Frances Hopkins

Frances Hopkins
Plymouth Marine Laboratory | PML · Cycling in the Sunlit Ocean Research Area

26.44
 · 
BSc (hons) Marine biology and Oceanography, MSc Marine Environmental Protection, PhD Marine biogeochemistry

About

30
Publications
4,532
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
445
Citations

Publications

Publications (30)
Article
Full-text available
The marine trace gas dimethylsulfide (DMS) is the single most important biogenic source of atmospheric sulfur, accounting for up to 80% of global biogenic sulfur emissions. Approximately 300 million tons of DMS are produced annually, but the majority is degraded by microbes in seawater. The DMS precursor dimethylsulfoniopropionate (DMSP) and oxidat...
Article
Full-text available
Emissions of dimethylsulfide (DMS) from the polar oceans play a key role in atmospheric processes and climate. Therefore, it is important to increase our understanding of how DMS production in these regions may respond to climate change. The polar oceans are particularly vulnerable to ocean acidification (OA). However, our understanding of the pola...
Article
Full-text available
The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are...
Article
Full-text available
Shipping emissions are likely to increase significantly in the coming decades, alongside increasing emphasis on the sustainability and environmental impacts of the maritime transport sector. Exhaust gas cleaning systems (“scrubbers”), using seawater or fresh water as cleaning media for sulfur dioxide, are progressively used by shipping companies to...
Article
Full-text available
Emissions of dimethylsulfide (DMS) from the polar oceans play a key role in atmospheric processes and climate. Therefore, it is important we increase our understanding of how DMS production in these regions may respond to environmental change. The polar oceans are particularly vulnerable to ocean acidification (OA). However, our understanding of th...
Article
Full-text available
This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethe...
Article
Full-text available
This paper describes a Near Surface Ocean Profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimised when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethe...
Article
Full-text available
Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here w...
Article
Full-text available
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a largescale mesocosm ex...
Article
Full-text available
We present air–sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different...
Article
Full-text available
Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air...
Article
Full-text available
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm e...
Article
Full-text available
Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory(PPAO) near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air fr...
Article
Full-text available
We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the South West coast of the United Kingdom. Measurements from the southwest direction (background marine air) at three different sampling he...
Article
Full-text available
The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsul...
Article
Full-text available
Ocean acidification, the result of increased dissolution of carbon dioxide (CO2) in seawater, is a leading subject of current research. The effects of acidification on non-calcifying macroalgae are, however, still unclear. The current study reports two 1-month studies using two different macroalgae, the red alga Palmaria palmata (Rhodophyta) and th...
Article
Full-text available
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS produc-tion and cycling and that of its algal precursor dimethyl sul-foniopropionate (DMSP) to elevated carbon dioxide (CO 2) and...
Data
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and oc...
Article
Full-text available
The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine �50m3 mesocosms were studied under a range of pCO2 treatments from �185 μatm to �1420 μatm. In general, the respons...
Article
Full-text available
The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments from ~ 185 μatm to ~ 1420 μatm. In general, the res...
Article
Full-text available
Increasing atmospheric CO2 is decreasing ocean pH most rapidly in colder regions such as the Arctic. As a component of the EPOCA (European Project on Ocean Acidification) pelagic mesocosm experiment off Spitzbergen in 2010, we examined the consequences of decreased pH and increased pCO2 on the concentrations of dimethylsulphide (DMS). DMS is an imp...
Article
Full-text available
Increasing atmospheric CO2 is decreasing ocean pH most rapidly in colder regions such as the Arctic. As a component of the EPOCA (European Project on Ocean Acidification) pelagic mesocosm experiment off Spitzbergen in 2010, we examined the consequences of decreased pH and increased pCO2 on the concentrations of dimethylsulphide (DMS). DMS is an imp...
Article
Full-text available
The oceans have absorbed approximately half of the CO2 produced by human activities and it is inevitable that surface seawaters will become increasingly acidified. The effect of lower pH on marine organisms and ocean-atmosphere exchanges is largely unknown but organisms with CaCO3 structural components are likely to be particularly affected. Becaus...
Article
Full-text available
Very short-lived halocarbons (VSLH) such as CH3I, CH2Br2 and CHBr3 provide an important source of reactive halogens to the atmosphere, however high spatial and seasonal variability in their ambient mixing ratios and sea-air fluxes gives rise to considerable uncertainty in global scale emission estimates. One solution to improve global flux estimate...
Article
Full-text available
Very short-lived halocarbons (VSLH) such as CH3I, CH2Br2 and CHBr3 provide an important source of reactive halogens to the atmosphere, however high spatial and seasonal variability in their ambient mixing ratios and sea-air fluxes gives rise to considerable uncertainty in global scale emission estimates. One solution to improve global flux estimate...
Article
Full-text available
The oceanic uptake of man-made CO(2) emissions is resulting in a measureable decrease in the pH of the surface oceans, a process which is predicted to have severe consequences for marine biological and biogeochemical processes [Caldeira K, Wickett ME (2003) Nature 425:365; The Royal Society (2005) Policy Document 12/05 (Royal Society, London)]. Her...
Article
Previous work with the meiofauna in the Ria Formosa Lagoon has shown that it is possible to use the community structure as an indicator of recent or ongoing contamination events. However, the meiofauna require a substantial degree of taxonomic expertise to identify to the species level, whereas the macrofauna are much more readily identified. In a...

Network

Cited By

Projects

Projects (3)
Project
Physical and biological mechanisms affect the sea surface concentration and flux of carbon dioxide (CO2) between the ocean and atmosphere. Gradients in temperature and salinity between the bulk sub-surface water and the sea/air interface are likely. Variations in phytoplankton primary production also have the potential to create vertical gradients in pCO2. This studentship seeks to improve understanding of these physical and chemical gradients in near surface (<10 m) shelf waters. This work will help answer a critical question within the Shelf Sea Biogeochemistry (SSB) research programme: What are the current annual exchanges of carbon between UK/European shelf seas, the atmosphere, and the open ocean? This studentship’s results will compliment and add value to the aims of the SSB-funded CArbon/Nutrient DYnamics and FLuxes Over Shelf Systems (CANDYFLOSS) consortium. In particular, this studentship will help to improve existing efforts to quantify spatial and temporal variability in sea-air CO2 exchange on the NW European Shelf, a specific aim of both CANDYFLOSS and a European Space Agency (ESA) project, OceanFlux.
Project
Develop our understanding of the ozone and dissolved organic matter reactions, in the sea surface microlayer, that produce volatile organic carbon compounds.
Project
NERC standard grant in collaboration with Warwick University