Francesco Antonio Aprile

Francesco Antonio Aprile
Imperial College London | Imperial · Department of Chemistry

PhD

About

112
Publications
27,702
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,178
Citations
Additional affiliations
May 2022 - September 2024
Imperial College London
Position
  • Lecturer in Chemistry
January 2020 - present
Position
  • Fellow
January 2017 - January 2020
University of Cambridge
Position
  • Senior Research Fellow of the Alzheimer's Society

Publications

Publications (112)
Article
Full-text available
Background Amyloid-β42 (Aβ42) aggregation consists of a complex chain of nucleation events producing soluble oligomeric intermediates, which are considered the major neurotoxic agents in Alzheimer’s disease (AD). Cerebral lesions in the brain of AD patients start to develop 20 years before symptom onset; however, no preventive strategies, effective...
Article
Background Extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangles of the hyperphosphorylated tau protein are the main hallmarks of Alzheimer’s disease (AD). Small, soluble oligomers, rather than mature fibrils, are the major neurotoxic agents. The heterogeneous structures and the transient nature of these oligomers make thei...
Article
Full-text available
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structu...
Article
An increasing number of cases where amyloids of different proteins are found in the same patient are being reported. This observation complicates diagnosis and clinical intervention. Amyloids of the amyloid-β peptide or the protein α-synuclein are traditionally considered hallmarks of Alzheimer's and Parkinson's diseases, respectively. However, the...
Article
We present an approach for the rational development of stimuli-responsive ionogels which can be formulated for precise control of multiple unique ionogel features and fill niche pharmaceutical applications. Ionogels are captivating materials, exhibiting self-healing characteristics, tunable mechanical and structural properties, high thermal stabili...
Article
Background The presence of extracellular amyloid β (Aβ) plaques in the brain parenchyma and intracellular neurofibrillary tangles of the hyperphosphorylated tau protein is the main hallmark of Alzheimer’s disease (AD). Aβ aggregation consists of a complex chain of nucleation events producing soluble oligomer intermediates, which are the major neuro...
Article
Full-text available
Parkinson’s Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins an...
Article
Full-text available
Misfolded α-synuclein oligomers are closely implicated in the pathology of Parkinson's disease and related synucleinopathies. The elusive nature of these aberrant assemblies makes it challenging to develop quantitative methods to detect them and modify their behavior. Existing detection methods use antibodies to bind α-synuclein aggregates in biofl...
Preprint
Neurodegenerative diseases are associated with the formation of amyloids in the nervous system. An increasing number of cases where amyloids of the same protein are found in different dementias is being reported. This observation complicates diagnosis and clinical intervention. Amyloids of the amyloid-β peptide or the protein α-synuclein are tradit...
Article
Full-text available
Neurodegenerative diseases are a class of disorders linked to the formation in the nervous system of fibrillar protein aggregates called amyloids. This aggregation process is affected by a variety of post-translational modifications, whose specific mechanisms are not fully understood yet. Emerging chemical mutagenesis technology is currently strivi...
Article
Full-text available
α-Synuclein is a key protein of the nervous system, which regulates the release and recycling of neurotransmitters in the synapses. It is also involved in several neurodegenerative conditions, including Parkinson’s disease and Multiple System Atrophy, where it forms toxic aggregates. The N-terminus of α-synuclein is of particular interest as it has...
Preprint
α-Synuclein is a key protein of the nervous system, which regulates the release and recycling of neurotransmitters in the synapses. It is also involved in several neurodegenerative conditions, including Parkinson's disease and Multiple System Atrophy, where it forms toxic aggregates. The N-terminus of α-synuclein is of particular interest as it has...
Preprint
Full-text available
Neurodegenerative diseases are a class of disorders linked to the formation in the nervous system of fibrillar protein aggregates called amyloids. This aggregation process is affected by a variety of post-translational modifications, whose specific mechanisms are not fully understood yet. Emerging chemical mutagenesis technology is currently strivi...
Article
Protein misfolding is a topic that is of primary interest both in biology and medicine because of its impact on fundamental processes and disease. In this review, we revisit the concept of protein misfolding and discuss how the field has evolved from the study of globular folded proteins to focusing mainly on intrinsically unstructured and often di...
Article
Full-text available
While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amylo...
Article
Full-text available
Significance The formation of amyloid fibrils and toxic oligomeric species has been shown to be inhibited by their interactions with molecular chaperones, thus modulating monomer sequestration and toxicity in the context of neurodegenerative diseases. Understanding the physical and chemical properties underlying chaperone binding processes is essen...
Article
Full-text available
One of the key hallmarks of Alzheimer's disease is the aggregation of the amyloid-β peptide to form fibrils. Consequently, there has been great interest in studying molecules that can disrupt amyloid-β aggregation. While a handful of molecules have been shown to inhibit amyloid-β aggregation in vitro, there remains a lack of in vivo data reported d...
Article
Full-text available
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervo...
Article
Full-text available
The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while t...
Article
Full-text available
There is great interest in drug discovery programs targeted at the aggregation of the 42-residue form of the amyloid β peptide (Aβ42), since this molecular process is closely associated with Alzheimer’s disease. The use of bicyclic peptides may offer novel opportunities for the effective modification of Aβ42 aggregation and the inhibition of its cy...
Preprint
While aggregation-prone proteins are known to accelerate ageing and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A and SERF2 have recently been identified as cellular modifiers of such cytotoxicity. Using a peptide array screening approach on human amyloid...
Article
Full-text available
Disordered proteins are challenging therapeutic targets, and no drug is currently in clinical use that modifies the properties of their monomeric states. Here, we identify a small molecule (10074-G5) capable of binding and sequestering the intrinsically disordered amyloid-β (Aβ) peptide in its monomeric, soluble state. Our analysis reveals that thi...
Article
Full-text available
Great advances have been made over the last four decades in therapeutic and diagnostic applications of antibodies. The activity maturation of antibody candidates, however, remains a significant challenge. To address this problem, we present a method that enables the systematic enhancement of the activity of a single-domain antibody through the post...
Article
Full-text available
Bicyclic peptides have great therapeutic potential since they can bridge the gap between small molecules and antibodies by combining a low molecular weight of about 2 kDa with an antibody-like binding specificity. Here we apply a recently developed in silico rational design strategy to produce a bicyclic peptide to target the C-terminal region (res...
Article
Full-text available
Alzheimer’s disease is associated with the aggregation of the amyloid-β peptide (Aβ), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aβ aggregates induce neuronal dysfunction has highlighted the importance of the Aβ oligomers of this protein fragment. Because of the transient and heterogen...
Article
Full-text available
Significance The accurate quantification of the amounts of small oligomeric assemblies formed by the amyloid β (Aβ) peptide represents a major challenge in the Alzheimer’s field. There is therefore great interest in the development of methods to specifically detect these oligomers by distinguishing them from larger aggregates. The availability of t...
Article
Full-text available
The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β2-microglobulin (D76N β2-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto,...
Preprint
Disordered proteins are challenging therapeutic targets, and no drug is currently in use that can modify the properties of their monomeric states. Here, we identify a small molecule capable of binding and sequestering the amyloid-β peptide (Aβ) in its monomeric, soluble state. Our analysis reveals that this compound interacts with Aβ and, in this m...
Article
Full-text available
Soluble aggregates of amyloid-β (Aβ) have been associated with neuronal and synaptic loss in Alzheimer's disease (AD). However, despite significant recent progress, the mechanisms by which these aggregated species contribute to disease progression are not fully determined. As the analysis of human cerebrospinal fluid (CSF) provides an accessible wi...
Article
Full-text available
Protein behavior is closely regulated by a plethora of post-translational modifications (PTMs). It is therefore desirable to develop approaches to design rational PTMs to modulate specific protein functions. Here, we report one such method, and we illustrate its successful implementation by potentiating the anti-aggregation activity of a molecular...
Preprint
Soluble aggregates of amyloid-beta have been associated with neuronal and synaptic loss in Alzheimer's disease (AD). However, despite significant recent progress, the mechanisms by which these aggregated species contribute to disease progression are not fully determined. As the analysis of human cerebrospinal fluid (CSF) provides an accessible wind...
Article
Full-text available
Protein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer’s disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid...
Article
Owing to their outstanding performances in molecular recognition, antibodies are extensively used in research and applications in molecular biology, biotechnology and medicine. Recent advances in experimental and computational methods are making it possible to complement well-established in vivo (first generation) and in vitro (second generation) m...
Article
Caenorhabditis elegans is a well-established animal model in biomedical research, widely employed in functional genomics and ageing studies. To assess the health and fitness of the animals under study, one typically relies on motility readouts, such as the measurement of the number of body bends or the speed of movement. These measurements usually...
Article
Full-text available
Amyloids result from the aggregation of a set of diverse proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular β-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggre...
Preprint
Full-text available
Amyloids result from the aggregation of several unrelated proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular β-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggr...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
Article
The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson’s disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the...
Article
Full-text available
Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behaviour, as well as the role of oligomerisation in the activity of molecular chaperones in inhibiting protein aggregation, have proved difficult to define. Here, we demonstrate direct measurements under n...
Article
Full-text available
Molecular chaperones are key components of the protein homeostasis system against protein misfolding and aggregation. It has been recently shown that these molecules can be rationally modified to have an enhanced activity against specific amyloidogenic substrates. The resulting molecular chaperone variants can be effective inhibitors of protein agg...
Article
Full-text available
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Article
Full-text available
A major hallmark of Parkinson's disease (PD) is the presence of Lewy bodies (LBs) in certain neuronal tissues. LBs are protein-rich inclusions, in which α-synuclein (α-syn) is the most abundant protein. Since these inclusions are not present in healthy individuals, despite the high concentration of α-syn in neurons, it is important to investigate w...
Article
Full-text available
The nematode worm Caenorhabditis elegans (C. Elegans) is a versatile and widely used animal model for in vivo studies of a broad range of human diseases, in particular for understanding their genetic origins and for screening drug candidates. Nevertheless, the challenges associated with the administration of native proteins to C. Elegans have limit...
Article
The nematode worm Caenorhabditis elegans (C. elegans) is a versatile and widely used animal model for in vivo studies of a broad range of human diseases, in particular for understanding their genetic origins and for screening drug candidates. Nevertheless, the challenges associated with the administration of native proteins to C. elegans have limit...
Article
Full-text available
The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris,...
Article
Full-text available
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical edi...
Data
Document S1. Supplemental Experimental Procedures, Protein Sequences, Figures S1–S32, and Table S1
Article
Full-text available
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identificati...
Article
Approximately one-third of the human proteome is made up of proteins that are entirely disordered or that contain extended disordered regions. Although these disordered proteins are closely linked with many major diseases, their binding mechanisms with small molecules remain poorly understood, and a major concern is whether their specificity can be...
Article
Full-text available
A major hallmark of Parkinson’s disease (PD) is the presence Lewy bodies (LBs) in neuronal tissues. These are protein-rich inclusions primarily composed by the protein α-synuclein (α-syn), that are not present in healthy individuals, despite the high concentration of α-syn in neurons. This suggests the presence of natural control mechanisms that ef...
Article
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identificati...
Article
Full-text available
Approximately one-third of the human proteome is made up of proteins that are entirely disordered or that contain extended disordered regions. Although these disordered proteins are closely linked with many major diseases, their binding mechanisms with small molecules remain poorly understood, and a major concern is whether their specificity can be...
Article
Full-text available
Antibodies targeting Ab42 are under intense scrutiny because of their therapeutic potential for Alzheimer's disease. To enable systematic searches, we present an " antibody scanning " strategy for the generation of a panel of antibodies against Ab42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the sel...