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Abstract

A typical problem in marketing research consists of segmenting and clustering
productsand/or consumers. However, classical cluster analysisand segmentation may fail
intheinter pretability astheytendtoidentify average consumersor products, sometimesnot
well-separated. Inthisframework, archetypal analysishasbeenintroducedto find extreme
segments and well separated typical consumers. On the other hand, we notice that often
product attributes and consumer preferences could be more adequately expressed by a
range of values in which attributes/preferences may vary. To face these two issues, in this
work, we proposean extensi on of ar chetypal analysistothecaseof interval data, providing
adefinitionof archetypesusing the Hausdor ff distance, analizing their geometric properties,
and offering some appropriate visualization tools. We present also anillustrative example
on preference data.
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1. INTRODUCTION

A typical problem in marketing research consists of segmenting and clus-
tering products and/or consumers. In this framework, some issues are the study
of the heterogeneity of consumer behaviors and of the different combinations of
product attributes which may determine consumer preferences. Classical multi-
variate statistical methods are largely applied for these aims. More recently, in an
attempt to provide complete market segmentation more sophisticated techniques,
that rely on the selection of a response variable, have been exploited, such as latent
class techniques, tree based segmentation like CHAID and CART (Ratner, 2003
De Sarbo et al., 2004).

However, two different issues arise. First, classical cluster analysis and seg-
mentation may fail in the interpretability as they tend to identify average con-
sumers or products, sometimes not well-separated. Secondly, rather than by a
single value, often product attributes and consumer preferences could be more
adequately expressed by a range of values in which attributes/preferences may
vary.

To face the first problem, in the marketing literature, archetypal analysis
(Cutler and Breiman, 1994) has been introduced to find extreme segments and
well separated typical consumers (Riedesel, 2003; Elder and Pinnell 2003; Li er
al.,2003). While, for the second issue, the notion of interval data may yield more
adequate statistical methods that take into account the uncertainty of the prefer-
ences and the variability of product attributes.

In this work, we explore the possibility of extending the proposal of using
archetypal analysis in marketing research to the case of interval data. The original
proposal consists of considering archetypal analysis as a method for selecting
some consumers/products able to clearly represent a market segmentation. In this
paper we define the archetypes when consumer preferences related to different
products or many products attributes are measured as intervals, we discuss the
related computational issues, and we present exploratory tools to visually analyze
them based on properties of both archetypes and interval data. In particular we
propose to use some iconic plots such as the stars for interval data, and principal
component analysis for interval data to inspect the archetype’s composition and
to compare observed consumer or products among them and with respect to the
archetypes.

The paper is organized as follows: we present basic archetypal analysis, in-
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troducing a computational geometry point of view in Section 2, while some notion
on interval data are in Section 3. The definition of the archetypes for interval data,
their computational issues and their graphical representation are in Section 4. An
illustrative example on preferences data will be used along the whole paper. Some
concluding remarks follow.

2.  ARCHETYPAL ANALYSIS IN MARKETING RESEARCH

Marketing researches usually aim at defining subsets, segments of consumers or of
products to gain insight into the market and consumer behavior, in order to design
appropriate communication strategies. To understand and analyze the heterogene-
ity of consumer behaviors and/or of product feature combinations in a specific
market, classical multivariate statistical methods, such as hierarchical and not hi-
erarchical clustering, have been used (Wedel and Wagner, 2000). However, the
classical segmentation techniques implicitly assume that there are several average
consumers and try to find such average objects, i.e. the cluster centroids. This
often yields to identify segments not clearly separated on important profiling vari-
ables (Morris and Schmolze, 2006). Moreover, some marketers have noticed that,
at least in the world of marketing, very few people aspire “to be average" (Elder
and Pinell, 2003). Finally, if the interest is on new products, the focus is not on
average consumers, but on switchers, i.e. customers having extreme consumption
behavior (Allenbey and Ginter, 1995).

All these arguments have led several marketers to introduce the idea of con-
sumer archetypes (Morris and Schmolze, 2006), intended as consumer with ex-
treme profiles, and to propose the use of archetypal analysis in marketing re-
searches (Riedesel, 2003; Elder and Pinnell 2003; Li et al., 2003, Anderson
and Weiner, 2004). Archetypal analysis (Cutler and Breiman, 1994) is a statis-
tical method aiming at synthesizing a set of multivariate observations through few
points not necessarily observed. These points, the archetypes, can be considered
a sort of “pure" types as all the data points must be a mixture of them. In addition,
to ensure that these “pure" points are as close as possible to the observed data,
archetypes must be also a convex combination of the data points.

First applications of archetypal analysis have been in spatio-temporal dynam-
ics and cellular flames (Stone and Cutler, 1996; Stone, 2002), in medicine and in
astronomy (Chan et al., 2003). In performance analysis archetypes have been used
for ordering multivariate performances (D’Esposito and Ragozini, 2004) and for
benchmarking (Porzio et al, 2006).

Considering marketing research, archetypal analysis has been introduced to
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find some “pure" consumer or product profiles lying on the edges of data that
best exemplify the differences the segmentation is attempting to define. All other
consumers or products are expressed as a probabilistic mixture of such extremes,
and the convex combination coefficients are used to define a fuzzy segmentation
(Elder and Pinnel, 2003).
Formally, the archetypes a;, j = I,...,m, should be those points in the p-
dimensional Euclidean space such that:
x} = oA (1)
with
0;; >0 Vi j ol=1 Vi, (2)

4

where x!, i = 1,...,n, are the observed data, A is the archetype matrix with a}
its j-th row, and ¢ is the vector of the convex combination coefficients of the m
archetypes for the i-th data point, with generic elements ¢;j, j=1,...,m.

At the same time, all the archetypes should be also a mixture of the observed
data:

a, = B/X 3)

with
Bi>0 Vji Bl=1 Vj (4)

where X is the observed data matrix, and the convex combination coefficient f3;;’s
are the n elements of the ﬁ; vectors, i.e. the weights of the n observations in
determining the j-th archetype.

By definition of convex hull, eqn.s (1) and (2) imply that all the data belong
to the convex hull of the archetypes, that is the archetypes could be the vertices
of any convex p-polytope including the data scatter. On the other hand, eqn.s (3)
and (4) imply that archetypes belong to the convex hull of the data. Consequently,
archetypes are the vertices of the data convex hull.

However, in practice, the number of the data convex hull vertices is generally
too large to synthesize data through few pure types. For this reason, looking for
a smaller number of pure types, and wishing to preserve their closeness to the
data (eqn.s 3 and 4), Cutler and Breiman (1994) defined the archetypes as those
m points that fulfill as much as possible eqn. (1), satisfying at the same time eqn.s
(2), (3) and (4).

More precisely, let us rewrite eqn. (1) as xj - och = 0. For the discussion
above, if the number of archetypes is less than the number of the data convex hull
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vertices, then eqn (1) does not hold. In particular, for the points i* lying outside
the convex hull of the archetypes, we have that ||x!, — o/, A|| > 0, where |[|-|| is the
L, norm of a vector. The archetypes, given m, have been then defined as the points
(a,...,a,) minimizing

> ||xi— A, (5)
i=1

holding equations (2),(3) and (4).

The solution to this minimization problem depends on m, and solutions are
not nested as m varies. That is, denoting with a}(m) the j-th archetype for a given
m, a’(m) # a’,(1), with m # 1.

As for the choice of m, Cutler and Breiman (1994) suggest to look at the
quantity:

RSS(m) = Z ||x; —Xi(m)|| (6)
i=1

where X!(m) = o(m) - A(m) are the best approximations of the observations X
through the m archetypes. The residual sum of squares RSS(m) is then the sum of
the euclidean distances of the observed data from their best approximation, and
therefore it measures to what extent the m archetypes synthesize the data. It is
worth noting that, given the number of archetypes m, eqn. (5) is equivalent to eqn.
(6), and hence minimizing the first equation is equivalent to minimize the second
one.

Before advancing our proposal of extending the archetypal analysis to inter-
val data in marketing researches, we first introduce in the next section the main
concept related to interval data.

3. A BRIEF INTRODUCTION TO INTERVAL DATA

Given a set of statistical units, each unit is generally coded into an order p row
vector, where p indicates the number of observed features measured by a single
value.

Interval data represent a different way of coding variables, with respect to the
classical single-valued data. There are, in fact, different sources of incertitude in
the data suggesting the interval data coding: measurement errors, repeated mea-
sures, data usually reported in terms of min and max values (e.g. temperatures),
instead of one single central tendency measure.

To exemplify, let us consider the Juices dataset (Giordani and Kiers, 2006)
that in the following will help us to present the methodological proposal and its
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properties. Data refer to a set of 16 different fruit juices that were submitted to a
group of judges called to assign a score to the following six features: Appearance,
Smell, Taste, Naturalness, Sweetness, Density.

The experts (judges) tried all juices and, for each juice, assigned scores to
each one of the six features. Under this work hypothesis, the data matrix is defined
by a three way data structure: juicesx featuresx judges.

Many different analysis approaches exist to treat such kind of data: some
approaches, such as the multiple factor analysis (Escofier and Pages, 1998) or the
INDSCAL method (Carrol and Chang, 1970), are based on the treatment of the
whole data matrix; alternative solutions consist of collapsing one dimension of
the three matrix dimensions. For example all judges can be summarized into a
mean or median score. The latter procedure leads to the more familiar flat n x p
data matrix: juicesx features.

To take into account the heterogeinety among judges single-valued data sum-
marization can be replaced by the interval data coding: each interval score is,
then, expression of both central tendency (midpoint) and intra-judges variability
(range), and data are arranged in a n x 2p interval data flat matrix, where n refers
to the number of observations and p to the number of interval-valued variables.

The generic n x p interval data matrix [X| has row [x]{, with general term
[xlik = [XigsXik)s i=1,...,nand k= 1,..., p, with x; ;, and X; ; the minimum and
maximum observed values. The general term [x]; can be also represented as
the midpoint x{, and range (or radius) x, notation: [x];x = [x;, %ix| = [, —

Tab. 1. The Juices dataset

Juice Appearance Smell Taste Naturalness Sweetness Density

Pineapple 1 | 6.61 7.66 | 582 6.66 | 6.18 731 | 545 685 | 563 6.75 | 3.92 498
Pineapple 2 | 675 7.59 | 590 730 [ 5.65 698 | 523 656 | 552 692 | 3.28 4.69
Orange | 675 759 | 7.12 824 [ 639 744 | 567 672 | 583 6.67 | 3.64 4.97
Orange 2 689 745 | 6.06 690 | 689 794 | 560 672 [ 601 7.13 | 3.88 4.93
Grapefruit 1 | 628 740 | 652  7.65 | 517 685 | 6.00 733 | 245 329 | 3.64 476
Grapefruit2 | 631 743 | 563 675 | 635 747 | 611 723 | 414 519 | 3.06 4.46

Pear 1 692 776 | 7.19 824 | 7.14 8.19 | 6,44 749 | 7.70 854 | 7.22 8.27
Pear 2 762 B.I8 | 632 744 | 773 857 [ 679 7.63 | 778 862 | 6.8 7.67
Apricot | 683 768 | 798 868 | 770 854 | 735 847 | 742 840 | 7.03 8.15
Apricot 2 7.32 816 | 7.21 8.19 | 517 671 | 466 606 | 490 631 | 5.79 6.77
Peach 1 7.09 793 | 694 778 | 642 754 | 570 7.10 | 6.69 7.68 | 520 5.90
Peach 2 698 782 | 622 706|754 838 | 688 772|683 7.8 | 501 585
Apple 1 6.82 752 | 547 659 | 742 840 | 566 7.20 | 7.37 829 | 590 6.74
Apple 2 660 772 | 628 740 | 631 743 [ 572 7.2 | 6.81 7.65 | 547 6.59
Banana 1 496 637 | 392 560 | 3.64 532 | 427 595 | 476 6.16 | 3.62 474

Banana 2 527 667 | 3.68 536 | 326 494 | 392 546 | 423 591 | 3.65 4.77
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xL,x6, +x!,]. Midpoints and ranges are respectively defined by:
X = 3(X+x), X =3(x-2).

In the midpoints/ranges notation, the matrix [X] is split in the matrices X¢ and
X" that are called center and range matrix, respectively. It is worth to notice that
midpoint-range and min-max interval data coding are equivalent. Table 1 shows
interval data coding for the Juices dataset by the min-max notation. Hence, for
example, the values 6.61 and 7.66 (in the first matrix cell) are the minimum and
the maximum observed scores for the feature Appearance of the first pineapple
Juice.

From a geometric point of view, in dealing with single valued data, a p-
variate statistical unit is represented by a dimensionless point for any p. Whereas
in the interval p-dimensional Cartesian space, statistical units assume different
geometric properties according to p. Each statistical unit is configurable as seg-
ment when p = |, as a rectangle for p = 2, parallelepiped for p = 3 and, more
generally, as a parallelotope when p > 3.

4. ARCHETYPES FOR INTERVAL DATA

In the framework of archetypal analysis, given the geometrical nature of
interval data, in analogy with the single value case, the aim is to define some
archetypal parallelotopes (that we will denote by [A]), which should synthesize
the locations and the shapes of all the other data. These archetypal parallelotopes
are such that the others parallelotopes can be expressed as a convex combination
of them, and they are a convex combination of all the others.

To define such new archetypes let us to consider each parallelotope be de-
scribed by the midpoints and ranges coding. Hence, each statistical unit has co-
ordinates into two linked multivariate spaces (the midpoint and range spaces). In
such a case two sets of archetypes, A“ and A”, should be found in the midpoint
and in the range spaces, respectively. As each parallelotope should be expressed
as a unique convex combination of the archetypal parallelotopes in terms of mid-
points and ranges, an additional constraint is imposed: the mixture coefficients o/
in eqn. (1) should be the same in the two spaces. The ¢ coefficients represent the
algebraic linkage of the two optimizations, and hence the linkage between the two
spaces. In order to define the parallelotopes-archetypes the least square criterion
in eqn. (5) and (6) has to be rewritten in terms of intervals. In such a case the
euclidean metric has to be replaced by an appropriate one to treat intervals. In
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this paper we propose to use the Hausdortf metric, which was proposed by Felix
Hausdorff in the early of 20" century as a measure of distance between compact
subsets in R”.

Given two closed sets S C R” and 7 C R” and a metric d(-), the distance
Jrom a point x € R? to the subset S is defined as:

d(x,8) = r!li;ld(x..f).

Let us define the quantities /(S,7) and A(T.S) as:
h(S,T) = maxd(s,T)=maxmind(s,7)

ses seS fer
h(T, = —
W(T,S) rpraTxa'(r S= rrrlca?_xrﬂ:l;ld(r §). (7
The Hausdorff distance H(S,7') between S and 7 is defined as:
H(S,T) = max (h(S,T),h(T.,S)). )

In the special case of R, the compact sets are intervals and, hence, S = [5,5] and
T = [t,7]. The Hausdorff distance between these two generic intervals is given by:

H(S,T) = max{|5 7|, s—¢}, ©)

and it is easy to show that the Hausdorff distance can be written in terms of centers
and ranges as follows:

H(S,T)=|s"—t|+|s—1"|. (10)
Furthermore, we have that H(S,7) > 0 and H(S,T) = H(T,S). In addition, let U
be a generic compact subset in R, the triangular inequality H(S,U) < H(S,T) +
H(T,U) can be easily proved taking into account the definition of distance in (8)
(Neumaier, 1990; Palumbo and Irpino, 2005).

The generalization of the Hausdorff distance in IIR” is very complex. How-
ever, when the compact subsets are restricted to some special cases, as the par-
allelotopes we are considering in this paper, the Hausdorff metric can be easily
generalized. In such a case it can be proved that the distance between two paral-
lelotopes in [R? is the sum of the Hausdorff distances in each dimension.

Reverting to our aim, given the interval data matrix [X] and two parallelo-
topes [x] and [x]), in IR”, the Hausdorff distance between them is:

H([x];, [x]) =

max { [Xix — Xk, X — Xl }

— | b — ) (11)

’2
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Given m, with m the number of archetypes to be derived, and the Hausdorff
distance defined above, in analogy with eqn. (6), the parallelotope-archetypes [A]
are such that they minimize the quantity HRS(m), the sum over i of the Hausdorff
!

distances among the parallelotopes [x]’

; and their representation in terms of the

archetypes [X]':

HRS(m) ZH x]:, [X]?) (12)

where [X]! = of/[A] is the best approximation of [x]} through a convex com-

bination of the archetypes, and where ¢; indicates the weight of the archetypes in

determinig the i-th parallelotope. Considering the midpoints and ranges notation,
m m

eqn.(12) can be rewritten as follows:
Za,jaf,t Za,jaﬂ\) (13)

where ¢;; indicates the weight of j-th archetype on the i-th statistical unit,
aj, and @’y are the general terms of the matrices A“ and A" indicating the k-th
coordinates of the j-th archetype in the midpoints and ranges spaces.

In analogy with the single value case, the quantity HRS(m) has to be mini-
mized under the constraints:

HRS(m) = iz(

i=1k

) ;>0 Vij ol=1 Vi

!
ii) A“=BX“and A" = B'X",

i) 0 < ﬁj, <land0 < ﬁj, < 1, where ﬁj, and ﬁ;, are the general terms of matri-
ces B¢ and B',

iv) B°1, =1, and B"1, = 1,,, with 1, and 1,, the unitary vector of order n and
.

where ii), iii) and iv) impose archetypes in the space of midpoints and ranges
must be defined as convex combinations of the original data.

[t is worth noticing that the interval data archetypal problem consists in defin-
ing two archetype matrices A° and A" and one system of weights &/, i = 1,...,n,
that is common to midpoints and ranges. Moreover, the Hausdorff distance im-
plies the use of the L; norm. Consequently, the alternate least squares algorithm
that has been used in the original archetypal analysis would not be able to deter-

mine the solution. Hence, in our proposal the minimization problem to determine
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the parallelotopes-archetypes can be solved via the mathematical programming
approach.

4.1 ANILLUSTRATIVE APPLICATION TO THE JUICES DATASET

This section presents some analytical and graphical results obtained starting
from the Juices dataset. Looking at behavior of the HRS(m) function we selected
three parallelotope-archetypes, denoted by [a];, [a], and [a]5.

Table 2 reports the ¢;; coefficients. The archetype [a]; corresponds to the
second banana juice, and it is also very close to the other banana juice. The
archetype [a], is the first orange juice, while the third archetype corresponds to an
apricot and to a pear juice. The ¢;;’s can be used to obtain a fuzzy clustering of the
juices based on preferences, assigning each juice to the archetypes for which the
04 is maximum.

Tab. 2 q j’scoefficientsfor the Juice dataset for m = 3 archetypes. al a2 a3 Sum

a, a, (o Sum
Pineapple 1 0,414 0,373 0,213 1
Pineapple 2 0,34 0,51 0,15 1
Orangel 0,01 0,99 0,00 1
Orange2 0,32 0,32 0,36 1
Grapefruit 1 0,35 0,65 0,00 1
Grapefruit 2 0,45 0,48 0,07 1
Pear 1 0,02 0,20 0,78 1
Pear 2 0,00 0,00 1,00 1
Apricot 1 0,00 0,00 1,00 1
Apricot 2 0,38 0,62 0,00 1
Peach 1 0,05 0,67 0,28 1
Peach 2 0,174 0,162 0,664 1
Applel 0,30 0,00 0,70 1
Apple?2 0,195 0,348 0,457 1
Banana 1 0,995 0,003 0,002 1
Banana 2 1,00 0,00 0,00 1

In analogy to the proposal by Porzio et al. (2006), the archetypes can be
represented through some appropriate iconic plots. In such a case we propose to
visualize them by the stars (Hartigan, 1975), in their version for interval data
(Noirhomme-Fraiture, 2002). In Figure 1 the three archetypes for the Juices
dataset are represented. The first archetype [a]; (the inner blu star-band) repre-
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Fig. 1: Threeinterval archetypesfor theJuicesdataset r epresented through thestar for interval
data.

sents juices with low and spread preferences on all the features, while the third
archetype [a]; summarizes juices with highest preferences (the outer green star).
Finally, the second archetytpe [a], (the purple star) stands for juice with interme-
diate preferences, except for the smell attribute that has the highest scores.

The relative positions and distances of data with respect to the archetypes
in terms of the o;;’s are displayed in Figure 2. The linear constraint imposed
on the ;s weights allows us to plot them on a bivariate plan instead of a three
dimensional space. Coordinates are determined by subtracting the third column to
the first two ones. The juices at the center of the triangle cannot be easily classified
with respect to the archetypes.

The analysis of Table 3, which contains the B and B" coefficient matrices
for the Juices dataset for m = 3 archetypes, highlights the different role played by
the observed data in determining the archetypes in the two spaces. We note that

;; and B} coefficients can be interpreted similarly to the absolute contributions in
the principal component analysis. For example, in the center space the first orange
juice heavily contributes to [a],, while the second orange juice does not contribute
at all; at the same time both juices contribute the same archetype in a similar way
in the range space. This means that the [a], shape will be a mix of the two orange
juice shapes. A similar remarks could be done for the banana juices and the third
archetype: in such a case the [a]; location will closely resemble the Banana I
location, while its shape will be a mix of the two juice shapes. It is worth to note
that there are some data that do not contribute at all to any archetypes.

In Table 4 there are the coordinates of the three interval-valued archetypes,
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Fig. 2: Plot of the observed data using as coor dinates the o, coefficientsfor the Juices dataset
for m = 3 archetypes.

computed through a minimization procedure taking into account midpoints and
ranges.

A graphical analysis of archetypes can be performed through parallel coordi-
nates plot (Inselberg, 1985; Wegman, 1990; Wegman and Qiang, 1997) by jointly
visualizing the archetypes and original data values (for a discussion on the use
of parallel coordinates to graphical exploration of archetypes see Porzio et al.,
2006). Displaying data in such a way, each statistical unit is compared to the
archetypes and is evaluated in terms of its deviations from the archetypes.

However, interval data would make much less effective the parallel coordi-
nates display. This proposal presents a joint display of original data and archetypes
on the first Midpoint-Range Principal Component Analysis (MR-PCA) (Palumbo
and Lauro, 2003; Lauro and Palumbo, 2005). Details of the MR-PCA pass the
scope of the present paper and we refer to the quoted papers for them. It is enough
to say the interpretation can be done like in the classical PCA. Dealing with inter-
val variables, statistical units are compared in terms of position, as in the standard
case, and in terms of size and shape.

The total inertia associated to the first factorial plan in Figure 3 is equal to
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Tab. 3—B¢and B coefficient matrices for the Juices dataset for m=3 ar chetypes.

Pineapple 1
Pineapple 2
Orange 1
Orange 2
Grapefruit 1
Grapefruit 2
Pear 1

Pear 2
Apricot 1
Apricot 2
Peach 1
Peach 2
Apple 1
Apple 2
Banana 1
Banana 2

Center Space

B
0.000
0.000
0.000
0.024
0.000
0.086
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.148
0.742

1

Bs
0.000
0.000
0.727
0.000
0.013
0.000
0.000
0.022
0.070
0.168
0.000
0.000
0.000
0.000
0.000
0.000

1

Bs
0.000
0.000
0.000
0.000
0.000
0.000
0.031
0.830
0.079
0.000
0.000
0.000
0.060
0.000
0.000
0.000

1

Range Space

Bi
0.000
0.000
0.000
0.000
0.118
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.480
0.402

1

B
0.095
0.000
0.225
0.159
0.084
0.025
0.082
0.017
0.161
0.000
0.004
0.000
0.085
0.063
0.000
0.000

1

B;
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.347
0.226
0.000
0.000
0.287
0.123
0.017
0.000
0.000

1

73.75%. Parallelotope archetypes have been projected as supplementary statistical
units.

[t is extremely important to remark the consistency between the results of the
previuos analysis and the representation obtained through the MR-PCA. Notice
that archetypes are very close to those units that have the highest ¢ coefficients.
Looking at the archetype [a]3, on the left side of the display, it is worth noticing
how it is very close and pretty much similar to Pear 2 and Apricot 1. Moreover,
even if Pear 2 is closer to [a]3 than Apricot 1, shape of [a]; resembles more closely
the Apricot 1 shape.

On the opposite side, the two banana juices along with [a]; clusterize tightly

Tab. 4 —Interval archetypes for the Juices dataset for m = 3 archetypes.

Juice | Appearance Smell Taste Naturalness Sweetness Density

[a]} 534 672 | 394 56| 364 53| 42 57 | 44 585 | 361 473
[a]5 68 771 [ 722 82631 74|56 68 | 58 673 | 437 549
[a]; 742 815 65 741|769 85|67 77177 861 | 678 769
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Fig. 3: Archetypesand original statistical unitsover thefirst PCA factorial plan.

together, for both location and shape. While the [a], archetype, as it falls around
the origin of the axes, is not well represented, and hence its position and shape
cannot be interpreted.

By our results the juices seem to clusterize for types of fruits and preference
levels. However, to improve the interpretation additional information, such as the
brand, the price and so on, should be considered.

5.  SOME CONCLUDING REMARKS

The results tend to confirm that the proposed method, that extends archetypal
analysis from single value data to interval data, can be promisingly applied in
marketing research.

At same time we believe that there is the possibility to use the proposed
method in other applicative fields. More testing on real data is therefore necessary.
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ANALISI DEGLI ARCHETIPI PER DATI INTERVALLARI
NELLE RICERCHE DI MERCATO

Riassunto

Usualmente nelle ricerche di mercato, un obiettivo € I'individuazione di gruppi e
segmenti di prodotti e/o consumatori. Tuttaviai metodi classici possono produrrerisultati
pocointer pretabili, poichetendono adindividuareconsumatori o prodotti medi, che spesso
non sono molto diversificati fra loro. Nellericerche di mercato, quindi, con |’ obiettivo di
trovare segmenti ben separati ed estremi, é stata introdotta I’analisi degli archetipi.
D’ altro canto, notiamo che spesso le caratterichedel prodotti ele preferenzedei consuma-
tori potrebbero essere espresse piu adeguatamente attraverso intervalli di valori. Per
coniugarequestedueesigenze, inquesto articol o, proponiamo una estensionedellaanalisi
degli archetipi per dati di tipointervallare, fornendone una definizioneanaliticain termini
di distanza di Hausdorff, analizzandonel e car atteristiche geometriche ed indicando al cuni
strumenti di visualizzazione per dati ad intervallo. Nell’ articolo viene presentata anche
un’ applicazione a dati di preferenza.



