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Abstract
Near-infrared spectroscopy (NIRS) provides a non-invasive, non-ionizing means to monitor total haemoglobin 
concentration and oxygen saturation in the living tissue allowing monitoring oxygen sufficiency. Main 
applications of NIRS are in the study of the transport of the oxygen to the muscles, the cellular metabolism 
and the cerebral haemodynamics. Fewer NIRS studies have been performed at the Central Nervous System 
(CNS), mainly to monitor oxygen sufficiency, brain functions and diseases.
Recently, the NIRS methodology has been set to monitor the brain of rodents and then confirmed to be apt 
to analyzing non-invasively and in real time the influence of systemic pharmacological treatments upon brain 
metabolism. Furthermore, it has been proven able to determining penetration of drugs into the brain. 
Alcohol is the second most widely abused psychoactive drug after caffeine. Thus, in this work, a novel 
translational medicine approach has been undertaken i.e. the influence of alcohol on brain levels of NIRS 
parameters is monitored either in rodents as well as in humans.
The present NIRS data show that administration of alcohol to rodents as well as to man is resulting in modified 
levels of the NIRS parameters and in particular significant decrease of oxygenated hemoglobin (HbO2).
Altogether they indicate that NIRS could be applied to study neurobiological processes and psychiatric 
diseases in preclinical and also in a translational strategy from preclinical to clinical investigations.
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Introduction
Near-infrared spectroscopy (NIRS) is a relatively new 

methodology that provides a non-invasive, non-ionizing 
means to monitor total haemoglobin concentration and 
oxygen saturation in the living tissue. NIRS has been in-
troduced since about four decades, when in 1977, F Job-
sis presented his key work that established the technique 
allowing monitoring oxygen sufficiency [1]. Since then, 
it has been greatly improved [2,3].

The technique founds itself on the use of harmless 
radiations, which have wavelength in the spectral range 
of the near infrared (650-1000 nm). It depends on the 
relatively good transparency of biological tissue in the 
near-infrared range, which allows for transmission of 
photons through the tissue, so that they can be detect-
ed at the exit from the tissue. In particular, oxygenated 
hemoglobin (HbO2) and deoxy-hemoglobin (Hb) are 
the dominant absorbing elements between 700 nm and 
1,000 nm, and the transmission of light is relatively un-

affected by water in the same region. Thus, the near-in-
frared region of the spectrum is the most favorable to the 
optical measurement of these parameters that is done by 
radiating near-infrared light from light source(s) into 
the biological tissue and by measuring changes in the 
amount of light reaching the detector(s). Thus, chang-
es in absorption in the area of the body analyzed can be 
detected. In such way, NIRS provides a non-invasive, 
non-ionizing means to monitor total haemoglobin con-
centration (HbO2 + Hb) that is considered as total blood 
volume (HbT or V) [4], as well as oxygen saturation in 
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Material and Methods
NIRS apparatus

The schematic configuration of the NIRS system con-
sists of four main blocks: the optical head, the emitter 
unit, the receiver unit, and the control unit, which in-
cludes the personal computer (see Scheme 1).

The optical head is placed and fixed onto the surface 
of the tissue under test in order to monitor non-invasive-
ly the oxygenation. These boards are connected to a lap-
top PC. The front-end electronics has been designed to 
maximize the signal to noise ratio, to reject continuous 
and alternate ambient light, and to reduce the effects of 
artifacts induced by probe movements. It consists of two 
channels including an instrument amplifier, a low-pass 
filter, and a time-variant gated integrator.

For each illumination light pulse generated by the 
laser diodes, i.e. a single wavelength and single spatial 
injection point, the receiver unit produces two voltage 
signals proportional to the excitation and back-diffused 
light intensity respectively. The system bandwidth is se-
lectable within the range 2.3-27 Hz, i.e. a maximum of 20 
channels (five chromatic and four spatial channels) can 
be acquired 27 times for each measuring second, whereas 
the amplification can be set to measure optical density 
ranging from 3.5 to 8.5.

One of the channels, named the reference channel, 
processes the reference signal generated by the optical 
source, whereas the other channel, named the measur-
ing channel, processes the voltage signal generated by the 
photodetector.

Algorithm for the ‘differential path-length factor’ 
(DPF) quantification

DPF is the correction factor needed to take into ac-
count the modification of the optical path that photons 
take due to scattering phenomena. We developed an al-

the living tissue. All together, these measurements are 
indicative of the state of vascular activity and the state 
of the metabolism in the tissue analyzed. Thus, NIRS has 
been proposed as another non-invasive method to study 
tissue haemodynamics. Furthermore, NIRS is relatively 
simple and inexpensive (even if that is not always consid-
ered as a “plus” by some) compared to more “dignified” 
techniques such as functional magnetic resonance imag-
ing (fMRI) and positron emission tomography (PET).

Generally, main applications of NIRS are in the study 
of the transport of the oxygen to the muscles, the tissue 
oxygenation index, the cellular metabolism and the cere-
bral haemodynamics.

In clinical studies NIRS is currently employed to 
monitor fetal hypoxemia [5,6] and in newborn infants to 
detect birth asphyxia and/or apnoea and hypoxia [7-10]. 
In addition, changes in oxygenation during occlusion of 
the carotid artery, or during cardiopulmonary bypass, 
circulatory alterations and/or arrest are also analyzed us-
ing NIRS [11-13].

Besides fewer NIRS studies have been performed at 
the Central Nervous System (CNS) level, mainly to mon-
itor oxygen sufficiency and brain functions and/or brain 
mapping [14-16] as well as brain diseases [17-20] while 
only a limited amount of studies have used NIRS to ana-
lyze “vascular CNS” functions in animals. In order to im-
plement such type of analysis, we have developed a Near 
Infrared Continuous Wave Spectroscopy instrument 
(NIR-CWS), based on the low extinction coefficient of 
tissue in the near infrared region [21,22] that allows in 
vivo, real time non-invasive NIRS measurements in the 
rat brain [23-25].

In a recent work, the NIRS methodology is confirmed 
to be apt to analyzing non-invasively and in real time the 
influence of systemic pharmacological treatments upon 
brain metabolism. Moreover, in vivo PK/PD-NIRS paral-
lel experiments performed with various classes of chem-
icals supported the feasibility of a comparable evolution 
of in vivo PK/PD values with NIRS values. Indeed, the 
observed parallel evolution of NIRS data and blood lev-
els of the compounds in time indicated that there might 
be a relationship between brain penetration and brain 
metabolism and that this can be monitored in real time 
by NIRS [26]. Thus, non-invasive NIRS allows determin-
ing penetration of drugs in brain and therefore could be 
used to study neurobiological processes and psychiatric 
diseases in preclinical but also in a translational strategy 
from preclinical to clinical investigations [2,3].

The aim of this study was indeed to verify this possi-
bility via direct comparison of data gathered from NIRS 
analysis of rodents and from humans during alcohol in-
take.
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Scheme 1: Block diagram of the NIRS apparatus.
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receiver system were both firmly placed using a stereo-
taxic micromanipulator against the surface of the rat’s 
head, close to the sagittal line without any surgery, as 
shown in Scheme 2. The stereotaxic was then fully cov-
ered so that to protect the measurements from the light.

Then, in order to evaluate the sensitivity of NIRS mea-
surements to exogenous oxygen capability and therefore 
quantify the eventual modification of the NIRS param-
eters each one of the 8 rats was supplied with pure O2 
(0.5 bar, 1 min) via a tubing positioned into the animal 
mouth.

Subsequently, rats were treated with vehicle (water, 1 
ml/kg s.c., control group, n = 4) or alcohol (2.5 g/Kg n = 
4), respectively.

In parallel, three human male volunteers (aged 26-28) 
not alcohol drinkers were prepared for NIRS measure-
ments: i.e. they were wearing a cap in which the optic 
fibers and the receiver were embedded so that external 
light cannot influence the measurements. The optical 
components were positioned in order to involve the pre-
frontal region of the brain accordingly to previous work 
indicating this area among the most sensitive to alcohol 
[29]. See Scheme 2.

gorithm for the quantification of the DPF on the basis 
of the water peak absorption algorithm. This algorithm 
allows the calculation of absorption and reduced scat-
tering coefficients of the medium analyzed. Briefly, three 
mathematical steps define this algorithm: diffusion equa-
tion, analytical solution for the examined medium and 
extraction of the optical parameters of the medium [27].

Once the optical parameters were obtained, the DPF 
value was calculated by applying the following equation:

1  
2 a

DPF
D

D

ρ
µρ

≅

where D = 1/3μ_ is the diffusion coefficient and ρ is 
the source-receiver geometric distance. The DPF value 
at different wavelengths was then taken into account in 
the modified Lambert-Beer law [28], allowing to obtain 
changes in the concentrations expressed in μmol/L.

The same NIRS apparatus can be used for both hu-
man and rodents analysis as the settings can be selected 
based on the parameters shown in Table 1 and that have 
been established in previous applications (see ref. [21-
26]).

Experimental
Two groups of four adult male rats (230-250 g) each 

were supplied by Charles-River (Italy) and were kept in 
temperature and humidity-controlled rooms (22 °C, 50%, 
respectively) with lights on from 07.00 h to 19.00 h with 
water and food available ad libitum. All procedures con-
cerning experimentation, transportation and care of the 
animals were carried out in accordance with the Italian 
law (Legislative Decree no.116, 27 January 1992), which 
acknowledges the European Directive 86/609/EEC, and 
were fully compliant with GlaxoSmithKline policy on 
the care and use of laboratory animal and codes of prac-
tice. Furthermore, all efforts were made to minimize the 
number of animals used and their suffering.

These two groups of animals were prepared for NIRS 
analysis as described previously: briefly each rat was 
anesthetized using urethane (1.4 g/kg ip) and placed on 
a stereotaxic apparatus (D. Kopf, USA). Then the input 
system (four optic fibers, 200 μm diameter each) and the 

Table 1: Instrument settings for NIRS analysis in man or in rat brain. The parameters have been optimized for each of the two 
subjects.

Parameters Man Rat
Min. Max. Min. Max.

Power (mWatt) 0.8 1.245 77.10-3 1.245
Sensibility (V/μW) 78.103 198.106 17.2.103 17.47.106

Measurement time (ms) 77 150 36 77
Specific photons (Equivalent photon noise) 5901 - 5901 -
Error of non linearity (%FS) 0.25 3.64 0.45 0.88

         

Scheme 2: In vivo non-invasive NIRS measurements in 
anesthetized rats or in man.
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Statistics
Statistical analysis have been performed using Statis-

tica 6. Row data were subjected to ANOVA, with com-
parison between “control” (vehicle) and “treatment” 
values performed using the Bonferroni (Dunn's) test. 
Results are presented as µmoles/L, mean ± s.e.m., *p < 
0.05, **p < 0.001.

Results
It appeared that pure O2 supply was increasing signifi-

cantly HbO2 levels from steady state baseline (considered 
as zero) up to approx. + 13 μmoles/L while significantly 
decreasing Hb to a similar (negative) extent. This effect 
was reversible as soon as the influx of O2 is stopped.

Similar data were obtained in all the animals and they 
are shown in Figure 1. Furthermore, in the rodents the 
treatment with a single dose of alcohol was followed by 
significant change of the NIRS parameters when com-
pared to NIRS data collected from the control group of 
rats treated with vehicle (see Figure 2). In particular a 
significant, constant decrease of HbO2 levels from steady 
state baseline (that is considered = zero μmoles/L value) 
was detected together with a similar change of total vol-
ume (V). In contrast, increase of Hb values was moni-
tored. See Figure 2, Figure 3 and single traces of each one 
of the alcohol treated rats in Figure 4.

Similar evolution of the NIRS parameters were ob-
served in the 3 human volunteers after the intake of alco-
hol at a dose at which each one of the 3 people was pre-
liminary feeling subjective sensibility i.e. approximately 
0.25 g/kg for 70 Kg weight. Indeed, this dose was shown 
able to modulate locomotor activity in rodents and in 
particular in rats that are exhibiting increased spon-

The three men were offered a single drink of water 
(control treatment) followed 5 min later with the inges-
tion of 150 ml alcohol 12%. The alcohol amount corre-
sponds to approximately 0.25 g/Kg for 70 Kg weight. This 
dosage was selected the day before the NIRS experiment 
as it was corresponding to the minimal dosage of alcohol 
that was giving rise to subjective feeling (sensitivity) to 
each one of the not drinkers men in condition of empty 
stomach. The NIRS test was taking place the following 
day at approximately 11 am. i.e. the time at which was 
performed the NIRS analysis in the anesthetized rodents.

Ethical considerations concerning the three vol-
unteers

Ethical clearance and permission was obtained from 
the Ethical Review Committee of Public Health and 
Medical Sciences. Data were collected from the partici-
pants after getting informed consents. All the informa-
tion obtained in due time were kept confidentially.

Top left: Scheme of the positioning of the receiver 
R and of the laser sources S1-S4: placed at about 1 mm 
aside from the sagittal line and between bregma and 
lambda of the rat [30].

Top right: In vivo non-invasive NIRS measurements 
in man. Scheme of the positioning of the receiver R and 
of the laser sources S1-S4 deeply embedded in a cap to 
avoid influence of external light.

Bottom: Theoretical brain areas monitored in the rat 
brain: computer simulation of photon paths based on 
photon migration theory The red area indicate the de-
limited region monitored i.e. by the second source only 
[31,32].

         

Figure 1: Typical response of NIRS parameters to exogenous supply of pure oxygen (1 min from 120 to 180 sec) shown as 
changes from basal levels that are recorded from zero to 120 sec and that are normalized as = zero μmoles/L. Left n = 1; right 
n = 8, data are mean ± SD. V = volume (HbT [4]).
Stats: Data are expressed as μmoles/L, mean ± s.e.m. Statistical analysis (one-way ANOVA and Dunnett test) show signifi-
cant changes versus basal levels i.e. from zero to 120 sec , *p < 0.05.
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Figure 2: Effect of treatment (arrow) with vehicle (water 300 
ul s,c., n = 4 control group) or alcohol (2.5 g/kg s.c. n = 4 
treated rats) upon NIRS parameters. Note that the “alco-
hol rats” presented a clear, constant decrease of HbO2 in 
parallel with an increase of Hb and a slight decrease of V, 
proposing a direct influence of ethanol on brain metabolism.
Results are presented as µmoles/L, mean ± s.e.m.
Stats: 
Systemic alcohol significantly decreased steady state levels 
of HbO2 and V (repeated ANOVA: effect of time F(6,60) = 
4.73, p = 0.0005 HbO2; F(6,60) = 4.82, p = 0.0005 HbT); 
effect of group F(1,10) = 9.79, p = 0.01 and group by time 
interaction F(6,60) = 4.60, p = 0.0006 HbO2.
In addition, a significant increase in Hb was monitored: ef-
fect of group F(1,10) = 8.71, p = 0.014 and group by time 
interaction F(6,60) = 3.04, p = 0.011.

         

Figure 3: As Figure 2 here with direct comparison between 
vehicle or alcohol treatment for each NIRS parameter moni-
tored in rat brain i.e. HbO2 (top), Hb(middle), V(bottom). Ve-
hicle or alcohol(ETOH) treatment was performed after 5 min 
the beginning of the recordings. Here data are presented 
as mean µmoles/L, s.e.m. are omitted for clarity. Note the 
large decrease of HbO2 and the parallel large increase of Hb 
following alcohol (ETOH) treatment.

Discussion
Alcohol is the second most widely abused psychoactive 

drug after caffeine. In 1990, the American Medical Asso-
ciation formally recognized alcohol abuse as pathology. In 
the aim to develop new drugs for the treatment of alcohol 
abuse, recent studies have shown that ethanol interacts with 
several central neurotransmitter systems, such as:

•	 The GABAergic system activity via increasing the 
number of GABA receptors [35,36].

•	 The dopaminergic system: resulting either in increase 
[37,38] or decrease [39] and for a review see [40].

•	 The serotoninergic system that seems to play a role in 
the control of ethanol intake [39,41].

•	 The CCK system with the evidence of the develop-
ment of preference for ethanol in naïve rats when 
treated with CCK receptor antagonists [42,43].

•	 The NO system: where ethanol, at pharmacologically 
significant doses, strongly inhibits striatal NO• pro-

taneous motor activity already after doses of 0.25 g/kg 
[33,34]. In particular a significant decrease of HbO2 and 
V levels were monitored. In contrast the intake of water 
was not changing significantly NIRS values when com-
pared to the control period of the recordings as shown 
in Figure 5 and see the single traces for each subject in 
Figure 6, Figure 7 and Figure 8, respectively. Specifically 
in these traces the first 5 min of recordings were consid-
ered as period of stabilization of the signals, so that the 
control period was starting at time 5 min.
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duction and release apparently through inhibition 
of NMDA receptor function. Inhibition of NMDA 
receptor-mediated activation of the NO• pathway 
could be a primary neurobiological mechanism con-
tributing to the effects of ethanol [44].

In the present work, a novel translational medicine 
approach has been undertaken i.e. the influence of al-
cohol on brain levels of HbO2 is monitored either in 
rodents as well as in humans. In particular, NIRS data 
monitored in rats receiving alcohol indicate significant 
decreased levels of HbO2 and blood volume V and in-
crease of Hb levels. This may indicate a possible direct 
influence of alcohol on brain metabolism via alteration 
of blood flow and haemoglobin levels. Similarly, in the 3 
male volunteers receiving alcohol, a significant decrease 
of HbO2 and V was also observed, supporting the obser-
vations performed in rodents and confirming the influ-
ence of alcohol on brain metabolism also in men. This is 
in accord with PET [45,46] and SPECT [47,48] studies in 
man that have confirmed and extended earlier findings 
that the prefrontal regions are particularly susceptible to 
decreased metabolism in alcoholic patients. The decrease 
in whole brain metabolism is in accord with former PET 
work viewing consistent decrease in CBF in alcoholics 
[45,46].

         

Figure 4: Traces indicating the evolution of the NIRS signals monitored in each brain of the four “alcohol rats”. The treatment 
[2.5 mg/Kg s.c.] was performed after 5 min the beginning of the recordings.

         

Figure 5: In the three volunteers the intake of not changing 
significantly any of the NIRS parameters. Then the intake of 
alcohol (150 ml alcohol 12%, second arrow) was followed 
by significant decrease of HbO2 and V within 5 min, while 
Hb levels were not affected significantly. See also Figures 6, 
Figure 7 and Figure 8 showing the evolution of the NIRS pa-
rameters monitored in each volunteer, note that the intake of 
water and then that of alcohol was performed slowly, within 
about 1-2 minutes (dots in the time legend). 
Data are expressed as μmoles/L, mean ± s.e.m. Statistical 
analysis (one-way ANOVA and Dunnett test) show significant 
changes versus control (WATER): *p < 0.05 from 15 min on.
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In addition, evidence for the inhibitory action of ethanol 
on haemoglobin synthesis have been proposed in in vitro 
studies suggesting that the effect is mediated through inhi-
bition of haemin synthesis at a site influenced by pyridox-
ine [49]. Indeed, haemin is necessary for maximal protein 
synthesis in intact reticulocytes, therefore alcohol is a direct 
toxin to developing red cell precursors via its effect on mi-
tochondrial haem synthesis [50]. Altogether these data un-
derline the possibility of an altered condition of red cells fol-
lowing alcohol intake which can influence negatively blood 
efficacy and blood flow including CBF.

During the past three decades, a number of research-
ers have used near-infrared spectroscopy (NIRS) and, 
more recently, functional NIRS (fNIRS) to produce 
novel insights about the neural mechanisms underlying 

In addition, a salient finding in alcohol-dependent 
patients is the atrophy detected in these areas, and this is 
significantly correlated with the degree of hypometabo-
lism in the medial frontal area of the cerebral cortex and 
therefore with the severity of the clinical neurological 
impairment [47]. In particular, in parallel to a decreased 
frontal lobe glucose utilization, emission computed to-
mography have reported a reduced cerebral blood flow 
(CBF). Subsequent neuropsychological studies have 
shown that there are specific deficits in alcoholism that 
suggest frontal lobe dysfunction and propose the con-
cept of frontal lobe pathology in alcoholism [48].

Accordingly, the present data are detecting reduced 
levels of cerebral HbO2 in such region following alcohol 
intake, hence decreased amount of O2 available for met-
abolic purposes.

         

HbO2 [µmoles/L] Hb [µmoles/L] V [µmoles/L]

CONTROL WATER ALCOHOL
0 5 6 7 10 15 20 25 MIN30

Figure 6: Evolution of the NIRS parameters monitored in 
volunteer 1 (MAN 1):
First 5 min: control/control period followed by intake of 150 
ml water (first arrow) and then by intake of 150 ml alco-
hol 12% (second arrow). The intake of water and then that 
of alcohol was performed slowly, within about 1-2 minutes 
(dots in the time legend). 
Note that water intake did not modify significantly any of the 
3 NIRS parameters i.e. HbO2, Hb, V. Oppositely, the intake 
of alcohol generated significant modifications of these pa-
rameters initiating within the 5 minutes after intake. 

         

HbO2 [µmoles/L] Hb [µmoles/L] V [µmoles/L]

CONTROL WATER ALCOHOL
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Figure 7: Evolution of the NIRS parameters monitored in 
volunteer 2 (MAN 2).
First 5 min: control/control period followed by intake of 150 
ml water (first arrow) and then by intake of 150 ml alcohol 
12% (second arrow). The intake of water and then that of 
alcohol was performed slowly, within about 1-2 minutes (dots 
in the time legend). 
Note that water intake did not modify significantly any of the 
3 NIRS parameters i.e. HbO2, Hb, V. Oppositely, the intake 
of alcohol generated significant modifications of these pa-
rameters initiating within the 5 minutes after intake. 
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cognitive and perceptual functions [51,52]. Moreover, 
this recently developed technique is non-invasive, easy-
to-use, portable, restraint-free, and replicable [53]. Con-
sequently, it is relatively psychologically undemanding, 
which makes it advantageous for clinical applications 
and translational approaches [54]. The present results 
performed with NIRS both in rodents and man support 
NIRS as a valuable tool for analysis of brain metabolism 
and its reliable efficacy on direct, rapid translational 
studies from animals to man.
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Figure 8: Evolution of the NIRS parameters monitored in 
volunteer 3 (MAN 3).
First 5 min: control/control period followed by intake of 150 
ml water (first arrow) and then by intake of 150 ml alcohol 
12% (second arrow). The intake of water and then that of 
alcohol was performed slowly, within about 1-2 minutes (dots 
in the time legend). 
Note that water intake did not modify significantly any of the 
3 NIRS parameters i.e. HbO2, Hb, V. Oppositely, the intake 
of alcohol generated significant modifications of HbO2 and V 
initiating within the 5 minutes after intake and lasting approx-
imately 10 min.
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