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Abstract
An educational and historical study of the projectile motion with drag forces
dependent on speed shows, by simple results, that trajectories quite similar to
those depicted before the Galilean era may be obtained with a realistic choice
of quantities involved. Numerical simulations of the trajectory in space and
velocity coordinates help us to understand the dynamics of motion.

Introduction

In the middle ages, the trajectory of a cannonball
was quite often depicted as composed of an almost
rectilinear segment followed by an abrupt descent
(figure 1) [1]. At that time there was no way to
observe the motion of a falling body to quantify its
trajectory. What people saw with their eyes could
be strongly influenced by what they expected
to see—based on the Aristotelian description of
natural and violent motions. The interpretation
of the straight part of the motion was related to
the initial momentum, which after some time was
exhausted, giving rise to the second part of the
trajectory characterized by a steep curvature, until
the cannonball reached the ground. In his Nova
Scientia (1537), Niccolò Tartaglia claimed that a
body starts to lose velocity as soon as it escapes
the propelling force. In his description of the
projectile motion, the first part of the trajectory is a
straight line; the second is a curve, while the third
part is again a nearly vertical line associated with
the projectile’s natural motion. Tartaglia assumed
that the curved part was the result of the body
weight. However, he was forced to admit that the
whole path was actually curved, but the curvature

Figure 1. An illustration of the trajectory of a
cannonball, as depicted in old documents before the
Galilean era [1].

was so small as to be negligible, and impossible to
perceive.

Only in the Galilean era was the parabolic
nature of the projectile motion recognized as being
the result of the composition of two independent
motions along orthogonal axes.

Today, the study of parabolic motion, in the
absence of any drag force, is a common example in
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introductory physics courses. Introducing friction
forces into the study of the motion, however,
gives rise to a problem that is difficult to solve
analytically, except in a few particular cases.

Educational studies of projectile motion under
the influence of a drag force have long been
reported [2–6], addressing several aspects of the
problem. For instance, a numerical study of
projectile motion with quadratic dependence on
projectile speed has been reported in [3]. The
optimal launch conditions for a small body fired
by hand under the influence of air drag have
been discussed in [4]. The drag force has been
considered in a variety of conditions, showing that
the trajectory may be approximated under specific
assumptions with cubic curves [6].

Simple simulation of the projectile motion
with realistic drag forces shows, contrary to what
most students believe, that the resulting trajectory
may indeed be very similar to that originally rep-
resented in the middle ages, and directly seen with
our eyes in a variety of situations in everyday life.

To stress such an aspect, we carried out basic
calculations, which can be performed even by
high school students with some knowledge of
programming and graphics tools. The equations of
motion along two orthogonal axes were integrated
with simple first-order algorithms, comparing the
results obtained with and without realistic, speed-
dependent, drag forces. Projectile trajectories,
together with plots of the components of the
projectile velocity, allow us to demonstrate simple
effects of the influence of the drag force on the
resulting motion. Physical examples derived from
phenomena which may be observed in everyday
life are also discussed at the end of the article.

Equations of motion
The equations of motion, for a body of mass m
subjected to a linear drag force

F = −bv

and launched from the origin (0, 0) with a speed v0

and at an angle θ with respect to the horizontal are

m d2x(t)/dt2 = −bvx

m d2y(t)/dt2 = −mg − bvy

with the initial conditions

x(0) = 0 y(0) = 0

vx(0) = v0 cos θ vy(0) = vy0 sin θ.

Such equations admit the analytical solution [5]

x(t) = mv0 cos θ [1 − exp(−bt/m)]/b

y(t) = m(mg/b + v0 sin θ)

[1 − exp(−bt/m)]/b − mgt/b.

However, if the dependence on the speed is
quadratic or even more complicated, one must
make use of numerical methods for the solution of
the problem.

From a physical point of view, drag forces
proportional to the speed are generally expected
only in the case of motion with low Reynolds
numbers, such as the motion of bodies with very
small sizes and low speed. One such case is the
motion of a small sphere of radius r in a fluid of
density ρ and viscosity η, where the coefficient
b = 6πηr .

In most cases, however, quadratic speed
dependence provides a more realistic description
of the motion of bodies under drag forces. It is
known that for body sizes and speeds of practical
interest, a reasonable description of the drag force
is provided by

F = − 1
2 CDρ Av2(v/v),

where ρ is the density of the medium, A is the
transverse area of the body, v its speed and CD

the drag coefficient. The latter is a dimensionless
quantity, whose value depends on the shape and
orientation of the body with respect to the relative
velocity vector between the body and the medium.
For a sphere, it is approximately CD = 0.5,
whereas for aerodynamic shapes CD may reach
values down to about 0.1.

The corresponding equations of motion are
now:

m d2x(t)/dt2 = −cvx(v
2
x + v2

y)
1/2

m d2 y(t)/dt2 = −mg − cvy(v
2
x + v2

y)
1/2

where the coefficient c is given by

c = 1
2 CDρ A.
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Figure 2.  Simulated trajectory of a cannonball 
launched from the origin (0, 0) with an angle of 45° 
with respect to the horizontal, and an initial speed of 
400 m s–1.  A drag force proportional to v2 was 
assumed, with a value of the coefficient c/m = 0.005 
m–1 (see text).
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Taking as an example the motion of a sphere
of radius r = 5 cm in air, a value of c =
0.0026 kg m−1 is obtained.

The numerical solution of the previous
equations may be obtained through various
algorithms with different degrees of precision.
For educational purposes, even the simple Euler
method is good enough to get a precise set of (x, y)
values which approximate the true trajectory:

x(t + �t) = x(t) + vx (t)�t

y(t + �t) = y(t) + vy(t)�t

vx(t + �t) = vx(t) − cvx(t)v(t)�t/m

vy(t + �t) = vy(t) − g�t − cvy(t)v(t)�t/m.

Previous formulae may be easily implemented
in any of the existing programming tools, setting
the required parameters—initial position and
velocity components, together with the value
of the quantity c/m—to evaluate and plot the
resulting trajectory. Ready-to-use packages, such
as Modellus [7] or Matlab [8] may also be
employed to produce such results. More refined
algorithms, based on Runge–Kutta methods, may
be employed if better precision is required.

Results
Figure 2 shows the simulated trajectory of a
body launched from the origin (0, 0) with speed
v = 400 m s−1 at an angle (with respect to the
horizontal) θ = 45◦. A drag force proportional to

Figure 3.  The components vx, vy of the projectile 
velocity are plotted for a body launched from the 
origin (0, 0) with the same parameters as in figure 2. 
The trajectory starts from the upper-right position.
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v2, with a coefficient equal to c/m = 0.005 m−1

was assumed. A time step of 0.05 s was employed
in the numerical integration. Values of c/m in
the range (0.001–0.005) m−1 roughly correspond
to small cannonballs made of roughly spherical
stones (5–10 cm diameter), launched in air. This
situation was typical of old devices, whereas,
starting from 1500, metal projectiles and larger
sizes were introduced. The travelled distance for
the trajectory depicted in figure 2 is about 500 m.
As can be seen, the trajectory exhibits an almost
rectilinear segment at the beginning of the motion,
followed by a curved path, and it is quite similar
to the old pictures found in historical documents
(figure 1).

In the first part of the trajectory the speed
of the projectile is relatively high, with a
correspondingly high value of the drag force. The
effect of gravity is small in comparison to the
drag force and the trajectory is dominated by the
original components of the velocity. When the
speed is largely reduced, due to the drag force,
the variation of the speed produced by gravity
strongly modifies the trajectory, which is rapidly
curved to reach the ground. An additional piece
of information provided by the simulation is the
combined plot of the two velocity components vx ,
vy (figure 3). The time history of the trajectory
in this plot starts from the upper right position
(vx = vy = 282 m s−1) and progresses toward the
left bottom corner. Most of the trajectory in this
velocity space is a linear segment, showing that
the damping factors for the two components are
almost constant and nearly equal. The last part of
the plot, however, exhibits a different behaviour:
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Figure 4.  Trajectories (right) and velocity (left) plots obtained for different values of the initial speed (top: v = 
10 m s–1, middle: v = 30 m s–1, bottom: v = 100 m s–1).  The body was assumed to be launched from the origin 
(0, 0) at 45° with respect to the horizontal, with a coefficient c/m = 0.005 m–1. 
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the horizontal component is nearly damped to
zero, while the vertical component decreases by
the combined effect of the gravity and of the drag
force, then inverts and increases its absolute value
until it reaches a negative limiting value at the
impact on the ground.

With realistic values of the drag coefficient in
air, the terminal speed is of the order of 50 m s−1.
The measure of the terminal speed (for instance, of
a small metal sphere) is an experiment frequently
carried out in introductory laboratory courses, to
obtain the viscosity of a fluid.

The combined values of the drag coefficient
and of the initial speed determine how large
the discrepancy is between the ideal (parabolic)

trajectory and the real one. Figure 4 shows a
set of space (right) and velocity (left) trajectories,
obtained for increasing values of the initial speed,
with the same fixed value of the coefficient c/m =
0.005 m−1. For large values of the speed, the
different damping effect in the two components
is more clearly seen, and the trajectory resembles
more and more that depicted in the illustration of
figure 1.

The effect of a drag force in the modification
of the ideal parabolic trajectory may be observed,
although with some difficulty, in other phenomena
of everyday life. For instance, when using a pipe
to water the garden, the water flow from the pipe is
only slightly curved at the beginning. The decrease
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Figure 5. A water flow from a pipe in a garden exhibits
an approximate parabolic shape. However, some
deviation from the ideal trajectory may be observed,
due to the drag force.

in the speed, resulting from the drag force, may
slightly alter the last part of the trajectory. For
instance, if the velocity at the exit of the hose
has only a horizontal component (figure 5), the
trajectory exhibits a nearly horizontal segment,
followed by a curved part, which may be slightly
different from the ideal parabola. The major effect
of the drag force on large water jets (fountains, fire
fighting jets, water jets from lakes, such as in Lake
Geneva) is, however, the reduction of the travelled
distance, for instance the height which a vertical
jet may reach.

Several other phenomena which exhibit an
approximate parabolic motion depending on the
influence of drag forces may be discussed in this
context. Lava fountains from volcanoes may show
such an effect, with initial speeds of the order
of few hundred m s−1, reaching several hundred
metres height. An additional example is provided
by the trajectories seen in ski jumping, where a
speed in excess of 30 m s−1 may be reached, with
a travelled distance of the order of 100–200 m.

Conclusions

The present analysis allowed us to demonstrate,
in a simple way, that the description of falling
bodies provided by old historical pictures or even
perceived nowadays by direct observation may
correctly be reproduced by the physical laws.
The influence of drag forces on the projectile
motion may considerably alter its trajectory
with respect to the parabolic shape expected in
the absence of any force due to the medium.

When looking at the motion of falling
bodies, such as cannonballs, without the help of
photographic tools which allow one to register
and analyse the motion, people were further
driven to describe and interpret the motion they
expected to see. The parabolic motion is thus a
concept, which comes at the end of the challenging
work of interpretation and simplifying hypotheses,
followed by experimental observations under
controlled conditions.

Numerical studies of the projectile motion
with various degrees of drag coefficients and
different initial speeds may help to demonstrate
the physics subtended by such phenomenon and
extend the description to additional examples.
The use of combined plots to show the resulting
trajectory not only in the spatial coordinates but
also in the velocity coordinates (or additional
variables as well, such as the kinetic and potential
energies) offers additional scope for the teaching
of this topic.
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