Francesco MocciaUniversity of Molise | Università del Molise · Department of Medicine and Health Sciences "V. Tiberio"
Francesco Moccia
PhD in Physiology
About
240
Publications
34,451
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,613
Citations
Introduction
I am investigating the role of TRP channels and store-operated Ca2+ entry (Stim1 and Orai1) in endothelial progenitor cells (EPCs) from both peripheral and umbilical cord blood. We are also studying the remodeling of the Ca2+ toolkit in EPCs from human cancer (kidney and breast) patients. Ca2+ channels might be a feasible target for both regenerative medicine and anti-cancer strategies. We use Ca2+ imaging and patch-clamp, Western Blotting and immunofluorescence, qRT-PCR and gene silencing.
Additional affiliations
October 2007 - November 2008
October 2006 - October 2008
Publications
Publications (240)
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiologi...
These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO syn...
Hypoxic preconditioning has the potential to represent a valuable intervention to trigger and amplify the body's endogenous protection against stress. In contrast with classical ischemic preconditioning, hypoxic preconditioning is a non-invasive procedure that can be applied in multiple ways, such as by breathing gas mixtures with variable oxygen c...
Lysosomal Ca²⁺ signaling is emerging as a crucial regulator of endothelial Ca²⁺ dynamics. Ca²⁺ release from the acidic vesicles in response to extracellular stimulation is usually promoted via Two Pore Channels (TPCs) and is amplified by endoplasmic reticulum (ER)-embedded inositol-1,3,4-trisphosphate (InsP3) receptors and ryanodine receptors. Emer...
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca²⁺ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic...
Among the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mec...
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integ...
Conjugated polymer nanoparticles trigger a pro- or an anti-angiogenic pathway in an endothelial cellular model depending on the light excitation protocol.
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochon...
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cell...
Cytosolic Ca²⁺ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca²⁺ concentration ([Ca²⁺]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca²⁺ into the cytosol, Ca²⁺-dependent sens...
Colorectal carcinoma (CRC) represents the fourth most common cancer worldwide and is the third most common cause of malignancy-associated mortality. Distant metastases to the liver and lungs are the main drivers of CRC-dependent death. Pro-oxidant therapies, which halt disease progression by exacerbating oxidative stress, represent an antitumour st...
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca 2+ concentrations ([Ca 2+ ] i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore,...
Introduction: Endothelial cells (ECs), being located at the interface between flowing blood and vessel wall, maintain cardiovascular homeostasis by virtue of their ability to integrate chemical and physical cues through a spatio-temporally coordinated increase in their intracellular Ca²⁺ concentration ([Ca²⁺]i). Endothelial heterogeneity suggests t...
Type 2 Diabetes Mellitus (T2DM) is a rapidly rising disease with cardiovascular complications constituting the most common cause of death among diabetic patients. Chronic hyperglycemia can induce vascular dysfunction through damage of the components of the vascular wall, such as vascular smooth muscle cells (VSMCs), which regulate vascular tone and...
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H 2 O 2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant c...
Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro mo...
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellul...
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis,...
Hydrogen sulfide (H2S) is an endogenous gaseous molecule present in all living organisms and has been traditionally studied for its toxicity. Interestingly, increased understanding of H2S effects in organ physiology has recently shown its relevance as a signalling molecule, with potentially important implications in variety of clinical disorders, i...
Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered...
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary ev...
Tumor diseases are unfortunately quick spreading, even though numerous studies are under way to improve early diagnosis and targeted treatments that take into account both the different characteristics associated with the various tumor types and the conditions of individual patients. In recent years, studies have focused on the role of ion channels...
Background
Cardiac mesenchymal stromal cells (C-MSC) were recently shown to differentiate into adipocytes and myofibroblasts to promote the aberrant remodeling of cardiac tissue that characterizes arrhythmogenic cardiomyopathy (ACM). A calcium (Ca²⁺) signaling dysfunction, mainly demonstrated in mouse models, is recognized as a mechanism impacting...
Background:
Platelets can support cancer progression via the release of microparticles and microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic MDA-MB-231 cells by stimulating the phosphorylation...
Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has...
(1) Background: Store-operated Ca2+ entry (SOCE) drives the cytotoxic activity of cytotoxic T lymphocytes (CTLs) against cancer cells. However, SOCE can be enhanced in cancer cells due to an increase in the expression and/or function of its underlying molecular components, i.e., STIM1 and Orai1. Herein, we evaluated the SOCE expression and function...
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fata...
The mechanism whereby an increase in neuronal activity (NA) leads to a local elevation in cerebral blood flow to supply the active neurons with oxygen and nutrients and remove the catabolic waste has been termed neurovascular coupling (NVC). Although it has long been thought that the vasoactive mediators involved in NVC are generated by neurons and...
Therapeutic neovascularization represents a promising strategy to rescue the vascular network and restore organ function in cardiovascular disorders (CVDs), including acute myocardial infarction, heart failure, peripheral artery disease, and brain stroke. Endothelial colony forming cells (ECFCs), which are mobilized in circulation upon an ischemic...
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca²⁺ release. NAADP-induced lysosomal Ca²⁺ release may be amplified by the endoplasmic reticulum (ER) through the Ca²⁺-induced Ca²⁺ release (CICR) mechanism. NAADP-induced intr...
Endothelial colony forming cells (ECFCs) represent the most suitable cellular substrate to induce revascularization of ischemic tissues. Recently, optical excitation of the light-sensitive conjugated polymer, regioregular Poly (3-hexyl-thiophene), rr-P3HT, was found to stimulate ECFC proliferation and tube formation by activating the non-selective...
Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV mol...
Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by Collagen VI-related disorders and investigated the defects in platelet functionality whose mechanisms are unknown. We demonstrated that megakaryocytes expre...
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+...
The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate (NMDA) receptors (NMDARs) to mediate extracellular Ca²⁺ entry and stimulate neuronal nitric oxide (NO) synthase to release NO and trigger neurovascular coupling (NVC). Neuronal and glial NMDARs may also operate in a flux-independent manner, although it is unclear whe...
Second trimester foetal human amniotic fluid‐derived stem cells (hAFS) have been shown to possess remarkable cardioprotective paracrine potential in different preclinical models of myocardial injury and drug‐induced cardiotoxicity. The hAFS secretome, namely the total soluble factors released by cells in their conditioned medium (hAFS‐CM), can also...
In light of previous results, we assessed whether liposomes functionalized with ApoE-derived peptide (mApoE) and phosphatidic acid (PA) (mApoE-PA-LIP) impacted on intracellular calcium (Ca2+) dynamics in cultured human cerebral microvascular endothelial cells (hCMEC/D3), as an in vitro human blood-brain barrier (BBB) model, and in cultured astrocyt...
[This corrects the article DOI: 10.3389/fphys.2021.629119.].
An increase in intracellular Ca2 + concentration ([Ca2 +]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the...
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. However, reperfusion further exacerbates the damage of the ischemic heart. This type of injury is known as ischemia-reperfusion injury (IRI). Ischemic conditioning is a procedure which consists of brief cycles of is...
Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer m...
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O′-acac)(γ-acac)(DMS)], namely PtAcacDMS, a...
The original version of the article unfortunately contained a typo in co-author name. The author name should be Francesco Paolo Fanizzi instead it was published incorrectly as Franco Paolo Fanizzi. The original article has been corrected.
Neurovascular coupling (NVC) represents the mechanisms whereby an increase in neuronal activity (NA) may lead to local vasodilation and increase in regional cerebral blood flow (CBF). It has long been thought that neurons and astrocytes generate the vasoactive mediators regulating local changes in CBF, whereas cerebrovascular endothelial cells are...
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role o...
Emerging evidence hints in favor of a life-threatening link between severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and the cardiovascular system. SARS-CoV-2 may result in dramatic cardiovascular complications, whereas the severity of COronaVIrus Disease 2019 (COVID-19) and the incidence of fatalities tend to increase in patients...
Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread diffusion makes the conditions affecting the heart and blood vessels a primary medical and economic burden. It, therefore, becomes mandatory to identify effective treatments that can alleviate this global problem. Among the different solutions brought to the att...
Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC...
Platelets have been extensively implicated in the progression of cancer and platelet-derived extracellular vesicles (PEVs) are gaining growing attention as potential mediators of the platelet-cancer interplay. PEVs are shed from platelet membrane in response to extracellular stimuli and carry important biological signals for intercellular communica...
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularizat...
Cardiovascular disease (CVD) comprises a group of heart and circulatory disorders, which are regarded as a global medical issue with high prevalence and mortality rates. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical reva...
Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-d-aspartate receptors to mediate extracellular Ca²⁺ entry and stimu...