
Francesca Maremonti- Doctor of Philosophy
- Postdoctoral Researcher at Universitätsmedizin Mannheim
Francesca Maremonti
- Doctor of Philosophy
- Postdoctoral Researcher at Universitätsmedizin Mannheim
Postdoctoral Researcher
About
23
Publications
4,389
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
517
Citations
Introduction
Current institution
Education
October 2016 - December 2019
September 2013 - December 2016
Publications
Publications (23)
Ferroptosis is a regulated and non-apoptotic form of cell death mediated by iron-dependent peroxidation of polyunsaturated fatty acyl tails in phospholipids. Research of the past years has shed light on the occurrence of ferroptosis in organ injury and degenerative diseases of the brain, kidney, heart, and other tissues. Hence, ferroptosis inhibiti...
Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of pr...
Background: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus af...
Background: The identification of novel therapeutic strategies for Ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-Hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with cyste-ine-dependent deubiquitinating enzymes (DUBs), thus affecting...
Isolating kidney tubules offers insights into their biological function without stroma, vascular cells, and immune system interference. Our murine tubule isolation protocol focuses on ex vivo cell death assays. We describe steps for solution preparation; kidney extraction, decapsulation, and slicing; and tubule isolation. We also outline assays lik...
Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediat...
Acute kidney tubular necrosis (ATN) mediates acute kidney injury (AKI) and nephron loss, the major risk factor for chronic kidney disease (CKD) progression and end-stage renal disease (ESRD) ¹⁻³ . For decades, it has been known that female tissue is less sensitive to AKI 4,5 , but the underlying mechanisms have remained elusive. As a specific featu...
Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be...
Signaling pathways of regulated necrosis, such as necroptosis and ferroptosis, contribute to acute kidney injury (AKI), but the role of pyroptosis is unclear. Pyroptosis is mediated by the pore-forming protein gasdermin D (GSDMD). Here, we report a specific pattern of GSDMD-protein expression in the peritubular compartment of mice that underwent bi...
Signaling pathways of regulated necrosis, such as necroptosis and ferroptosis contribute to acute kidney injury (AKI), but the role of pyroptosis is unclear. Pyroptosis is mediated by the pore-forming protein gasdermin D (GSDMD). Here, we report a specific pattern of GSDMD-protein expression in the peritubular compartment of mice that underwent bil...
Diabetic nephropathy is the most common condition that requires a chronic renal replacement therapy, such as haemodialysis, peritoneal dialysis, kidney transplantation or simultaneous kidney-pancreas transplantation. Chronic kidney disease progression, that is the loss of nephrons which causes the continuous decline of the eGFR, underlies the patho...
The cytosolic protein rubicon (RUBCN) has been implicated in the removal of necrotic debris and autoimmunity. However, the role of RUBCN in models of acute kidney injury (AKI), a condition that typically involves necrotic kidney tubules, was not investigated. Here, we demonstrate that RUBCN-deficient mice are hypersensitive to renal damage induced...
Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathion...
Understanding nephron loss is a primary strategy for preventing chronic kidney disease (CKD) progression. Death of renal tubular cells may occur by apoptosis during developmental and regenerative processes. However, during acute kidney injury (AKI), the transition of AKI to CKD, sepsis-associated AKI, and kidney transplantation, ferroptosis and nec...
Acute kidney injury (AKI) is morphologically characterized by a synchronized plasma membrane rupture of cells in a specific section of a nephron, referred to as acute tubular necrosis (ATN). Whereas the involvement of necroptosis is well characterized, genetic evidence supporting the contribution of ferroptosis is lacking. Here, we demonstrate that...
Currently, we are experiencing a true pandemic of a communicable disease by the virus SARS-CoV-2 holding the whole world firmly in its grasp. Amazingly and unfortunately, this virus uses a metabolic and endocrine pathway via ACE2 to enter our cells causing damage and disease. Our international research training programme funded by the German Resear...