
Francesco Massimo- PhD
- Researcher at French National Centre for Scientific Research
Francesco Massimo
- PhD
- Researcher at French National Centre for Scientific Research
About
52
Publications
9,882
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
649
Citations
Introduction
Current institution
Additional affiliations
June 2020 - present
March 2020 - May 2020
November 2017 - December 2019
Education
November 2010 - October 2012
September 2007 - November 2010
Publications
Publications (52)
This document outlines a community-driven Design Study for a 10 TeV pCM Wakefield Accelerator Collider. The 2020 ESPP Report emphasized the need for Advanced Accelerator R\&D, and the 2023 P5 Report calls for the ``delivery of an end-to-end design concept, including cost scales, with self-consistent parameters throughout." This Design Study leverag...
The EuPRAXIA project aims to construct two state-of-the-art accelerator facilities based on plasma accelerator technology. Plasma-based accelerators offer the possibility of a significant reduction in facility size and cost savings over current radio frequency (RF) accelerators. The two facilities - one laser-driven one a beam-driven - are envision...
The design of absorbing boundary conditions (ABC) in a numerical simulation is a challenging task. In the best cases, spurious reflections remain for some angles of incidence or at certain wave lengths. In the worst, ABC are not even possible for the set of equations and/or numerical schemes used in the simulation and reflections can not be avoided...
The optimisation of the plasma target design for high quality beam laser-driven plasma injector electron source relies on numerical parametric studies using Particle in Cell (PIC) codes. The common input parameters to explore are laser characteristics and plasma density profiles extracted from computational fluid dynamic studies compatible with exp...
Electron acceleration by laser-plasma techniques is approaching maturity and is getting ready for the construction of particle accelerators with dedicated applications. We present a general methodology showing how beam physics studies can be used to achieve a specific parameter set in a laser-plasma accelerator. Laser systems, plasma targets, and m...
Following the successful Run 1 experiment, the Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) Run2 experiment requires the design and implementation of a compact electron source. The “high-quality Electron Accelerator driven by a Reliable Laser wakefield for Industrial uses” (EARLI) project aims to design a stand-alone high...
The optimization and advanced study of a laser-plasma electron injector are presented based on a truncated ionization injection scheme for high quality beam production. The smilei code is used with laser envelope approximation and a low number of particles per cell to reach computation time performances enabling the production of a large number of...
Knowledge of the electric field of femtosecond, high intensity laser pulses is of paramount importance to study the interaction of this class of lasers with matter. A hybrid method to reconstruct the laser field from fluence measurements in the transverse plane at multiple positions along the propagation axis is presented, combining a Hermite–Gauss...
The quality of electron bunches accelerated by laser wakefields is highly dependant on the temporal and spatial features of the laser driver. Analysis of experiments performed at APOLLON PW-class laser facility shows that spatial instabilities of the focal spot, such as shot-to-shot pointing fluctuations or asymmetry of the transverse fluence, lead...
A method for the optimisation and advanced studies of a laser-plasma electron injector is presented, based on a truncated ionisation injection scheme for high quality beam production. The SMILEI code is used with laser envelope approximation and a low number of particles per cell to reach computation time performances enabling the production of a l...
The quality of electron bunches accelerated by laser wakefields is highly dependant on the temporal and spatial features of the laser driver. Analysis of experiments performed at APOLLON PW-class laser facility shows that spatial instabilities of the focal spot, such as shot-to-shot pointing fluctuations or asymmetry of the transverse fluence, lead...
An implementation of the electromagnetic Particle in Cell loop in the code Smilei using task programming is presented. Through OpenMP, the macro-particles operations are formulated in terms of tasks. This formulation allows asynchronous execution respecting the data dependencies of the macro-particle operations, the most time-consuming part of the...
After the introduction of the ionization-injection scheme in laser wake field acceleration and of related high-quality
electron beam generation methods, such as two-color and resonant multi-pulse ionization injection (ReMPI), the theory
of thermal emittance has been used to predict the beam normalized emittance obtainable with those schemes. We rec...
The fourth generation of synchrotron radiation sources, commonly referred to as the Free Electron Laser (FEL), provides an intense source of brilliant X-ray beams enabling the investigation of matter at the atomic scale with unprecedented time resolution. These sources require the use of conventional linear accelerators providing high electron beam...
After the introduction of the ionization-injection scheme in Laser Wake Field Acceleration and of related high-quality electron beam generation methods as two-color or the Resonant Multi Pulse Ionization injection, the theory of thermal emittance by C. Schroeder et al, has been used to predict the beam normalised emittance obtainable with those sch...
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator r...
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
The resources needed for particle-in-cell simulations of laser wakefield acceleration can be greatly reduced in many cases of interest using an envelope model. However, the inclusion of tunneling ionization in this time-averaged treatment of laser-plasma acceleration is not straightforward, since the statistical features of the electron beams obtai...
The resources needed for Particle in Cell simulations of Laser Wakefield Acceleration can be greatly reduced in many cases of interest using an envelope model. However, the inclusion of tunneling ionization in this time averaged treatment of laser-plasma acceleration is not straightforward, since the statistical features of the electron beams obtai...
The presentations of working group 6 (theory and simulations) of the fourth edition of the European Advanced Accelerator Workshop presented new ideas for experimental schemes, analytical models, and updates on well-known Particle in Cell codes. New schemes for improving electron beam quality, positron acceleration, ion acceleration, and radiation g...
The advent of ultra short high intensity lasers has paved the way to new and promising, yet challenging, areas of research in the laser-plasma interaction physics. The success of constructing petawatt femtosecond lasers, for instance the Apollon laser in France, will help understanding and designing future particle accelerators and next generation...
The resolution of the system given by Maxwell’s equations and Vlasov equation in three dimensions can describe all the phenomena of interest for laser wakefield acceleration, with few exceptions (e.g. ionization). Such arduous task can be numerically completed using Particle in Cell (PIC) codes, where the plasma is sampled by an ensemble of macropa...
From plasma-wakefield acceleration as a physics experiment toward a plasma-based accelerator as a user facility, the beam physics issues remaining to be solved are still numerous. Providing beams with high energy, charge, and quality simultaneously, not only within the plasma but also at the user doorstep itself, is the main concern. Despite its tr...
The advent of ultra short high intensity lasers has paved the way to new and promising, yet challenging, areas of research in the laser-plasma interaction physics. The success of constructing petawatt femtosecond lasers, for instance the Apollon laser in France, will help understanding and designing future particle accelerators and next generation...
Three dimensional Particle in Cell simulations of Laser Wakefield Acceleration require a considerable amount of resources but are necessary to have realistic predictions and to design future experiments. The planned experiments for the Apollon laser also include two stages of plasma acceleration, for a total plasma length of the order of tens of mi...
The resolution of the system given by Maxwell's equations and Vlasov equation in three dimensions can describe all the phenomena of interest for laser wakefield acceleration, with few exceptions (e.g. ionization). Such arduous task can be numerically completed using Particle in Cell (PIC) codes, where the plasma is sampled by an ensemble of macropa...
Three dimensional Particle in Cell simulations of Laser Wakefield Acceleration require a considerable amount of resources but are necessary to have realistic predictions and to design future experiments. The planned experiments for the Apollon laser also include two stages of plasma acceleration, for a total plasma length of the order of tens of mi...
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction si...
The EuPRAXIA project aims at designing the world's first accelerator based on
advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously
have high charge, low emittance and low energy spread, which are required for applications by
future user communities. Meeting this challenging objective will only be possible through...
Three dimensional particle in cell simulations of laser wakefield acceleration require a considerable amount of resources but are necessary to have realistic predictions and to design future experiments. The planned experiments for the Apollon laser also include two stages of plasma acceleration, for a total plasma length of the order of tens of mi...
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research Accelerator wi...
Particle-In-Cell (PIC) codes are broadly applied to the kinetic simulation of plasmas, from laser–matter interaction to astrophysics. Their heavy simulation cost can be mitigated by using the Single Instruction Multiple Data (SIMD) capability,or vectorization, now available on most architectures. This article details and discusses the vectorization...
Particle-In-Cell (PIC) codes are broadly applied to the kinetic simulation of plasmas, from laser-matter interaction to astrophysics. Their heavy simulation cost can be mitigated by using the Single Instruction Multiple Data (SIMD) capibility, or vectorization, now available on most architectures. This article details and discusses the vectorizatio...
The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broad...
The energy spread in laser-wakefield accelerators is primarily limited by the energy-chirp introduced during the injection and acceleration processes. Here we propose and demonstrate the use of longitudinal density tailoring to adapt the accelerating fields and reduce the chirp at the end of the accelerator. Experimental data supported by 3D PIC si...
Density transition (or shock-front) injection is a technique to obtain high quality electron beams in laser wakefield acceleration. This technique, which requires no additional laser pulse, is easy to implement and is receiving increasing interest. In addition to its performances, its setup realized with a blade inserted in a gas jet allows a certa...
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plas...
The quality of laser wakefield accelerated electrons beams is strongly determined by the physical mechanism exploited to inject electrons in the wakefield. One of the techniques used to improve the beam quality is the density transition injection, where the electron trapping occurs as the laser pulse passes a sharp density transition created in the...
The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection bet...
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlyi...
A hybrid 2D code for plasma wakefield acceleration
Start-to-end simulations are needed for sensitivity studies and online analysis of experimental data of the Plasma Wakefield Acceleration experiment COMB at SPARC_LAB facility, Frascati (Italy). Ad hoc tools are needed for the plasma section modeling. Particle in cell codes are the most widely used tools for this purpose, but they suffer from the c...
Within the framework of the Vlasov-Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accele...
In Plasma Wakefield Acceleration (PWFA) plasma oscillations are driven by ultra relativistic electron beams. The ratio of the maximum accelerating field behind the driving beam (bunch) and the maximum decelerating field inside the driving beam (bunch) is defined as Transformer Ratio, a key parameter that determines the energy gain in particle accel...
a b s t r a c t Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10–100 GV m À 1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with tha...