
Francesca CapelMax Planck Institute for Physics | MPP
Francesca Capel
Physics
About
83
Publications
7,218
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
487
Citations
Citations since 2017
Introduction
Check out my website for more information: https://francescacapel.com.
Additional affiliations
July 2020 - April 2022
September 2015 - June 2020
Publications
Publications (83)
Mini-EUSO is a wide Field-of-View (FoV, 44°) telescope currently in operation from a nadir-facing UV-transparent window in the Russian Zvezda module on the International Space Station (ISS). It is the first detector of the JEM-EUSO program deployed on the ISS, launched in August 2019. The main goal of Mini-EUSO is to measure the UV emissions from t...
Mini-EUSO is the first mission of the JEM-EUSO program on board the International Space Station. It was launched in 2019 and it is currently located in the Russian section (Zvezda module) of the station and viewing our planet from a nadir-facing UV-transparent window. The instrument is based on the concept of the original JEM-EUSO mission and consi...
We present a statistical analysis of the association between UHECRs and proposed astrophysical sources. Our approach is based on the Bayesian hierarchical framework presented in Capel & Mortlock 2019, but with notable extensions. Using CRPropa3, we now include the lensing effect of the Galactic magnetic field and explore the impact of heavier compo...
The high-x data from the ZEUS Collaboration are used to extract parton density distributions of the proton deep in the perturbative regime of QCD. The data primarily constrain the up-quark valence distribution and new results are presented on its x dependence as well as on the momentum carried by the up quark. The results were obtained using Bayesi...
Mini-EUSO is a high-sensitivity imaging telescope that observes the Earth from the ISS in the near ultraviolet band (290÷430 nm), through the nadir-facing, UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019, has a field of view of 44∘, a spatial resolution on the Earth’s surface of 6.3 km and a temporal sampling ra...
The data presented in this article are related to the research paper entitled "Observation of night-time emissions of the Earth in the near UV range from the International Space Station with the Mini-EUSO detector" (Remote Sensing of Environment, Volume 284, January 2023, 113336, https://doi.org/10.1016/j.rse.2022.113336). The data have been acquir...
Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a telescope observing the Earth from the International Space Station since 2019. The instrument employs a Fresnel-lens optical system and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels wi...
Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a telescope observing the Earth from the International Space Station since 2019. The instrument employs a Fresnel-lens optical system and a focal surface composed of 36 multi-anode photomultiplier tubes, 64 channels each, for a total of 2304 channels wi...
Mini-EUSO is a high sensitivity imaging telescope that observes the Earth from the ISS in the ultraviolet band (2904÷430 nm), through the UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019 as part of the ESA mission Beyond, has a field of view of 44°, a spatial resolution on the Earth surface of 6.3 km and a tempor...
The trigger logic of the Tracking Ultraviolet Setup (TUS) and Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory (Mini-EUSO) space-based projects of the Joint Experiment Missions - EUSO (JEM-EUSO) program is summarized. The performance results on the search for ultra-high energy cosmic rays are presented.
Several tentative associations between high-energy neutrinos and astrophysical sources have been recently reported, but a conclusive identification of these potential neutrino emitters remains challenging. We explore the use of Monte Carlo simulations of source populations to gain deeper insight into the physical implications of proposed individual...
The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All...
The Trigger Logic (TL) of the Tracking Ultraviolet Setup (TUS) and Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory (Mini-EUSO) space-based projects of the Joint Experiment Missions-EUSO (JEM-EUSO) program is summarized. The performance results on the search for Ultra-High Energy Cosmic Rays (UHECRs) are presented.
The high-$x$ data from the ZEUS Collaboration are used to extract parton density distributions of the proton deep in the perturbative regime of QCD. The data primarily constrain the up-quark valence distribution and new results are presented on its $x$-dependence as well as on the momentum carried by the up-quark. The results were obtained using Ba...
The Mini-EUSO telescope was launched for the International Space Station on August 22nd, 2019 to observe from the ISS orbit (∼400 km altitude) various phenomena occurring in the Earth’s atmosphere through a UV-transparent window located in the Russian Zvezda Module. Mini-EUSO is based on a set of two Fresnel lenses of 25 cm diameter each and a foca...
DOI:https://doi.org/10.1103/PhysRevD.105.129904
Mini-EUSO is part of the JEM-EUSO program and operates on board the International Space Station (ISS). It is a UV-telescope with single-photon counting capability looking at nighttime downwards to the Earth through a nadir-facing UV-transparent window. As part of the pre-flight tests, the Mini-EUSO engineering model, a telescope with 1/9 of the ori...
EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks “from above.” On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario...
Compilation of papers presented by the JEM-EUSO Collaboration at the 37th International Cosmic Ray Conference (ICRC), held on July 12-23, 2021 (online) in Berlin, Germany.
Several marginally significant associations between high-energy neutrinos and potential astrophysical sources have been recently reported, but a conclusive identification of these sources remains challenging. We explore the use of Monte Carlo simulations to gain deeper insight into the implications of, in particular, the IC170922A-TXS 0506+056 obse...
Mini-EUSO is a compact telescope ($37 \times 37 \times 62$~cm$^3$) currently hosted on board the International Space Station. Mini-EUSO is devoted primarily to study Ultra High Energy Cosmic Rays (UHECR) above $10^{21}$~eV but also to search for trange Quark Matter (SQM), to observe Transient Luminous Event (TLE) in upper atmosphere, meteoroids, se...
Mini-EUSO is a small orbital telescope with a field of view of $44^{\circ}\times 44^{\circ}$, observing the night-time Earth mostly in 320-420 nm band. Its time resolution spanning from microseconds (triggered) to milliseconds (untriggered) and more than $300\times 300$ km of the ground covered, already allowed it to register thousands of meteors....
Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station. Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observati...
The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth's surface are the...
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of trans...
The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the fourth basement level of the Physics Department of the University of Turin. In the past years, we have used the facility to perform experiments related to the observations of Extreme Energy Cosmic Rays (EECRs) from space using the fluoresce...
Mini-EUSO is the first detector of the JEM-EUSO program deployed on the ISS. It is a wide field of view telescope currently operating from a nadir-facing UV-transparent window on the ISS. It is based on an array of MAPMTs working in photon counting mode with a 2.5 $\mu$s time resolution. Among the different scientific objectives it searches for lig...
Mini-EUSO is a detector observing the Earth in the ultraviolet band from the International Space Station through a nadir-facing window, transparent to the UV radiation, in the Russian Zvezda module. Mini-EUSO main detector consists in an optical system with two Fresnel lenses and a focal surface composed of an array of 36 Hamamatsu Multi-Anode Phot...
Simulating a survey of fluxes and redshifts (distances) from an astrophysical population is a routine task. \texttt{popsynth} provides a generic, object-oriented framework to produce synthetic surveys from various distributions and luminosity functions, apply selection functions to the observed variables and store them in a portable (HDF5) format....
Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as K-EUSO and POEMMA, devoted primarily to the observation of ultrahigh-energy cosmic rays from space. Mini-EUSO is capable of observing extensive air showers...
Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as KEUSO and POEMMA, devoted primarily to the observation of Ultra High Energy Cosmic Rays from space. Mini-EUSO is capable of observing Extensive Air Showers...
Dark matter, cosmic rays, otherworldly lightning, and meteors. Not bad for a day’s work. That’s the ambitious workload researchers have charged to Mini-EUSO, a revolutionary new telescope peering back at earth from aboard the International Space Station. Hitching a ride on a Russian Soyuz rocket, Mini-EUSO docked with the ISS just this past August....
We present constraints on an astrophysical population of neutrino sources imposed by recent data from the IceCube neutrino observatory. By using the IceCube point source search method to model the detection of sources, our detection criterion is more sensitive than using the observation of high-energy neutrino multiplets for source identification....
We present constraints on an astrophysical population of neutrino sources imposed by recent data from the IceCube neutrino observatory. By using the IceCube point source search method to model the detection of sources, our detection criterion is more sensitive than using the observation of high-energy neutrino multiplets for source identification....
Compilation of papers presented by the JEM-EUSO Collaboration at the 36th International Cosmic Ray Conference (ICRC), held July 24 through August 1, 2019 in Madison, Wisconsin.
Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above $10^{21}$ eV and Strange Quark Matter (SQM). The detector is exp...
The JEM-EUSO program aims at detecting Ultra High Energy Cosmic Rays (UHECRs) by observing the fluorescence light produced by extensive air showers (EAS) in the Earth's atmosphere. Within this program, a new generation of missions is being built, including (i) Mini-EUSO that will be installed on board the ISS in August 2019, (ii) an upgrade to the...
Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the fea...
EUSO-TA is a ground-based florescence detector built to validate the design of an ultra-high energy cosmic ray fluorescence detector to be operated in space. EUSO-TA detected the first air shower events with the technology developed within the JEM-EUSO program. It operates at the Telescope Array (TA) site in Utah, USA. With the external trigger pro...
Mini-EUSO is a UV telescope that will look downwards to the Earth's atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites...
The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the Tu...
We present the data acquisition and control software for the operation of Mini-EUSO, a space-based fluorescence telescope for the observation of extensive air showers and atmospheric phenomena. This framework has been extensively tested alongside the development of Mini-EUSO and is now finalized in anticipation of its launch in mid-August this year...
We present a Bayesian hierarchical model which enables a joint fit of the ultrahigh-energy cosmic ray (UHECR) energy spectrum and arrival directions within the context of a physical model for the UHECR phenomenology. In this way, possible associations with astrophysical source populations can be assessed in a physically and statistically principled...
We present a Bayesian hierarchical model which enables a joint fit of the ultra-high-energy cosmic ray (UHECR) energy spectrum and arrival directions within the context of a physical model for the UHECR phenomenology. In this way, possible associations with astrophysical source populations can be assessed in a physically and statistically principle...
The JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructe...
EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour...
EUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR)....