior of the Heaviside step function:
H�y� = lim
K→�

�1 + exp�− Ky��−1. �11�

he sum of the squares of the negative values in this ap-
roximation is

�
�=0

N−1

�1 + exp�K�A��� + B������−1�A��� + B����2. �12�

he minimization condition can be satisfied by taking the
erivatives with respect to the unknown coefficients and
etting them equal to zero:

�

�B̃�v�
�
�=0

N−1

�1 + exp�K�A��� + B������−1�A��� + B����2 = 0.

�13�

onsidering in detail the derivative of this expression
ith respect to B̃�v� combined with the definition of B���

rom Eq. (7) and setting it equal to zero gives

�
�=0

N−1

2�A��� + B�����1 + exp�K�A��� + B������−1

��exp�i2�v�/N�� − �A��� + B����2�1 + exp�K�A���

+ B������−2�K exp�K�A��� + B�������exp�i2�v�/N�� = 0.

�14�

n the limit that K→� for positive values of �A���+B����,
his expression approaches zero. In the limit that K→�
or negative values of �A���+B����, the complex conjugate
f this expression becomes

�
�=0

N−1

�A��� + B����− exp�− i2�v�/N� = 0, �15�

here the notation �A���+B����− represents only the nega-
ive values of �A���+B���� and is otherwise zero. Similarly
A���+B����+ will represent only the positive values of
A���+B���� thus:

�A��� + B���� = �A��� + B����+ + �A��� + B����−. �16�

aking the FT of this expression and subtracting Eq. (15)
ivided by N for a particular unknown frequency vm,
here the m subscript denotes a v missing from the mea-

ured data, the FT expansion gives

N−1�
�=0

N−1

exp�− i2�vm�/N��A��� + B����

= N−1�
�=0

N−1

exp�− i2�vm�/N��A��� + B����+. �17�

Since the subscript m refers to the coefficients of the
issing frequencies, Eq. (8) and the orthogonality of the

ummation eliminates A��� from the left-hand side of Eq.
17), giving
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N−1�
�=0

N−1

exp�− i2�vm�/N�B���

= N−1�
�=0

N−1

exp�− i2�vm�/N��A��� + B����+. �18�

ote that only the values of A��� that result in a positive
alue when added to the estimate for B��� are summed on
he right-hand side of Eq. (18); hence the orthogonality
ondition does not eliminate A���. The left-hand side of
q. (18) is precisely the B̃�v� coefficients from Eq. (9), giv-

ng a prescription for calculating these coefficients:

B̃�v� = N−1�
�=0

N−1

exp�− i2�v�/N��A��� + B����+. �19�

he basis of this method is the recognition that the B̃�v�
oefficients can be obtained from the FT of �A���+B����+
y employing an iterative method. Since initially B��� is
nknown, the first approximation is obtained by taking
he FT of the positive part of A��� and then performing
he IFT, giving an estimate for A���+B���. The FT of
A���+B����+ is calculated, and the Ã�v� coefficients are re-
laced with the values from the original inverse filtered
ata while the new B̃�v� coefficients are retained for the
FT. The iterative process is continued until the B̃�v� co-
fficients converge to the desired tolerance. Although the
eaviside function was approximated by the function in-

olving an exponential in order to derive the equations, it
s not necessary to use it in an actual computer algorithm
o identify positive or negative coefficients.

An equivalent procedure that follows from Eq. (16) is to
btain the B̃�v� coefficients by subtracting �A���+B����−
rom the estimate of �A���+B���� and utilizing these in the
FT. The advantage is that the term can be subtracted
ith a coefficient greater than unity, resulting in faster

onvergence, as will be discussed below.

. DATA AND ANALYSIS
he method was tested by examining the isotope shift of
he red line of a deuterium hydrogen gas mixture. The
12 point spectrum was collected on a Jobin Yvon/Spex
riax 550 monochromator with the slits set at 0.08 mm
nd is shown as the upper trace in Fig. 1.
The data were processed by performing the FT of the

pectrum and were inverse filtered by multiplying the fre-
uency coefficients by a smoothly increasing function up
o a cutoff limit at the 71st complex coefficient, beyond
hich all Fourier coefficients were set equal to zero. This

unction was obtained from the inverse of the convolving
unction of the spectrometer estimated from the profile of
n isolated spectral line. The inverse filtered spectrum is
hown in the lower trace of Fig. 1. Although the resolution
s enhanced, there are significant negative excursions and
purious peaks.

The results of the method after various numbers of it-
rations are shown in Fig. 2. The method gives a fairly
onstant improvement in resolution with each iteration
p to some limit that depends on the details of the data
nd convolving function.
The results of the method after 100 iterations are

hown as the upper trace in Fig. 3, and the middle trace is
he spectrum recorded with a 0.01 mm slit width for com-
arison. The width of the lines shows a fourfold improve-
ent over the original data, and the method succeeded in

reatly reducing the oscillations and negative excursions.
he deconvolved spectrum compares very well with the
ata recorded with an eight times smaller slit width. The
eparation of the deconvolved peaks agrees with the val-
es obtained from the higher-resolution data to within
he experimental uncertainty. The area of the smaller
eak relative to the larger was overestimated by approxi-
ately 40%; however, extensive experimentation with re-

orded and simulated data has shown that this error is
ot typical and is due to inaccuracy in estimating the con-
olving function for inverse filtering rather than to a de-
ect in the method itself.

Since the missing frequencies are identified by their
egative contribution to the spectrum, this underesti-
ates their magnitude by a factor of 2 since only the
egative area of each is taken into consideration. Experi-
entation bears this out, and multiplying �A���+B����− by

ig. 1. Upper trace, unprocessed data; lower trace, data after
nverse filtering. The traces are not plotted to the same scale and
ave been offset for clarity.

ig. 2. Deconvolved data after 1 (top), 10 (middle), and 100 (bot-
om) iterations. The traces are not plotted to the same scale and
ave been offset for clarity.
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factor of 2 before subtracting results in an algorithm
hat converges to the same solution in fewer iterations.
actors larger than 2 speed up the algorithm even more
ut can result in noise and spurious peaks, which ulti-
ately can cause the method to diverge.
Another technique that reduced the number of itera-

ions for a given increase in resolution was to subtract a
onstant offset from the estimate of �A���+B����. The price
f this increase in speed was again the introduction of
ore noise and small spurious peaks. The most efficient

pproach was to use the offset for most of the iterations
or a quicker increase in resolution and then perform a
ew more iterations without the offset, which eliminated
uch of the noise and spurious speaks. The optimum off-

et depends on details such as the accuracy of the inverse
ltering and the signal-to-noise ratio. The progress of the
ethod was monitored visually by plotting the new spec-

rum after each iteration and was stopped when little fur-
her improvement occurred. This could just as easily have
een automated by terminating the process when the
hange after each iteration became less than the prees-
ablished tolerance. However, it was found that visually
onitoring the progress provided insight into how well

he method was working and exposed potential problems
f the deconvolution was pursued too aggressively.

This method was also evaluated by comparing it with a
andweber method modified to include a nonnegativity
onstraint as implemented by Tadrous [7]. This method
ave similar results with somewhat higher resolution, al-
hough at the price of producing two spurious peaks. The
eight of the smaller peak was overestimated in both
ethods, but experimentation on simulated data with

oth methods showed that this was caused by difficulty in
stablishing the exact form of the convolving function

ig. 3. Upper trace, data deconvolved by the method presented
ere from the 0.08 mm slit width data. Middle trace, 0.01 mm
lit width data. Bottom trace, 0.08 mm slit width data decon-
olved by the Landweber method with a nonnegativity con-
traint. The traces are not plotted to the same scale and have
een offset for clarity.
ather than by the methods themselves.
. CONCLUSIONS
he method detailed in this paper is computationally ef-
cient especially for large data sets because the fast Fou-
ier transform can be employed. The most critical factor
n obtaining a good restoration is the choice of the initial
onvolving function. A poor choice for this function can in-
roduce spurious peaks and noise. With a reasonable
hoice for this function, this method greatly reduces spu-
ious peaks, negative excursions, and noise while provid-
ng a further increase in resolution. Even with some un-
ertainty in the choice of this function and with the
resence of noise, the method proves robust and con-
erges to a consistent and reasonably accurate represen-
ation of the original data. In applying the method, it may
e necessary to establish a local baseline such as, for ex-
mple, when a spectrum is superimposed on an interfer-
nce pattern from a window. The same is true in applying
his method to other areas such as image deconvolution,
here, for example, text might be superimposed on a uni-

orm background. As with any deconvolution method the
ignal-to-noise ratio is very important in determining the
ltimate level of resolution enhancement that is achiev-
ble. An advantage of this method is the simplicity of
mplementing it and the ease with which other a priori in-
ormation can be incorporated. Conditions such as finite
xtent [8] (also known as compact support) and bounded
pper limits can be handled in exactly the same way.
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