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An optical discrimination technique, tailored to nanometric-sized, low optical absorbance molecu-
lar complexes adhering to thin metal films, is proposed and demonstrated. It is based on a time-
resolved evanescent-wave detection scheme in conjunction with hierarchical cluster analysis and
principal value decomposition. The present approach aims to differentiate among molecular films
based on statistical methods, without using previous detailed knowledge of the physical mecha-
nisms responsible for the detected signal. The technique is open to integration in lab-on-a-chip
architectures and nanoscopy platforms for applications ranging from medical screening to material
diagnostics. VC 2015 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4934216]

Optical detection of biomolecules plays a pivotal role in
modern biophysics1,2 and biophotonics,3–5 especially for mo-
lecular complexes immobilized on surfaces.6 Optical spec-
troscopy and fluorescence emission are routinely used to
investigate structural conformation changes of molecular
beacons on decorated surfaces7,8 and detect surface-bound
engineered polypeptides.9 Since the molecular fingerprint is
encoded in either the spectral reflectance/transmittance or
the spectral fluorescence emission, optical spectroscopies
based on multi-wavelength detection have been widely
employed. Despite their success, conventional optical spec-
troscopies suffer some major drawbacks, such as the lack of
specific surface sensitivity and time-resolved capabilities,
i.e., the potential to follow transient molecular excitations
initiated by an external trigger. In order to overcome some
of the above-mentioned shortcomings, we developed a
molecular discrimination technique, based on time-resolved
evanescent wave10 optical spectroscopy and data mining
techniques.

The experiment is based on a pump and probe optical
scheme to investigate biomolecular layers with typical verti-
cal dimensions of the order of less than 10 nm, 2 orders of
magnitude smaller than the optical wavelength. The molecu-
lar layer is bound to an Au thin film deposited on the hypote-
nuse of a glass prism. A pump laser pulse excites the Au
film. A time-delayed evanescent wave probe pulse, created
at the glass-air interface of a prism in the Kretschmann con-
figuration,11 probes a volume comprising the Au film and the
molecular layers (see the inset of Fig. 1). The relative reflec-
tivity variation of the probe pulse is recorded as a function of
the time delay from the pump pulse arrival.

While time-resolved spectroscopy techniques are not
new to biochemistry,12 they are usually employed to study

the relaxation behavior of known molecular species. Here,
we use the information contained in time-resolved reflectiv-
ity variation to sort out the differences among different mo-
lecular aggregates on thin metallic films. To highlight the
specificity of the present approach, it is appropriate to make
comparisons with already developed optical surface sensitive
techniques: second harmonic generation spectroscopy
(SHGS),13 sum-frequency generation vibrational spectros-
copy (SFG-VS),14 surface cavity ring-down spectroscopy (s-
CRDS),15,16 and attenuated total reflection (ATR) infrared
spectroscopy.17 These are well established surface-sensitive
optical techniques, each with dedicated theoretical methods
already developed and widely used in biophysics. Each of

FIG. 1. Relative reflectivity variation of the optical probe pulses vs time
delay from the optical pump pulse in the reflection (black line) and evanes-
cent (gray line) configurations. Insets: probe configurations for a gold coated
fused silica prism in the evanescent wave scheme (top panel) and reflection
scheme (bottom panel). The probe wavefronts (light gray) are shown in the
prism (light blue) and in the vacuum. Note the evanescent probe with the
external wavefronts orthogonal to the prism surface (top panel).a)Electronic mail: gabriele.ferrini@unicatt.it
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these techniques allows one to investigate the orientation of
surface molecules and gather important insights into their
chemistry.

SHGS and SFG-VS are nonlinear techniques requiring
relatively high intensity laser pulses. The signal may origi-
nate from bulk multipolar contributions near the surface of a
centrosymmetric or isotropic medium. In addition, contribu-
tions may arise from thin metal films supporting the investi-
gated molecular layers. For these reasons, caution must be
taken, and the use of theoretical models is mandatory in
interpreting data.14 ATR and s-CRDS are based on evanes-
cent waves and linear absorption. The latest refinements in
CRDS with stabilized frequency combs reached exquisite
sensitivity,16 but both are spectroscopic techniques that do
not encompass time resolved capabilities. The approach pro-
posed in this work combines the time resolved capability and
surface sensitivity of non-linear techniques with linear probe
absorption as in s-CRDS or ATR at a single wavelength.
Instead of relying on spectral absorption features, we use the
complex interplay of physical mechanisms that lead to the
variation of absorption after pump excitation as a distinctive
feature of the molecular layers under investigation.18

Moreover, as in s-CRDS, the polarization information could
be used to determine the molecular orientation.15

The time-resolved spectra are analyzed using two
approaches: (1) a hierarchical binary cluster tree dendrogram
built using a Euclidean distance (Ward method)19 and (2) a
singular value decomposition (SVD) analysis.20 These
approaches are compared against the standard analysis of the
time-dynamics of molecular complexes based on the sum of
exponentially decaying functions and are shown to provide
the best performance.

The pump and probe laser pulses are generated by two
synchronized femtosecond fiber lasers with a repetition rate
of 100 MHz and a pulse time width of 120 fs. The fundamen-
tal wavelength of 1560 nm of the first laser is used as a
pump, while the second harmonic at 780 nm of the second
laser is used as a probe. The delay between the pump and
probe pulses is obtained by the Asynchronous Optical
Sampling (ASOPS) technique.21 This technique allows one
to measure relative reflectivity variation as small as 10!6

over a delay window extending from 100 fs to 10 ns.
The experiments are performed on a BK7 prism hypote-

nuse, where a nominal thickness of 4 nm of gold is evapo-
rated. The gold-coated prism is functionalized with a
multifunctional copolymer of dimethylacrylamide (DMA),
N-acryloyloxysuccinimide (NAS), and 3-(trimethoxysilyl)
propyl methacrylate (MAPS)–copoly(DMA-NAS-MAPS)–
providing reactive groups suitable for immobilizing molecu-
lar structures.9 The gold coated prism constitutes the
reference system. The gold film coated with the copoly
(DMA-NAS-MAPS) constitutes our first model. A biotinyl-
ated IgG antibody covalently immobilized by the copolymer
on the surface of the prism constitutes the second model of
our study.18

In Fig. 1, we show the signal measured on the reference
sample in the evanescent probe configuration, which is 20
times bigger than the signal obtained in the conventional
reflection geometry. This result demonstrates the surface-
sensitivity of the ASOPS-based time-resolved technique in

the evanescent-wave configuration. We point out that both
the pump (kpump ¼ 1560 nm) and probe (kprobe ¼ 780 nm)
wavelengths are far from the Au surface plasmon resonan-
ces, which play no role in the present experiment. This
enlarges the range of exploitable coating materials and probe
wavelengths, a fact of relevance in view of applications
where disparate bio-systems may call for a specific coating
material due to technical or cost-related issues. It is impor-
tant to note that the estimated temperature increase due to
pump absorption in our experimental conditions is less than
10 K, and no damage to the biomolecular film is expected.18

The variation of the evanescent probe reflection induced
by the optical pump has the ubiquitous decaying exponential
shape (Fig. 2). The dynamics measured on the different sam-
ples looks very similar, the signature of the specific time-
response of individual molecular aggregates residing in tiny
differences. We use signal analysis methods to extract these
differences and exploit them to discriminate among different
molecular aggregates.

To illustrate the method, we consider the time resolved
measurements relative to three samples: the bare gold film
(black lines, from 1 to 5 in Fig. 2); the gold film coated with
the copoly(DMA-NAS-MAPS) (blue lines, from 6 to 9 in
Fig. 2); the gold film coated with the copoly(DMA-NAS-
MAPS) that immobilize the IgG antibody (red lines, from 10
to 13 in Fig. 2).

Since the measurements on the same sample may vary
when repeated after some days due to different ambient con-
ditions (temperature and humidity), or because the experi-
ment is carried out at a different spot on the sample, we
made multiple sets of measurements for each of the three
samples. The total 13 measurements have been organized in
a 2000# 13 data matrix X. Each column represents a com-
plete experimental trace. Rows map time delays. Note that
the traces are affected by evident variations of the noise
superposed on the exponential decay dynamic. We included
in the analysis even traces that are visually not appealing,

FIG. 2. Relative reflectivity variation of the optical probe pulses vs time
delay from the optical pump pulse recorded in the evanescent configuration
for Au (black lines), copoly(DMA-NAS-MAPS) (blue lines), and IgG anti-
body (red lines). The traces have been shifted for clarity.
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such as trace 6 in Fig. 2, and traces where noise is visually
greater than optimum as in traces 1, 8, 9, and 13. The aim is
to demonstrate the robustness of the analysis against the
presence of external perturbations.

To measure the similarity among spectra, we first adopt
cluster analysis to perform an exploratory inspection.
Specifically, we aggregate the data using a hierarchical clus-
ter analysis known as Ward’s minimum variance method.19

This is an agglomerative method that clusters data with the
criterion to minimize the total within-cluster variance once
an appropriate metric has been defined to “measure” the dis-
tance among experimental traces. The aim is to reveal the
internal similarities among traces and to structure these simi-
larities hierarchically. To calculate the variance, a squared
Euclidean distance between traces is used. The results of
hierarchical clustering are presented in the dendrogram
shown in Fig. 3(a). The data group in three distinct clusters,
each associated with one of the three investigated samples,
according to the principle that similar samples cluster to-
gether because they have similar traces.18

SVD20 is a complementary data analysis approach. SVD
is used here to reduce the dimensionality of the data, projec-
ting the data on a reduced eigenvector basis of particular

relevance. In this case, clustering emerges when different
objects have similar projections.

Entering in more details, the data matrix is expanded in
the form X ¼ USVT , where U is a matrix with the same
dimensions as X whose columns are the orthonormal basis
vectors for the time-resolved measurements and the rows of
V contain the coordinates of each measurement projected on
the eigenvectors space. S is a diagonal matrix that gives the
eigenvalues spectrum, scaling the basis vectors according to
their importance in reconstructing the data. The matrix M ¼
SVT gives the coordinates of the data, so that X¼UM.

As usual in this context, we reduce the data dimensions
by projecting the original data into the subspace spanned by
the two eigenvectors with the highest eigenvalues.
Visualizing the coordinates as points in a scatter plot (Fig.
3(b)), three clusters are evidenced, each composed of points
corresponding to the same sample.18

In summary, cluster analysis evidences similarity
derived from minimizing distances whereas SVD evidences
similarity upon inspection of corresponding projections.

These findings demonstrate that time-resolved measure-
ments alone contain sufficient information to highlight the
differences between surfaces covered with different molecu-
lar aggregates.

We now compare the previous results to the standard
multi-exponential decay analysis. When the pump pulse
excites the system, the relaxation mechanisms manifest
themselves invariably in a reflectivity decay that is well
mimicked by a sum of exponentially decaying functions.
The amplitude and decay time of each function are the fitting
parameters. By analyzing the level of residues and the

FIG. 3. Data analysis of the traces shown in Fig. 2. (a) Hierarchical Cluster
Analysis. Dendrogram obtained using the Ward’s method. The horizontal
lengths between nodes are proportional to the linkage distance. (b) Single
Value Decomposition Analysis. Each point represents the coordinates
(M1,M2) of a specific trace in the space spanned by the two eigenvectors
with the highest eigenvalues. The color code is the same as in Fig. 2. Traces
from similar samples are grouped together into separate sets.

FIG. 4. Grouping based on the parameters used to fit the experimental traces
with a four exponential model, needing eight fitting parameters, four decay
constants (s1, s2, s3, and s4) measured in ns and four normalized amplitudes
(a1, a2, a3, and a4). (a) Each point represents the coordinates (s1 and s2) of
the two shortest decay constants used to fit a specific trace. (b) Each point
represents the coordinates (s3 and s4) of the two longest decay constants. (c)
and (d) Each point represents the coordinates of the amplitudes associated
with the corresponding decay constants. The presence of negative decay
constants for very long decay times (s4) do not have physical meaning, being
connected to a small increasing trend of the background.18
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scaling of fitting parameters, we qualitatively find out that
four exponentials are the optimal number to describe the
data. Thus, eight parameters, four amplitudes (ai; i ¼ 1…4)
and four time decay constants (si; i ¼ 1…4), are needed to fit
each experimental trace as f ðtÞ ¼ a1 expð!t=s1Þ þ a2 exp
ð!t=s2Þ þ a3 expð!t=s3Þ þ a4 expð!t=s4Þ. In Fig. 4, the
coordinates of each point represent the time decay constants
or the amplitudes retrieved from the fitting procedure of a
single trace. The color code is the same as the one adopted in
Fig. 2.

Regardless of the specific plot one considers in Fig. 4,
the formation of clusters identifying different samples is
incomplete. Blue triangles (Copoly) never cluster in a visu-
ally distinct group, while black circles (Au) and red squares
(IgG) cluster to a certain extent in Figs. 4(c) and 4(a) only.
Similar considerations can be made for the patterns obtained
visualizing data using different formats. The fitting parame-
ters alone are hence not sufficient to group the samples in
distinct sets. This points to the power of multidimensional
analysis, like the Ward method and the SVD analysis, to cap-
ture more similarities than those uncovered by simply com-
paring fitting parameters.

Our strategy constitutes a change of paradigm with
respect to traditional molecular screening methods. We
exploit the information encoded in time domain, which are
disclosed by multi-dimensional analysis, as opposed to tradi-
tional approaches relying on information retrieved from fre-
quency domain techniques. Our results suggest a possible
taxonomy of time-resolved spectra aimed at the discrimina-
tion of thin molecular layers based on data analysis methods.
Our approach entails several advantages. It provides
enhanced surface sensitivity and is label-free. The molecular
recognition does not rely on the detailed modeling of the
mechanism underlying the optical response. The technique
has a high data throughput and can be integrated with exist-
ing microscopy platforms and lab-on-a chip architectures.

In perspective, a microfluidic lay-out, carved in a poly-
dimethylsiloxane (PDMS) matrix, could be conformally
bonded on the prism’s Au-coated surface, the latter being
functionalized with specific antibodies. The flow of antigens
to be sensed will be driven across the chip to several sensing
areas—one patch for each antibody—where the pump and
probe measurement will be performed. Comparison—via
hierarchical cluster analysis and SVD—of the acquired spec-
tra against benchmark time-resolved traces for antigen-
bound antibodies will allow identifying the presence of spe-
cific antigens and, possibly, their concentration. Within this
scheme, the present technique could serve as a high through-
put screening method for some pathogens.

Combined with scanning microscopy,22 the approach out-
lined in this work would serve as a platform to detect spatial
variations in surface chemical properties arising from compo-
sitional inhomogeneity of molecular films. Acquisition of a
pump and probe trace at each sample’s coordinates, followed
by association of a false color to each pixel on the basis of
clustering analysis, would render a spatial map of the compo-
sitional contrast. The typical ASOPS acquisition time per
pixel is of the order of few seconds, leading to the acquisition
of 32# 32 pixel images in less than 1 h.23
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Brescia I-25121, Italy

3)
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I. SAMPLE PREPARATION

A. Coating the surface of prism with
copoly(DMA-NAS-MAPS)

Two prisms with thin gold films evaporated on their
hypothenuses were treated for ten minutes in an Oxygen
Plasma Generator (Harrick Plasma Cleaner) and then
immersed for 30 min in a copoly(DMA-NAS-MAPS) so-
lution (1% w/v in 0.8M aqueous solution of ammonium
sulfate. The surface of the prisms was then extensively
washed with water and dried under vacuum at 80 �C for
15 minutes. Copoly(DMA-NAS-MAPS) was synthesized
and characterized as described in previous works1,2.

B. Immobilization of Streptavidin on the polymer coated
surface and incubation with biotinilated IgG

On the surface of a prism, coated with copoly(DMA-
NAS-MAPS), a 0.2 mg/mL solution of streptavidin
(Sigma) in PBS (Phosphate bu↵ered saline, 10mM phos-
phate bu↵er, 2.7mM KCl, 137mM NaCl; pH 7.4) was
spotted by means of an automated noncontact dispens-
ing system (sciFLEXARRAYER S5; Scienion AG). The
entire surface was coated by merging 200-µm spots of
protein solution. After the spotting, the prisms were
stored overnight in a humid chamber at RT. The un-
reacted N-hydroxysuccinimide of NAS was blocked with
a solution of 5% ethanolamine in Tris-HCl bu↵er solution
for 1h and washed with H2O. The prism was incubated
with a 300ng/mL solution of biotin-conjugated goat anti-
rabbit IgG (Li StarFish, PA, USA) in incubation bu↵er
(50mM Tris/Hcl pH 7.6; 150mM NaCl; 0.02% Tween 20)
for 1 hour at room temperature and then washed with
PBS for 10 minutes.

a)Electronic mail: gabriele.ferrini@unicatt.it

II. DATA ANALYSIS PROCEDURES

A. Fitting procedures

The traces have been pre-processed. Each raw time-
trace contains 40000 points sampled with a 100 fs pe-
riod. The traces have been evenly decimated to reduce
the length of the time-resolved spectra, without informa-
tion loss, to a computationally manageable length of 2000
points. We verified that varying the number of points in
a wide range (500 - 15000) the results of successive anal-
ysis were not a↵ected. The average value of the trace
before the pump is the reference level, that is assigned
to zero (no reflectivity variation due to the pump). The
maximum value of each trace is normalized to one and
used as a reference for the zero delay. The fitting proce-
dure uses as a fitting function the sum of four exponen-
tials as f(t) = a1exp(t/⌧1)+a2exp(t/⌧2)+a3exp(t/⌧3)+
a4exp(t/⌧4). The fit converges for all the traces. The fit
and the residues (the di↵erence between the traces and
the fitting functions) for three representative traces are
shown in Fig. S1. The traces used are the same shown in
Fig. 2 in the article, chosen to represent an optimal noise
to signal ratio (trace 10 for IgG), an intermediate noise
to signal ratio (trace 1 for Au) and a trace with evident
electronic noise (trace 6 for Copoly), that is clearly vis-
ible in the residues. Refer to the article for comments.
The values of the parameters obtained for all traces in the
fitting procedure are synthesised in Fig. 4 of the article.
The presence of two negative decay constant in Fig. 4 as-
sociated with long decay times (⌧4), those in the 5-10 ns
range, are due to a small systematic background trends
over a time span actually longer than the maximum in-
vestigated delay, 3.8 ns. These negative decay constants
are associated to small amplitudes, and their presence is
of no significance for physical interpretation.

B. Hierarchical cluster analysis

The total 13 experimental traces have been organized
in a 2000 ⇥ 13 data matrix X. Columns of X cor-
respond to experimental traces, and rows to measure-
ments at di↵erent delays. To measure the similarity
among spectra, we aggregate the data using a hierar-
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FIG. S1. Fitting results for Au , Copoly, IgG on the left column and corresponding residues on the right column

FIG. S2. (a) Clustering schedule graph. (b) vertical icicle plot for the time-resolved data. The intercept in (a) show that the

linkage distance corresponding to the best cluster solution cut the vertical icicle where three clusters are present. The clusters

groups together the three di↵erent samples, Au (1:5), Copoly (6:9) and IgG (10:13).

chical cluster analysis known as Ward’s minimum vari-
ance method3. First the Euclidean distance between all
pairs of objects (the 13 experimental traces) in the m-
by-n data matrix X (m = 2000, n = 13 in our case)
is calculated. The results are organized in a vector D
of length n(n � 1)/2, corresponding to pairs of experi-
mental traces in X. The distances are arranged in the
order (2, 1), (3, 1), ..., (n, 1), (3, 2), ..., (n, 2), ..., (n, n � 1).
From the distances in D an agglomerative hierarchi-
cal cluster tree is formed using the Ward method. In

Ward’s method, the sum of the squared within-cluster
distances, for the resulting merged cluster, is computed.
The within-cluster squared distance is defined as the sum
of the squares of the distances between all objects in the
cluster and the centroid of the cluster. At each step the
two clusters that merge are the ones that contribute to
the smallest increase of the overall sum of the squared
within-cluster distances. The hierarchical sequence so
obtained has the form of a binary tree with two branches
for each tree node. The binary tree can be represented
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as a dendrogram (as Fig. 3a in the article) or as a ver-
tical icicle plot shown in Fig. S2b. Fig. S2a shows the
clustering schedule graph, that plots the number of tree
nodes vs linkage distance. A cubic spline interpolates the
data. The clustering schedule graph can be used to select
the best cluster solution using reasonable assumptions,
as follows. Two trend lines represent the plateau and
the jump that usually characterize the clustering sched-
ule graph as an abrupt raise in the linkage distance. The
intercept point identify a node number, in our case be-
tween 10 and 11, corresponding to a linkage distance on
the spline curve that cut the icicle plot at a level where
three clusters constitute the best solution.

C. Singular value decomposition

The 2000 ⇥ 13 data matrix X is composed of n = 13
column vectors xi of length m = 2000 representing the
experimental traces. The Singular Value Decomposition
(SVD) equation for the data matrix is X = USV T .
The columns of matrix U are the orthonormal eigenvec-
tors uk that span the space where the column vectors
in X are represented. The diagonal matrix S contains
the associated eigenvalues. The elements (k, i) of matrix
M = SV T are the projections uk ·xi of the i-th trace on
the k-th eigenvector. The reconstruction of xi is given
by xi =

Pn
k=1 vikskuk. It is possible to approximate the

data matrix by reducing the number of eigenvectors used
to reconstruct the traces. In our case we use only the
two eigenvectors with the highest eigenvalues to approx-
imately reconstruct the traces.

D. Physical Insigths

As explained in the text, the detailed and quantitative
analysis of the physical mechanism responsible for the
optical response in pump-probe experiments need not be
known to interpret data with the applied statistical meth-
ods. However, the general physical principles are known
and we here briefly comment on them.

The evanescent probe senses a variation of the refrac-
tive index induced by the pump beam inside the thin
molecular film and the vibrationally excited, perturbed
surface layer of the substrate, known as the selvedge.
In the evanescent wave configuration the internal reflec-

tion experienced by the probe is equivalent to a trans-
mission through an e↵ective thickness of an absorbing
medium, causing the probe absorption4. Both the real
and imaginary parts of the refractive index are respon-
sible for the variation of the probe absorption. The re-
fractive index may depend for instance on temperature5

and charge excitation inside the molecules. The varia-
tions due to charge excitation are fast (on the 1-10 ps
time scale) while the excitations due to heat transfer are
slower (on the 100 ps - ns time scale)5. The pump modi-
fies both the temperature and the charge distribution in
the molecules and the substrate. Since di↵erent molec-
ular layer possess di↵erent thermodynamical properties
(thermal conductivities, specific heat and dielectric con-
stant dependence on temperature) it is reasonable to ex-
pect that the temporal response of the probe to the pump
excitation is rather unique to the specific chemical com-
pound and its organization. Since the same molecules
organized in di↵erent structures may have di↵erent elec-
tronic and thermal properties, the resulting compounds
will be optically di↵erent and discriminated by the time-
resolved evanescent absorption spectroscopy. We are ex-
ploiting the complex interplay that leads to the variation
of absorption in time subsequent to a pump excitation.
Finally, it is important to note that, based on the pump

fluence and an estimate of the thin gold film absorption,
the temperature increase in our case is less than 10 K.
Thus we expect that the gold film heating is not able to
damage or modify the bound biomolecules.
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