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Abstract 
Although there are many on-line stores, where potential e-shoppers can purchase de-
sired products by visiting a few web pages, finding the right product to purchase is quite 
a tedious task. On-line stores usually offer a limited set of ill-described products, pre-
sented in a way that prevents side-by-side comparison shopping. In this chapter, we pre-
sent a comparison chart building approach that is based on information extraction wrap-
pers. The novelty of our approach consists of the usage of the Conceptual Graphs 
knowledge representation and reasoning formalism, which naturally supports both the 
wrapper induction and the wrapper evaluation tasks through the generalization, speciali-
zation and projection operations. In addition, the graphical representation of Conceptual 
Graphs makes them a proper technology for creating visual, wrapper management pro-
gramming environments. Finally, we present the Aggregator, a prototype system based 
on our approach, that allows the user to quickly and visually train information extrac-
tion wrappers and use them to built comparison charts of arbitrary detail, gathering in-
formation about similar products from multiple known sites. 
 

1 Introduction 
Most internet stores selling certain types of products, usually offer a limited set of brand 
names and for each brand name, a limited set of products. In addition, the design of 
such e-commerce sites is strongly influenced by retailers whose only goal is to sell as 
many products as possible to the users that visit their site. As a result, such sites follow 
a fixed representation for the products offered and put more emphasis on the price, less 
emphasis on the complete presentation of the features of the product, and unfortunately, 
they discourage side-by-side comparison shopping. Moreover, presenting various prod-
ucts, they put emphasis on just a few strong features and they don't mention the weak 
ones. Although such e-shops are valuable for the final purchase transaction, they fail to 
service the non-informed customer, that is, the potential buyer that has no clear picture 
of what exactly to buy from the available alternatives.  
 Such an information need from the customer side, can be usually covered by 
browsing to the product's brand site where detailed specification pages about their prod-
ucts can be found. The negative aspect of this approach is the huge amount of time that 
is required by the buyer to create a clear picture of what are the advantages and disad-
vantages of the available products. Considering that there are many brands making the 
desired product and that each of them offers many models, browsing at so many specifi-
cation pages is a time consuming task. To make things worst, comparing the different 
models can be done, manually only, on paper or by copying and pasting information to 
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another application, such as a spreadsheet. Even for the experienced web user this work-
load discourages such a task. 
 The discussion above makes clear that there is a need for software tools that allow 
the as effortless as possible creation of comparison shopping charts by gathering prod-
uct specification information from various known sites. This is not an information re-
trieval task but rather an information extraction one. A web search engine can probably 
help to locate an information resource but is unable to process that resource, extract fea-
ture-value pairs and integrate that information into a singe comparison table.  
 In the recent years, various researchers have proposed methods and developed 
tools towards the web information extraction task, with the buzzword of the field being 
the term wrapper. A wrapper (or extraction rule) is a mapping that populates a data re-
pository with implicit objects that exist inside a given web page. Creating a wrapper, 
usually involves some training (wrapper induction - [31]) by which the wrapper learns 
to identify the desired information. Unlike Natural Language Processing (NLP) tech-
niques that rely on specific domain knowledge and make use of semantic and syntactic 
constraints, wrapper induction mainly focuses on the features that surround the desired 
information (delimiters). These features are usually the HTML tags that tell a web 
browser how to render the page. In addition, the extraction of typed information like 
addresses, telephone numbers, prices, etc., is usually performed through extensive usage 
of regular expressions (Figure 1). Regular expressions are textual patterns that ab-
stractly, but precisely, describe some content. For example, a regular expression de-
scribing a price in euros could be something like "€ \d". 
 Besides regular expressions, there are two major research directions in wrapper 
induction. The first and older one, treats the HTML page as a linear sequence of HTML 
tags and textual content ([2], [26], [35], [37]). Under this perspective, a wrapper genera-
tion is a kind of substring detection problem. Such a wrapper, usually includes delimit-
ers in the form of substrings that prefix and suffix the desired information. These delim-
iters can be either spotted to the wrapper generation program by the user (supervised 
learning) or located automatically (unsupervised learning). The former method usually 
requires less training examples but should be guided by a user with a good understand-
ing of HTML. The latter approach usually requires more training examples but can be 
fully automated.  
 

A regular expression, identifying font HTML tags. 
Extraction Rule:  (?i)<FONT size=(['"]?)([+-]?\d+)\1> 
Source: ...<FONT size="+2"> hello </FONT> <FONT size=1> world </FONT>... 

A linear wrapper extracting a digital camera model name from an HTML snippet. 
Extraction Rule:   skipto(<B>), extractUntil(X, </B>) 
Source:   ...<P>New model: <B>Nikon Coolpix 3200</B></P>... 

A hybrid wrapper as a path expression (tree wrapper) combined with a regular 
expression "€\d", that extracts prices in euros from HTML table cell tags. 
Extraction Rule:  *.table.*.td(X, "€\d") 
Source: ....<TABLE><TR><TD>Canon S300</TD><TD>€ 450.00></TD>..... 

Figure 1: Typical expressions of wrappers of various technologies and their extracted result (framed text) 
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 As the Internet technologies emerge, a new breed of wrapper induction techniques 
appeared ([8], [12], [30]), that treat the HTML document as a tree structure, according 
to the Document Object Model (DOM) [18]. Basically, such a tree wrapper uses path 
expressions to refer to page elements that contain the desired information (Figure 1). 
Tree wrappers seem to be more powerful that string wrappers. Actually, if input docu-
ments are well structured and tags at the lowest level does not contain several types of 
data, then a string wrapper can always be expressed as a tree wrapper [36].  
 Thanks to the advanced tools that are available for web page design, HTML pages 
are nowadays highly well-formed, but at the same time the content is more decorated by 
using more HTML tags. As a result, although approximate location of desired informa-
tion is relatively easy thanks to tree wrappers, extraction of the exact piece of informa-
tion requires regular expressions or even NLP (Figure 1). As a result, such hybrid ap-
proaches are quite popular.  
 In general, wrapper induction technology demonstrates that shallow pattern 
matching techniques, which are based on document structural information rather that 
linguistic knowledge, can be very effective. Until the semantic web [7] becomes a 
common place, information extraction techniques will continue to play an important 
role towards the informed customer concept. 
 In the comparison chart building problem, extracting and integrating information 
from heterogeneous web sources requires more than one wrappers. Variety in the way 
information is encoded and presented requires the cooperation of individual information 
extraction agents that are specialized for certain pieces of information and web sources. 
Creating, coordinating and maintaining a large number wrappers is not a simple task 
though. A crucial factor that can alleviate this burden is the way wrappers are encoded 
and trained. Having to modify an ill-described wrapped that ceased to work efficiently 
due to certain reasons, is much more difficult than modifying a wrapper described in a 
human friendly way. This need is becoming critical as more non-expert users are adapt-
ing information extraction technologies for personalization and information filtering. 
Visual tools that allow the easy creation of wrappers ([1], [4], [20], [27], [32]) and de-
clarative languages ([4], [29], [32]) for wrapper encoding is the current established 
trend. 
 In this chapter, we present a knowledge based approach on comparison chart 
building from heterogeneous, semi-structured sources (product specification web 
pages). We propose the usage of the Conceptual Graphs (CGs) knowledge representa-
tion and reasoning formalism to train and describe information extraction wrappers. 
CGs naturally supports the wrapper induction problem as a series of conceptual graph 
(CG) generalization and specialization operations between training examples expressed 
as CGs. From the other hand, wrapper evaluation corresponds to the CG projection op-
eration. Additionally, using DOM and product related domain knowledge, as well as 
advanced visual tools, we turn the wrapper creation and testing problem in an effortless 
task. Finally, we present the Aggregator, a comparison chart builder program that is 
based on the proposed approach. Aggregator can be taught how to gather specification 
information from web pages offered by brand sites and then use this knowledge to cre-
ate side-by-side feature comparison charts by mining web pages in a highly automated 
and accurate fashion. 
 The rest of the chapter is organized as following: Section 2 presents related work 
in the field of wrapper induction and information extraction, emphasizing in comparison 
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shopping and visual approaches. Section 3 gives a short introduction to CGs and pro-
poses a novel approach for wrapper training, modeling and evaluation that is based on 
CGs. Section 4, presents how our CG-based wrappers and domain knowledge can be 
used to create comparison charts from heterogeneous web sources. Section 5 outlines 
the Aggregator, a tool that allows to visually train and apply CG-based wrappers, and 
finally, Section 6 concludes the chapter and gives insight for future work. 
 

2 Related Work 
In the last few years, many approaches and related tools have been proposed to address 
the web information extraction problem. In the following, we give some detail about 
approaches that are closer to ours, in the sense that, they either exploit a tree representa-
tion of a web page ([4], [29], [32]) or use target structures that describe objects of inter-
est and try to locate portions of web pages that implicitly conform to that structures ([1], 
[20], [27]). A good survey on information extraction from the web can be found in [28]. 
 XWRAP [29] is an interactive system for semi-automatic generation of wrapper 
programs. Its core procedure is a three step task in which the user, first identifies inter-
esting regions, then identifies token name and token value pairs, and finally identifies 
the useful hierarchical structures of the retrieved document. Each step results in a set of 
extraction rules specified in a declarative language. At the end, these rules are converted 
into a Java program which is a wrapper for a specific source. XWRAP features a com-
ponent library that provides source independent, basic building blocks for wrappers and 
provide heuristics to locate data objects of interest.  
 In W4F ([32], [33]), a toolkit for building wrappers, the user first uses one or 
more retrieval rules to describe how a web document is accessed. Then, he/she uses a 
DOM representation and a web page annotated with additional information, to describe 
what pieces of data to extract. Finally, he/she declares what target structure to use for 
storing the extracted data. W4F offers a wizard to assist the user in writing extraction 
rules which are described in HEL (HTML Extraction Language) and denote an assign-
ment between a variable name and a path-expression. The wizard cannot deal with col-
lection of items, so if the user is interest in various items of the same type with the one 
clicked on, conditions must be attached to the path expression to write robust extraction 
rules. 
 Lixto ([3], [4]) is a system that assists the user to semi-automatically create wrap-
per programs by providing a visual and interactive user interface. It allows the extrac-
tion of target patterns based on surrounding landmarks, on the content itself, on HTML 
attributes, on the order of appearance and on semantic and syntactic concepts. In addi-
tion, it allows disjunctive wrapper definition, crawling to other pages during extraction 
and recursive wrapping. Wrappers created with Lixto are encoded in Elog, a declarative 
extraction language which uses a datalog-like logical syntax and semantics. Lixto TS 
[5] is an extension to the basic system aiming at web aggregation applications through 
visual programming.  
 NoDoSE [1] provides a graphical user interface in which the user hierarchically 
decomposes the web document, outlining its interesting regions and describing their 
semantics. This decomposition occurs in levels; for each one of them the user builds an 
object with a complex structure and then decomposes it in other objects with a more 
simple structure. The system uses this object hierarchy to identify other similar objects 
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in the document. This is accomplished by a mining component that attempts to infer the 
grammar of the document from objects constructed by the user.  
 DEByE [27] is an interactive tool that allows the user to assemble nested tables 
(with possible variations in structure) using pieces of data taken from the sample page. 
The tables assembled are examples of the objects to be identified on the similar target 
pages. DEByE generates object extraction patterns that indicate the structure and the 
textual surroundings of the objects to be extracted. These patters are then fed to a bot-
tom-up extraction algorithm that takes a target page as input, identifies on it atomic val-
ues in this page and assembles complex objects using the structure of the pattern as a 
guide. 
 In [20], an ontology based approach to information extraction is presented. The 
ontology (conceptual model), which is described in the Object-oriented Systems Model, 
is constructed prior to extraction and describe the data of interest, relationships, lexical 
appearance and context keywords. The extraction tool uses this ontology to determine 
what to extract from record-sized chunks that are derived from a web page and are 
cleared from HTML tags. This use of ontological knowledge enables a wrapper to "sus-
tain" in small variations existing in similar web pages (improved resiliency) and to be 
able to work better with documents presenting similar information but differently organ-
ized (improved adaptivity). 
 Our proposed framework for wrapper creation offers very similar functionality 
with all of the above approaches, in the sense that it provides a visual environment for 
wrapper creation. There exists a major difference though in the core technology used, 
which, for our tool is the Conceptual Graph formalism. Our choice allow us to exploit 
both DOM representations of web documents (approach used in [4], [29] and [32]), as 
well as user defined structures that describe objects of interest (approach used in [1] and 
[27]). We achieve this by using CG-based generic wrapper descriptions which are de-
tailed by the user in an interactive way, using visual tools that combine not only the 
DOM representation, but the browser itself. The CG formalism, naturally supports all 
the major steps in information extraction with wrappers, with its generalization, spe-
cialization and projection operations. In addition, CGs is a proven technology to encode 
ontological knowledge to provide a common schema for information integration and to 
improve wrapper's resiliency and adaptivity in the way [20] does. Beyond that, the rep-
resentation we use provides the operations required to create a functional reasoning sys-
tem. This allows the creation of dynamic ontologies, where static and axiomatic/rule 
knowledge co-exist [15]. For example, we can use such knowledge to create structural 
dependencies between two wrappers. Finally, the CG formalism has, by nature, better 
visualization potential. This enables our system to provide a more comprehensible 
wrapper representation to the end-user. 
 Regarding comparison shopping, one of the earliest attempts is ShopBot [19]. It 
focuses on vendor sites with form based search pages, returning lists of products with a 
tabular format. With today standards, ShopBot is quite restricted since it uses linear 
wrappers and focuses on highly structured pages. A commercial version of ShopBot, 
known as Jango, was bought by Excite. 
 Apart from Lixto TS [5], there are many other commercial wrapping services 
available on the Internet, such as Junglee (bought by Amazon), Jango, mySimon, 
RoboShopper and PriceGrabber. Jango and mySimon use real time information gather-
ing from merchant sites, while Junglee pre-fetches information in a local database and 
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updates it when necessary. All sites provide comparative shopping based on integrated 
information delivered from other vendor sites. Besides their unknown technology which 
is considered a business asset, most of these sites put emphasis on the price and provide 
very limited product specification information. Only PriceGrabber offers side-by-side 
and specification information rich, comparison charts. 
 

3 Wrappers as Conceptual Graphs 
In this section we first give a small introduction to CGs, focusing mainly on the gener-
alization, the specialization and the projection operations which are the key ideas behind 
our proposed CG-Wrap model. Then we present how CGs can be used to model infor-
mation extraction wrappers. 

3.1 Conceptual Graphs Background 
The elements of CG theory ([14], [34]) are concept-types, concepts, relation-types and 
relations. Concept-types represent classes of entity, attribute, state and event. Concept-
types can be merged in a lattice whose partial ordering relation < can be interpreted as a 
categorical generalization relation. A concept is an instantiation of a concept-type and is 
usually denoted by a concept-type label inside a box or between "[" and "]" (Figure 2). 
To refer to specific individuals, a referent field is added to the concept ([table:*] - a ta-
ble, [table:{*}@3] - three tables, etc). Relations are instantiations of relation-types and 
show the relation between concepts. They are usually denoted as a relation label inside a 
circle or between parenthesis (Figure 2). A relation type determines the number of arcs 
allowed on the relation as well as the type of the concepts (or their subtypes) linked on 
these arcs. 
 

[Wrapper] ← (targetURL) ← [URL] 

Figure 2: A Conceptual Graph stating that there exists a wrapper aiming at some URL 

 
 A Conceptual Graph is a finite, connected, bipartite graph consisting of concept 
and relation nodes (Figure 2). Each relation is linked only to its requisite number of 
concepts and each concept to zero or more relations. CGs represent information about 
typical objects or classes of objects in the world and can be used to define new concepts 
in terms of old ones. 
 The type hierarchy established for both concepts and relations is based on the in-
tuition that some types subsume other types, for example, every instance of the concept 
Table would also have all the properties of HTMLElement. In addition, with a number 
of defined operations on CGs (canonical formation rules) one can derive allowable CGs 
from other CGs. These rules enforce constraints on meaningfulness; they do not allow 
nonsensical graphs to be created from meaningful ones. Among other operations de-
fined over CGs, the most useful and related to the information extraction problem, are 
the generalization, the specialization and the projection operations. 
 The generalization is an operation that monotonically increases the set of models 
for which some CG is true. For example, CG3 in Figure 3 is the minimum common gen-
eralization of CG1 and CG2. Only common parts (concepts and relations) of CG1 and 
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CG2 are kept in CG3. In addition, individual concepts like [BGColor:"#FFFFFF] have be-
come generic by removing the referent field. Specialization is the opposite to the gener-
alization operation. It monotonically decreases the set of models for which some CG is 
true. This is achieved by either adding more parts (concepts and/or relations) to a CG, or 
by assigning an individual referent to some generic concept. 
 

CG1:   [HTMLElement: #3] ← (attribute) ← [BGColor: "#FFFFFF] 

CG2:   [HTMLElement: #9]  ← (attribute) ← [BGColor: "#CCFF12] 
 ← (parent) ← [HTMLElement: #8] 

CG3:   [HTMLElement] ← (attribute) ← [BGColor] 

Figure 3: CG3 is the minimum common generalization of CG1 and CG2 

 
 Projection is a complex operation that projects a CG v over another CG u which is 
a specialization of v (u≤v), that is, there is a sub graph u' embedded in u that represents 
the original v. The result is one or more CGs πv which are similar to v but some of its 
concepts is possible to have been specialized by either specializing the concept type or 
assigning a value to some generic referent, or both. 
 Under the machine learning perspective, training information extraction wrappers 
is a combination of generalization and specialization operations that result in a model 
(pattern) that describes best the training instances and that can be used to detect new, 
unknown instances. This is similar to the generalization and specialization operations of 
the CG theory. A CG wrapper is the result of generalization and specialization opera-
tions over two or more training instances expressed as CGs. Moreover, applying a CG 
wrapper is equivalent to a projection operation of the wrapper over web page elements 
expressed as CGs. Based on these analogies, we present next how CGs can be used to 
model and train information extraction wrappers.  

3.2 Modeling and Training Wrappers with CGs 
The ability of CGs to represent entities of arbitrary complexity in a comprehensible 
way, make them a promising candidate for modeling information extraction wrappers. 
This perception is strengthened by the highly structured document representation which 
is defined by the DOM specification. This tree structure allows the easy mapping of 
web document elements to CG components. 
 

[Wrapper]  ← (targetURL) ← [URL] 
 ← (output) ← [Info]  
 ← (container) ← [HTMLElement] 

Figure 4: An abstract wrapper as a conceptual graph 

 
 In general, a wrapper accesses a page located at a specific URL, searches inside 
this page for some specific HTML element which is the container of the desired infor-
mation and extracts that information from it. This abstract description is encoded as the 
CG depicted in Figure 4. In practice, such a generic wrapper is useless, in the sense that 
it describes every single element of an HTML page. More specialization is required, 
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particularly in the HTMLElement concept. Towards this, we exploit the highly struc-
tured and information rich HTML element description provided by modern browsers. 
Such information includes, among others, the text contained inside the element, its at-
tributes, the parent element under the DOM perspective, its tag name, etc. Besides this 
information, which is directly accessed, we also exploit calculated information that is 
derived if someone considers the neighborhood of some element. Such information in-
cludes, for example, the sibling order of this element being a child of its parent element 
and the total number of siblings. With this information in hand, a complex HTML ele-
ment description can be created in CG form. Such a CG is presented in Figure 5. Note 
that, for clarity, Figure 5 presents a simplification (CG operation) of six CGs over the 
common [HTMLElement] concept presented on the left. Moreover, for space economy, 
a reduced version is presented, since the actual description is quite more complex.  
 

[HTMLElement]  ← (parent) ← [HTMLElement] 
 ← (innerText) ← [Text] 
 ← (tag) ← [HTMLTag] 
 ← (siblingCount) ← [Integer] 
 ← (siblingOrder) ← [Integer] 
 ← (attribute) ← [Attribute] 

Figure 5: An HTML element in CG form (simplified and reduced version) 

 
 We demonstrate how our generic wrapper can be specialized using the classical 
problem of extracting information from an electronic flea market. Figure 6 presents a 
snippet from a web page of such a site. Information is organized in an HTML table, 
where the first row holds the headers and the rest of the rows correspond to records de-
scribing offered products. We assume that we want to extract the names of the products 
offered.  
 

 
Figure 6: A snippet from an on-line flea market 

 
[Wrapper: fleaName]  ← (targetURL) ← [URL: "www.fleamarket.gr"] 
 ← (output) ← [Info] 
 ← (container) ← [HTMLElement: #16] ← (parent) ← [HTMLElement:#15] 
  ← (innerText) ← [Text: "MODEM MOTOROLA SM56 E..."] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingCount) ← [Integer: 5] 
  ← (siblingOrder) ← [Integer: 1] 
  ← (attribute) ← [BGCOLOR: "#FFFFFF"] 

Figure 7: First training instance of a CG wrapper 
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 In a real situation, where the user is not expected to be an HTML expert, the 
wrapper creation program should allow the identification of instances of the desired in-
formation, by simply pointing it with the mouse (we have developed such a tool which 
is presented in a following section). Let's say the user points to the table cell containing 
the name of the first product. This specializes the generic wrapper description, which 
takes the form presented in Figure 7.  
 

[Wrapper: fleaName]  ← (targetURL) ← [URL: www.fleamarket.gr] 
 ← (output) ← [Info] 
 ← (container) ← [HTMLElement: #26] ← (parent) ← [HTMLElement: #25] 
  ← (innerText) ← [Text: "DIAMOND SUPRA v92 inte..."] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingCount) ← [Integer: 5] 
  ← (siblingOrder) ← [Integer: 1] 
  ← (attribute) ← [BGCOLOR: "#CCCCCC"] 

Figure 8: Second training instance of a CG wrapper 

 
 Unfortunately, this specialized version is not general enough since it is able to ex-
tract only the training instance. A second training instance should be used, say the cell 
containing the name of the second product. This results in the wrapper instance pre-
sented in Figure 8.  
 

[Wrapper: fleaName]  ← (targetURL) ← [URL: www.fleamarket.gr] 
 ← (output) ← [Info: X] 
 ← (container) ← [HTMLElement] ← (parent) ← [HTMLElement] 
  ← (innerText) ← [Text: ?X] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingCount) ← [Integer: 5] 
  ← (siblingOrder) ← [Integer: 1] 
  ← (attribute) ← [BGCOLOR] 

Figure 9: Generalization result of CG wrapper instances of Figure 7 and Figure 8 

 
 Using the generalization operation of the CG theory for the two CG wrapper in-
stances, a generic wrapper describing (extracting) both product names can be created 
(Figure 9). This wrapper is generic enough to extract all product names of the table in 
Figure 6, but it also extracts the first header cell. Further specialization of our CG wrap-
per is required to exclude the header cell. This can be established over the HTML ele-
ment that is the parent of the element containing the extracted information. This element 
refers to a row of the product table. Excluding this row is as simple as requesting that 
this element's sibling order is greater than one. The final wrapper is presented in Figure 
10. Note that the concept of the CG wrapper that contains the desired information ([Info]) 
is fed by the [Text: ?X] concept, since this part of the web page contains the desired in-
formation. In addition, parts of the final wrapper description that do not affect the accu-
racy of the wrapper, such as the [BGCOLOR] can be dropped out.  
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 Finally, regular expressions can be used over the initially extracted information in 
order to fine-tune the output. For example, extracting the price in euros from the flea 
market example, requires the replacement of ?X with some proper regular expression 
that is applied over X. 
 Thus, training a CG-Wrapper, is a set of automatic generalization and manual 
specialization tasks that results in a model (CG) that accurately describes the desired 
information inside a web page. 
 

[Wrapper: fleaName]  ← (targetURL) ← [URL: www.fleamarket.gr] 
 ← (output) ← [Info: X] 
 ← (container) ← [HTMLElement] ← (parent) ← [HTMLElement] ← (siblingOrder) ← [Integer: >1] 
  ← (innerText) ← [Text: ?X] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingCount) ← [Integer: 5] 
  ← (siblingOrder) ← [Integer: 1] 

Figure 10: The final CG wrapper modeling the product names of the table in Figure 6 

 
 We propose two execution models for our CG-Wrappers, a naive and an opti-
mized one. According to the naive execution model, we iterate over all the nodes of the 
HTML tree trying to satisfy the constraints imposed by the wrapper components. In the 
optimized execution model we first do some short of filtering, to exclude nodes that are 
definitely irrelevant. For example, the wrapper of Figure 10 can be evaluated only over 
the nodes that have a TD tag. Selecting only those nodes is possible by exploiting the 
browser's application programming interface (API). The semantics of both execution 
models are derived from the CG theory: The evaluation of a CG-Wrapper is the result 
πv of a projection operation that projects the container part u of the wrapper over an 
HTML node v expressed as CG.  
 

[HTMLElement: #25]  ← (siblingOrder) ← [Integer: 3] 
 
[HTMLElement: #26] ← (parent) ← [HTMLElement: #25] 
 ← (innerText) ← [Text: "DIAMOND SUPRA v92 inte..."] 
 ← (tag) ← [HTMLTag: "TD"] 
 ← (siblingCount) ← [Integer: 5] 
 ← (siblingOrder) ← [Integer: 1] 
 ← (attribute) ← [BGCOLOR: "#CCCCCC"] 

Figure 11: Two nodes of an HTML tree, in CG form (partially presented) 

 
 For example, consider the two CGs of Figure 11 which refer to the table of Figure 
6, representing the second product row and the first cell of this row, respectively. Pro-
jecting the container part of the CG wrapper of Figure 10 over the second CG of Figure 
11 results in an instantiated CG wrapper where the unbound X referent of the [Text: ?X] 
concept have been unified with "DIAMOND SUPRA v92 inte...". Note that, the exact projection 
involves also a replacement of the concept [HTMLElement: #25] of the second CG, with the CG 
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definition of this concept (that is, the first CG in Figure 11). This inner task corresponds 
to the expansion operation of the CG theory, where a concept is replaced by its CG 
definition. The final instantiated wrapper is displayed in Figure 12. 
 

[Wrapper: fleaName]  ← (targetURL) ← [URL: www.fleamarket.gr] 
 ← (output) ← [Info: "DIAMOND SUPRA v92 inte..."] 
 ← (container) ← [HTMLElement] ← (parent) ← [HTMLElement] ← (siblingOrder) ← [Integer: >1] 
  ← (innerText) ← [Text: "DIAMOND SUPRA v92 inte..."] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingCount) ← [Integer: 5] 
  ← (siblingOrder) ← [Integer: 1] 

Figure 12: The wrapper of Figure 10 after applying it over the CGs of Figure 11 

 

3.3 Reusing CG-Wrappers 
The CG-Wrap model, is expressive enough to handle nested wrapper definitions, that is, 
wrappers that are defined in terms of other wrappers. Such a very useful case, is the 
definition of a looping wrapper that collects results from chained pages containing 
search results. Consider for example the typical case in which an on-line store presents 
the results of some user query in individual pages containing 10 items each. In such 
cases, at the bottom of all pages but the last one, there is a link to the next result page, 
usually named "Next Page". A looping wrapper is capable of extracting information 
from all results pages by automatically following the "Next Page" link.  
 Thus, a looping CG-Wrapper (Figure 13) is a combination of a data collector 
wrapper and a loop definer wrapper. A data collector (Wrapper:#1) is a typical CG-
Wrapper that extracts information from a web page. A loop definer (Wrapper:#2) is a 
CG-Wrapper that extracts the URL of the next page, in the case of information that is 
presented in a sequence of pages. These two wrappers have a common target URL.  
 

 

LoopingWrapper: #3 

Wrapper: #1 

Wrapper: #2 

has_data_collector 

has_loop_definer 

targetURL 

URL 

targetURL 

(rest definition)

(rest definition)  
Figure 13: A looping wrapper in CG notation. 

 
 The evaluation of a looping wrapper is presented in Figure 14. First, the data col-
lector is executed and the extracted information is appended to the already extracted re-
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sults. Then, the execution of the loop definer wrapper follows which extracts from the 
same page the URL of the "Next Page" link. If this second wrapper brings results then 
the target URL of the data collector is updated. These steps are repeated until the loop 
definer fails to extract information. 
 

LoopingWrapperExecutor(LoopingWrapper:#3) 
begin 
 Results:=∅; 
 repeat 
  WrapperExecutor(Wrapper:#1, subResults); 
  Results:=AggregateResults(Results, subResults); 
  WrapperExecutor(Wrapper:#2, nextURL); 
  UpdateWrapper(Wrapper:#1, URL, nextURL); 
 until nextURL=null; 
end; 

Figure 14: Abstract execution model of a looping wrapper. 

 

4 Comparison Chart Building with CG-Wrappers 
In this section, we identify problems involved in the comparison chart building task and 
propose visual and ontology driven approaches that can provide substantial automation 
to the whole task. 

4.1 Locating Product Specification Pages 
Building a comparison chart for a certain type of products using information presented 
in web pages requires, first of all, to locate those pages. Without doubt, the web sites of 
the various brands is the best place to visit. Locating such sites on the web is a relatively 
simple task. All that someone has to do is to either try some "URL guessing" heuristics 
using the www.<brand>.com pattern for known brands or use a search engine (or a por-
tal) to locate an e-shop selling the desired category of products, where all major brands 
are usually mentioned. Having a brand's URL makes the product specification page de-
tection a couple of clicks task. From a brand's main page someone has to follow the 
"Products" link to go to a page where a complete list of links to various products is 
available. It is remarkable how strong the above heuristic is. The detailed specifications 
of a particular product are usually displayed either inside the product's page or in a sepa-
rate, dedicated page accessible from the product's main page. The above organizations 
are depicted in Figure 15. It is clear that, even considering that the URLs to brand sites 
are known, some automation is required towards collecting all the URLs to product 
specification pages. 
 

Brand's Main Page 
 Product List Page 
  Specific Product Page (with specs) 

Brand's Main Page 
 Product List Page 
  Specific Product Page 
   Product's Specification Page 

Figure 15: Typical location of a product's specification information in a brand site 

 
 We have developed a URL wizard that allows the average user to visually ma-
nipulate a web page and collect information presented in it. For the purpose of collect-
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ing URLs where products are presented, the user can exploit the product list page of a 
brand site where links to all available products are provided. He/she simply points (or 
selects) the anchor object(s) inside such a page and asks for URL harvesting from a con-
text menu. For better manipulation, our tool provides a tree view of the web page as 
well. This tree view is synchronized with the browser window (see Figure 19 in Section 
5), that is, when the user points over a page element in the browser window, the corre-
sponding branch in the tree representation is automatically highlighted and vice-versa.  
 The above approach works perfectly for sites following the organization presented 
in Figure 15 (left). When the product has a dedicated specification page we train a CG 
wrapper that learns how to find the anchor to the specification page, inside the product's 
main page. 
 

4.2 Collecting and Merging Specification Information 
The main difficulty in comparison chart building stems mainly from the fact that, prod-
uct features are not presented in a uniform way inside specification pages. Figure 16 
demonstrates how diverse two specification pages could be, although they both refer to 
similar products (digital cameras). Not only the layout of the pages is different, which 
renders most of the HTML tag based information extraction methods obsolete, but the 
exact vocabulary used across brands also varies. The latter, makes the regular expres-
sion based extraction troublesome, as well. There exist though two strong, "per brand" 
regularities that seem worth to exploit:  

• information in specification pages is usually presented in feature-value pairs 
enclosed in adjacent HTML tags, and 

• the vocabulary used by each brand to refer to product features is almost fixed. 
 The above two regularities suggests that a dual approach is required: first locate 
the feature, then locate and extract the nearby value. Since this combination works at 
the brand level, the final obstacle is to integrate the "per brand" partial results under a 
common schema.  
 

   
Figure 16: Same type of products but diversity in the way specification information is presented 

 
 We have selected to use a product ontology as a common schema. As the seman-
tic web evolves, ontologies describing products of any kind are expected to become 
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available. Such ontologies can be used to map features expressed in a brand's vocabu-
lary to ontology elements.  
 CGs are a proper candidate for describing ontological information. They offer a 
unified and simple representation formalism that covers a wide range of other data and 
knowledge modelling formalisms and allow matching, transformation, unification and 
inference operators to process the knowledge that they describe [23]. Having already 
used CGs to model and train our CG-Wrappers, CG based ontological knowledge can 
be easily incorporated and contribute towards knowledge-based wrappers.  
 Consider, for example, two wrappers that extract the focal length and the optical 
zoom from specification pages of digital cameras. Background knowledge regarding the 
relation that exists between optical zoom and focal length can be used to modify the 
kind of information that the focal length wrapper is expected to locate, assuming that 
the optical zoom wrapper has already extract information. In another case, having se-
lected the brand of a processor, should automatically prevent the extraction of informa-
tion for certain, incompatible, motherboard models. 
 Although ontological knowledge is expected to become available in RDF/RDFS, 
the semantic web's language, converting this encoding to CGs is not an issue ([17], [6]). 
Furthermore, CGs provide a "ready to use" framework for reasoning. This is not the 
case, at the moment, for RDF/RDFS. 
 As a result, we propose a dual wrapper approach for extracting feature-value pairs 
from product specification pages: 

• Associate a wrapper to some product feature, as it is defined in the product on-
tology and train the wrapper to locate that feature based on the term used by a 
brand. 

• Use a second wrapper to extract the value of the feature. 
 This dual wrapper approach is justified by the fact that feature-value information 
is always located in adjacent HTML elements inside a web page. We can easily encode 
this information in our wrapper pair reducing in that way the search space of the second 
wrapper. Furthermore, the second wrapper becomes capable of performing a "blind" 
extraction in case the value of some feature is presented in an unknown way. In a 
"blind" extraction the wrapper extracts all the text inside some HTML tag, because "it 
knows" that the information is there. This is obviously better than an exact-or-nothing 
approach. In addition, we are not depended on absolute positioning to refer to HTML 
nodes but we follow a "relative to textual information" methodology instead which is 
more robust to small page changes. This is very crucial, since many commercial sites 
tend to make frequent alterations to their sites to prevent wrapping. The same holds for 
the advertisement banners and special offers, the frequent addition and removal of 
which, turn obsolete wrappers that use absolute positioning. 
 Figure 17 displays a dual wrapper ([DualWrapper: CanonDigitalZoom]) extracting feature-
value information (digital zoom of a digital camera model). It is defined in terms of a 
feature locator wrapper ([Wrapper: #1]) that locates the table cell ([HTMLTag: "TD"]) containing 
the text "Digital Zoom", and a value extractor wrapper ([Wrapper: #2]) that extract the value 
of the feature. The second wrapper is modelled to search in the table cell that is right 
after the cell the first wrapped worked with. This correlation is established over the pa-
rameter ?X.  
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 The dual wrapper of Figure 17 can be used as a data collector in the comparison 
chart building problem, in the way the simple CG-Wrapper was used in the flea market 
problem (Section 3.2). 
 

 [Wrapper: #1] ← (targetURL) ← [URL: www.powershot.com/powershot2/s400/specs.html] 
 ← (output) ← [Info: X] 
 ← (container) ← [HTMLElement] ← (innerText) ← [Text: "Digital Zoom"] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingOrder) ← [Integer: ?X] 
 
[Wrapper: #2]  ← (targetURL) ← [URL: www.powershot.com/powershot2/s400/specs.html] 
 ← (output) ← [Info: V] 
 ← (container) ← [HTMLElement] ← (innerText) ← [Text: ?V] 
  ← (tag) ← [HTMLTag: "TD"] 
  ← (siblingOrder) ← [Integer: X+1] 
 
[DualWrapper: CanonDigitalZoom] ← (featureWrapper) ← [Wrapper: feature]  
 ← (valueWrapper) ← [Wrapper: value] ← (output) ← [Info: ?V] 
 ← (output) ← [Info: V] ← (has_value) ← [Digital Zoom] 

Figure 17: A dual wrapper extracting digital zoom information 

 

5 A Framework for Information Extraction with CG-Wrappers 
In this section, we describe the system architecture of Aggregator, a comparison chart 
builder that implements the ideas discussed in the previous sections. In addition we pre-
sent a small scale, demonstrational usage, using a prototype implementation.  

5.1 System Architecture  
The Aggregator is a tool aiming at helping the user to rapidly create side-by-side com-
parison charts using product specification web pages. It consists of four main modules 
(Figure 18): 

• the interactive wrapper creator, 
• the evaluator,  
• the knowledge based module, and 
• the publisher 

 The interactive wrapper creator is a sophisticated visual environment that allows 
the user to train wrappers. It consists of a web browser instance accompanied by the 
DOM tree component and interconnected in such a way that allows the user to focus on 
the elements of a web page by simply using the mouse (Figure 19). This is established 
with the extensive use of an HTML parser that gives access to all the elements of a web 
page. Finally, this module includes a product feature list which can be either derived by 
a predefined product ontology or manually edited by the user. The wrapper creator 
module allows the user to navigate to desired web locations, where product specifica-
tion information is presented, and visually map page elements to feature-value pairs of a 
corresponding wrapper template.  
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Figure 18: System Architecture 

 
 The evaluator module "runs" the created wrappers and actually does the informa-
tion extraction. The extracted information can be published on the web by the publisher 
module in the form of a static web page. In addition, it is possible to save it as a spread-
sheet table. 
 The knowledge based (KB) module is basically a conceptual graph inference en-
gine (the core of which has been developed in our past work in [25] and [24]). Its main 
component is CoGITaNT ([10],[22]), a library of C++ classes allowing the development 
of applications based on the CGs. CoGITaNT allows the handling of CGs using an ob-
ject oriented approach and offers a great number of functionalities on them such as crea-
tion, modification, projection, definition of rules, inputs/outputs, etc. Furthermore, 
CoGITaNT can be extended since it provides the programming interface to define new 
operations, like for example, customized concept and relation matching operations and 
rule execution methods. The knowledge included in the KB module is divided into do-
main knowledge and product knowledge. The former, is mostly related to the DOM 
specification and includes concept types related to the DOM elements and relation types 
that allow us to describe the various usage constraints between DOM elements. The 
product knowledge, which is also encoded in CGs, serves in three ways:  

• defines the potential features/attributes for which we may build wrappers, in a 
form of a product ontology,  

• provides generic wrapper templates which the user should make more de-
tailed, and 

• gives insight for the values that a particular wrapper should search for. 
 The presence of product knowledge is optional since Aggregator can operate 
without this information but at the cost of reduced precision in the extracted informa-
tion.  
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 The URL Wizard is an important sub-component of the KB module that helps the 
user to quickly populate the list of URLs that will be the target of the various wrappers. 
This is done using minor user input, mainly in the form of link traversal tracking. Inter-
nally, this module uses a proper, predefined CG-Wrapper. 
 Finally, the in-page structure learner is responsible to determine how the feature-
value pairs are organized inside a product specification page. This is done by means of a 
generalization operation as soon as two wrappers have been visually trained by the user. 
The learned pattern is used to partially detail the remaining wrapper templates. This will 
reduce the user effort for wrapper training since the system is becoming able to suggest 
possible page element for wrapper part assignments. 
 The prototype of Aggregator runs on wintel machines. The user interface is built 
in Delphi (Figure 19) and makes extensive use of the Microsoft's HTML parser (which 
is used in Internet Explorer). The knowledge based components are built in C++ and 
make use of the CoGITaNT library.  
 

5.2 Case Study 
We have done a small scale evaluation study of Aggregator. We asked four experienced 
web users to create a feature/value comparison chart for the digital cameras of two 
brands. Two of the users (1st group) used the Aggregator agent while the rest (2nd group) 
used a web browser and a spreadsheet application. All users were provided with two 
URLs, one for each brand site, which were the entry pages leading to individual product 
pages. Regarding the individual product pages, both sites had the typical organization 
presented in Figure 15 (right), that is, the products' page was giving access to the pages 
of individual products from where access was provided to the specification page of a 
particular product. None of the users was aware of this organization. 
 In addition, we defined which were the exact features of interest and provided all 
users with the proper product feature list. The features of interest were: model name, 
CCD resolution, focal length, optical zoom, digital zoom, shutter speed, white balance, 
flash modes, storage media and power source. Exact value extraction was requested 
only for CCD resolution, focal length, optical zoom, digital zoom and shutter speed.  
 The first user group used the URL wizard to train Aggregator how to locate the 
individual product pages. Starting from the given Brand#1 central page, the users of the 
first group used the visual tools of the Aggregator to quickly collect the URLs of all the 
product pages (ProductURLs). Just moving around the mouse, both users were able to 
rapidly locate the page elements (two HTML tables) that contained all the anchors to the 
individual product pages and ordered Aggregator (from a context menu) to record those 
URLs. Then, they recorded a navigation pattern from a product's main page to the prod-
uct's specification page. This resulted in a wrapper that given the initial product URL 
list produced a list with the URLs of the specification pages (SpecURLs). The same task 
was repeated for the second brand site. 
 After the target pages for information extraction had been defined, each user of 
the 1st user group had to train the "dual wrappers" that would perform the actual infor-
mation extraction. With a product specification page loaded into the embedded web 
browser and a predefined digital camera ontology available, the users had to select the 
features they were told from the digital camera ontology. The system then, internally, 
created the corresponding dual wrapper templates, presented the first one to the user and 
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waited from him/her to visually associate an element of the specification page (for ex-
ample, a table cell) with a wrapper element (Figure 19). After that, both users had to 
point over the page element that contained the value of the attribute under consideration. 
These two steps are enough for the Aggregator to create a wrapper to handle this spe-
cific attribute-value pair. The generated wrapper can be immediately evaluated over the 
SpecURLs list. The task is repeated for a second wrapper. These two wrapper instances 
allow the system to automatically determine the repetitive HTML structures used in the 
specification page to present the attribute-value pairs. We remind here that this is done 
with a generalization operation between the two user defined wrappers.  
 

 
Figure 19: The wrapper training/evaluation screen of Aggregator. 

 
 It is worth mentioned here that Brand#1 had no visible textual model name infor-
mation. Instead, it provided the model name in a form of a picture. That was no problem 
for the users of the 1st group since they assigned this picture's ALT property as the value 
of the model name feature. To the contrary, the users of the 2nd group had to manually 
type the model name in a spreadsheet cell.  
 For Brand#1, the system was able to detail automatically the seven out of the 
eight remaining wrappers. The missing case was related to the Optical Zoom feature 
because this information was included inside the general description of the product 
rather than in a dedicated feature-value pair. As a result this case required the user to 
manually train the corresponding wrapper. This issue, demonstrates the advantage of 
searching for both feature and value related page elements, instead of just value ele-
ments. Although this particular wrapper was about "Optical Zoom", it's feature part was 
related by the user to a page element with information about "Type of Camera". By fo-
cusing on a tiny part of an HTML page, it is possible to apply more computationally 
complex methods to extract an exact value for some feature. 
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 A total of 20 wrapper instances was created for both Brand#1 and Brand#2 sites 
(10 features times the number of brand sites). The time required to perform this infor-
mation extraction task is presented in Table 1. Although the recall factor was 100% for 
both brands, that is, all the desired features were located inside the product pages, the 
precision factor was 70% for Brand#1 and 50% for Brand#2. These precision numbers 
are not discouraging because although Aggregator failed to extract exact values for cer-
tain features, it had extracted a bigger portion of information that included the exact in-
formation. This, of course, prevents the user to query the complete resulted comparison 
chart in an SQL fashion, but does not prevent him/her to manually examine the chart 
and make an informed purchase decision.  
 

Table 1: Case study time results 

  1st group (using Aggregator) 2nd group (using browser and spreadsheet) 

  user1 user2 average time user 3 user 4 average time 

training 254 sec 292 sec 273 sec    

extraction* 18 sec 18 sec 18 sec 8x199 sec 8x183 sec 8x191 sec brand #1 
(8 products) 

total 272 sec 310 sec 291 sec 1592 sec 1464 sec 1528 sec 

training 320 sec 328 sec 324 sec    

extraction* 12 sec 12 sec 12 sec 6x240 sec 6x224 sec 6x232 sec brand #2 
(6 products) 

total 332 sec 340 sec 336 sec 1440 sec 1344 sec 1392 sec 

Complete Task  604 sec 650 sec 627 sec 3032 sec 2808 sec 2920 sec 

  per page  
average extraction time 45 sec per page  

average extraction time 209 sec 

* extraction times for the 2nd group are given in terms of the average time required to extract values from a single product specification 
page 

 
 It is worth mentioning that, although it takes more time for an Aggregator user to 
train the wrappers for a single brand page than it takes another user to manually extract 
(with copy-paste) the same information from the same page into a spreadsheet, addi-
tional product specification pages of the same brand are processed rapidly, resulting in a 
lower per page average extraction time (45 versus 209). 
 

6 Conclusions and Future Work 
Product specification pages provided on-line at various brand sites, are an excellent 
source of information to automatically create side-by-side comparison charts for "in-
formed" e-shopping. Apart from the information rich nature of such pages, they also use 
an in-site fixed vocabulary to refer to the various features of the advertised products and 
present these features using repetitive HTML tag combinations of arbitrary complexity. 
 In this chapter, we have proposed a knowledge based approach on the comparison 
chart building problem. Our method is two fold: First, we exploit vertical (in-page) 
similarities, that is, similarities in the way features are presented inside a product speci-
fication page. We visually identify feature-value information, map the surrounding 
HTML tags to predefined generic wrappers expressed as Conceptual Graphs and use the 
generalization operation to "learn" how information is presented inside a specification 
page of a brand site. This way, additional features can be located and the related values 
can be extracted automatically, although sometimes at a low precision ratio because the 
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desired information is mixed with some extra text. In addition we exploit horizontal (in-
site) similarities, that is, similarities across different product specification pages of the 
same brand. These are vocabulary and page layout similarities. 
 Furthermore, we argue that a product ontology and product background knowl-
edge can speed up the wrapper training process and improve the precision ratio of the 
extracted information. We have proposed the use of the Conceptual Graph knowledge 
representation and reasoning formalism for the knowledge based part of our approach, 
mainly due to their expressiveness power and the analogy between operations provided 
by the CG theory and operations required to train and apply a wrapper. In addition, CGs 
allow to easily integrate ontological knowledge about the product type under considera-
tion. This feature can contribute to the resiliency and adaptivity of our approach beyond 
the scope of [20], by adding rules and axiomatic knowledge that can alter the way wrap-
pers are described under certain conditions that hold on other wrappers or the data they 
extracted. 
 Finally, we have outlined the Aggregator, a side-by-side comparison chart builder 
that is based on the above techniques and provides visual tools to make the whole task 
easier. 
 Much more work is required, mainly in the ontology utilization part of our ap-
proach. We firstly aim at providing automatic utilization of on-line ontologies expressed 
in XML/RDF, in the way we utilize metadata information in [25] and [24]. We also plan 
to use Aggregator for side-by-side comparison of learning objects which have XML ex-
pressed metadata and for which we have already proposed knowledge based approaches 
based on CGs ([25], [24]). 
 Additionally, more work is required in the value extraction part of our method. 
Exact value extraction will require extensive use of regular expressions and probably of 
NLP techniques, but will allow us to query more fields of the resulted comparison chart 
in an SQL fashion. The fact that the part of a page that contains the exact value of a fea-
ture can be isolated and the kind of the expected value can be defined in the product 
type ontology, suggests that the whole problem is tractable at a good extend.  
 Finally we aim at improving the adaptability of our approach by creating brand-
independent wrappers. From some early attempts, this is already possible for feature-
value pairs that are crucial features of a product, like for example, the frequency of a 
processor or the screen diagonal dimension of a TV set. Apart from having relatively 
simple values, such features are usually presented alone inside a page, because are 
strong purchase decision criteria.  
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