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Abstract The use of human mucosal tissue models is an
important tool advancing our understanding of the specific
mechanisms of sexual HIV transmission. Despite 30 years
of study, major gaps remain, including how HIV-1 trans-
verses the epithelium and the identity of the early immune
targets (gate keepers). Because defining HIV-1 transmission
in vivo is difficult, mucosal tissue is being used ex vivo to
identify key steps in HIV-1 entry and early dissemination.
Elucidating early events of HIV-1 infection will help us
develop more potent and specific HIV-1 preventatives such
as microbicides and vaccines. Mucosal tissue has been in-
corporated into testing regimens for antiretroviral drugs and
monoclonal antibodies. The use of mucosal tissue recapit-
ulates the epithelium and immune cells that would be ex-
posed in vivo to virus and drug. This review will discuss the
use of mucosal tissue to better understand HIV-1 pathogen-
esis and prevention modalities.
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Introduction

While the use of macaque models to study the early events
associated with SIV/SHIV transmission has been informa-
tive in identifying early reservoirs and viral dissemination
[1, 2], there are differences between humans and macaques
as well as SIV and HIV-1. Consequently, gaps remain in our
knowledge and assumptions have to be made to extrapolate
the findings to human transmission. Some researchers use
man-made organotypic models to represent human mucosa,
but these models lack the full epithelial thickness (up to 30
layers thick for vaginal/ectocervical epithelium) and the
correct type and proportion of mucosal immune cells [3].
To address some of these concerns, researchers have turned
to human mucosal tissue to study these early events ex vivo.
The primary focus has been on vaginal and ectocervical
tissue acquired from surgical procedures. Colorectal, fore-
skin, and penile tissues have been used as well. Ex vivo
human tissue provides the correct architecture and immune
targets for HIV-1 infection and product evaluation that other
models cannot duplicate. The data gathered through this
work is helping to define how HIV-1 transverses the epithe-
lium, infects its target cells and disseminates, as well as how
to effectively design and test microbicides and vaccines to
prevent infection. This information should reveal opportu-
nities to refine and further develop HIV-1 preventatives,
such as topical microbicides and vaccines. This review dis-
cusses the contribution of ex vivo mucosal tissue to our
understanding of HIV-1 pathogenesis and defining safe
and effective HIV-1 preventatives.

Use of Mucosal Tissue to Study HIV-1 Pathogenesis

In the early 1990s, about ten years after the identification of
HIV-1 as the causative agent of AIDS, it became clear that
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finding an efficacious preventative vaccine would likely be
more difficult than expected [4]. HIV-1 vaccine candidates
at the time had failed to induce high-titer cross-neutralizing
antibodies and cytotoxic T cell responses, and the extent of
viral spread throughout the lymphoid system early during
infection was recognized as a difficult problem in develop-
ing effective treatments and a protective vaccine [5, 6].
Consequently, researchers turned their focus to the mecha-
nisms of HIV-1 transmission across mucosal surfaces and
subsequent viral spread and amplification in lymphatic tis-
sues. It was hoped that these studies would provide clues as
to how a vaccine or other emerging prevention technologies
such as topical microbicides should be designed to effec-
tively protect mucosal surfaces from HIV-1 infection.

Some important early findings were made in human skin
models demonstrating that cutaneous dendritic cells (DC)
were potent facilitators of productive HIV-1 infection [7, 8].
Limitations of these early models of HIV-1 pathogenesis
were the use of skin in the place of the less accessible genital
mucosa and the strategy of isolating cells from the tissue
before performing infection studies. When the first report of
HIV-1 infection in DCs from the female genital mucosa was
published, the former limitation was overcome but the work
was still done with cells isolated from the mucosa rather
than in situ [9]. Extracting cells from tissue, either with
enzymes or by allowing migratory cells to actively exit from
the mucosa can lead to changes in cell activation and surface
receptor expression that may alter their interaction with
HIV-1 [10, 11].

Then, in 2000, came two prominent studies that investi-
gated HIV-1 infection within intact cervical explants con-
taining both epithelium and stroma, one by Gupta and
colleagues [12] and the other by Shattock and colleagues
[13]. The Shattock model was based on earlier work pub-
lished by the same group in 1994 [14]. In these studies, the
researchers inoculated the tissue with HIV-1 and then
stained sections by immunohistochemistry for HIV-1 gag
protein or by in situ hybridization for HIV-1 RNA. HIV-1
infected cells were noted immediately beneath the epithelial
layer and were identified mostly as CD4+ T cells in the
Gupta model [12] and as CD68+ macrophages in the Shat-
tock model [13]. Studies since then have confirmed the
susceptibility of both cell types in the female genital mucosa
to HIV-1 infection [15–17, 18••, 19–21], so the results of the
two early models appear to be correct, with the discrepancy
in targeted cells types likely attributable to technical varia-
tions and sensitivities of the assays used.

One major difference between the techniques was that the
Gupta model was the first claiming to be “polarized”, mean-
ing that it mimicked the route of natural infection in vivo
where HIV-1 has to penetrate the epithelial surface to reach
leukocytes embedded deeper within the epithelium or the
stroma. Polarity was achieved by using agarose to seal tissue

plugs placed onto transwell filter inserts, forcing the virus to
enter the mucosa from the surface oriented in vivo toward
the vaginal cavity, whereas media nurturing the tissue was
supplied from the bottom chamber of the transwell through
the filter membrane. While there has been controversy over
whether this initial model was truly polarized, the Gupta
group as well as others subsequently improved upon it, so
that newer studies with cervicovaginal, foreskin, or colorec-
tal explants can make this claim more convincingly [16,
21–25].

In what scenarios is explant polarity important? For many
pathogenesis studies of HIV-1 infection, it is in fact second-
ary. While it would be nice to be exact in recapitulating the
directionality of mucosal HIV-1 infection in vivo, the events
following contact between an infectious virion and a sus-
ceptible target cell are unlikely to be altered by how HIV-1
reached the cell in the first place. For this reason, most
pathogenesis studies [19, 26, 27••], have not used polarized
models [17, 18••, 28, 29]. Conclusions about which cells in
the cervicovaginal mucosa are most susceptible to HIV-1
entry and infection, how the virus penetrates the outer cell
membrane, its intracellular fate, and its route of cell-to-cell
spread can be reached without simulating tissue polarity.

In this way, it has been demonstrated that CD4+ T memory
cells are the main drivers of productive infection in the cervi-
covaginal mucosa [16, 17, 18••, 19]. Other studies also have
identified productive infection of CCR5+ macrophages [13,
15, 21]. How HIV-1 reaches these target cells is not clear, but
DCs are likely to play a role. HIV-1 can enter DCs not only via
CD4 and CCR5 but also through C-type lectin receptors such
as DC-SIGN and langerin [30, 31]. The dendrites of DCs form
a network within the squamous epithelia, such as those cov-
ering the vagina and ectocervix, which reach higher toward
the luminal surface than T cells [32–37]. In columnar epithe-
lia, DCs can stretch their dendrites through epithelial tight
junctions and can sample the luminal contents [38, 39]. Thus,
it is plausible to assume that they are frequently the first
leukocyte type encountered by HIV-1 in the mucosa.

When HIV-1 reaches CD1a+ DCs termed Langerhans
cells (LCs) residing within the squamous epithelium of the
vagina and ectocervix, the LCs endocytose virions very
efficiently [19] and, without themselves being productively
infected, pass HIV-1 to susceptible CD4+ T cells [27••]. For
most of these studies, vaginal epithelial sheets were isolated
by ex vivo suction blistering. Based on experiences with
human skin [40–42], a customized suction cup apparatus
applied for ~90 minutes gently creates 5 mm diameter
blisters whose roofs are formed by the mucosal epithelial
layer. The epithelial-stromal separation takes place at the
lamina lucida of the basal membrane–the blister roof can
then be excised to yield intact epithelial sheets untouched by
digestive enzymes, ensuring that HIV-1 receptors on the cell
surface remain unaltered.
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Though it’s clear that vaginal LCs can transport infec-
tious HIV-1 this does not mean they are necessarily the first
cell type to capture HIV-1 in the cervicovaginal mucosa.
The sequence of events unfolding when HIV-1 penetrates
the mucosa can only be specified by forcing the virus
through the initial steps of transmission in the same direc-
tionality as they occur in vivo, necessitating a polarized
tissue model. Likewise, studying how HIV-1 breaches the
intact outer epithelial barrier of the cervix or vagina, as well
as the mucus film covering it, requires polarized explants.
These are difficult experiments. Even if a large amount of
fluorescently labeled HIV-1 is applied to the mucosal sur-
face, the number of observable virions decreases exponen-
tially with the depth of penetration into the epithelium,
making a clear distinction between background auto fluo-
rescent debris and virions increasingly difficult. This prob-
lem can be overcome by using virions tagged with a green
fluorescent protein-viral protein R (GFP-Vpr) fusion protein
where the GFP molecule is photo-activatable [43]. Any dots
not increasing dramatically in fluorescence upon photo-
activation are revealed as background, and the certainty of
virion identification can be further increased by co-labeling
virions with anti-gag antibodies or lipid membrane dyes [44].
Using this technique, T. Hope and colleagues have presented
results at scientific conferences showing that HIV-1 is able to
move through the interstitial spaces between differentiated
squamous epithelial cells of the ectocervix to depths of
40 μm, well within reach of embedded LCs.

This unimpeded passage is supported by a recent finding
that the apical layers of the ectocervical and vaginal epithe-
lium do not contain classical cell-cell tight junctions and are
permeable to IgG [45•]. In contrast, endocervical columnar
cells are joined by IgG-impermeable tight junctions. It has
been generally assumed that the single layer columnar epi-
thelium of the endocervix is the site most vulnerable to HIV-
1 invasion. However, these results suggest that the vagina
and ectocervix may be more vulnerable, even without
micro-abrasions, and that LC dendrites reaching into the
tight junction-free zone of the epithelium could be the
bridge to transport HIV-1 deeper into the epithelium where
activated CD4+ CCR5+ T cells reside. This principle has
recently been affirmed by HIV-1 infection studies with
polarized inner human foreskin explants [22, 46]. Inter-
estingly, LCs in the uppermost layers of the vaginal
epithelium do not express langerin [27••], which can
target HIV-1 to an intracellular degradation pathway
[47]. Thus, the combination of a tight junction-free su-
perficial epithelium with langerin-negative LCs concen-
trated in that area could be exploited by HIV-1 to
establish infection in the vagina and ectocervix. Confirm-
ing this hypothesis for the cervicovaginal mucosa will
require HIV-1/langerin/CD1a co-localization studies in
polarized cervicovaginal explants.

Lastly, polarized mucosal explants provide a tool to in-
vestigate mechanisms of viral selection. It is well known
that among two broad categories of HIV-1 variants, those
using CCR5 and those using CXCR4 as co-receptors for
fusion with the cell membrane, transmissions occur nearly
exclusively with HIV-1 using CCR5 [48]. However, why
this occurs remains unclear, with the current hypothesis
being a plausible but still vague multiple gatekeeper con-
cept; imperfect selection occurs sequentially at multiple
levels, cumulatively giving HIV-1/CCR5 a strong advantage
[49•]. One study using a non-polarized explant model indi-
cated that HIV-1/CCR5 replicates more efficiently than
HIV-1/CXCR4 in cervicovaginal tissue [18••]. Studies in a
polarized model could extend these findings to include
additional possible levels of gate keeping, in particular
differential interaction of HIV-1 with epithelial cells and
LCs during viral penetration into the mucosa. For example,
expression of CXCR4 but not CCR5 on cervical epithelial
cells has been observed (Hladik unpublished data and [50,
51]) and could play a role in sequestering HIV-1/CXCR4.
Thus, viral selection and comparative fitness studies are best
performed in polarized models [52], as these models encom-
pass several levels of potential restriction and represent the
overall capacity of an HIV-1 variant to overcome these
barriers better than a non-polarized model.

Use of Mucosal Tissue to Evaluate HIV-1 Prevention
Modalities

Preclinical efficacy and safety testing of microbicide prod-
ucts and antibodies has been done using a variety of in vitro
assays that use primary immune cells and molecular indica-
tor cell lines. There are several algorithms in use that vary in
the specific assays performed due to laboratory preferences
[53–56]. These assays characterize the performance of the
drugs or antibodies under different environmental condi-
tions (pH transition), against drug resistant HIV-1, and/or
cell-associated HIV-1. Until this past decade, most algo-
rithms have not incorporated ex vivo mucosal tissue which
includes cervical, vaginal, colonic, penile, foreskin, and
tonsil. Both polarized and non-polarized systems are used
to address specific questions regarding product safety, effi-
cacy, and drug localization. To note, colorectal and tonsil
tissue are traditionally placed on gel-foam rafts, regardless
of polarization, to provide 3-dimensional support for the
tissue [24, 57, 58].

Non-polarized tissue is typically composed of small
cubes (2 or 3 mm3) of tissue that are cut from the larger
piece using a scalpel. The epithelium is retained, but the
muscularis is trimmed off [13, 57, 59, 60]. Alternatively, the
stratified squamous epithelium can be separated from the
underlying stroma after treating the entire tissue with EDTA
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overnight, resulting in intact vaginal epithelial sheets [61].
The tissue or sheet is submerged in medium that contains
drug with or without HIV-1. This creates the “worst-case
scenario” by allowing virus access to targets in the lamina
propria independent of traversing the epithelium. Non-
polarized models have the advantage of more efficiently
utilizing the available tissue. Consequently, many tissue
replicates are possible for each treatment condition. Using
this model system, drug entities known as active pharma-
ceutical ingredients (APIs) have been tested to determine
safety in tissue and ability to prevent HIV-1 and dissemina-
tion [13, 59, 62–66, 67••, 68–72] as well as HSV-2 infection
[73•, 74] (Table 1). Non-polarized tissue is pre-treated with
the API for a short period of time, typically 15 to 30 minutes,
and then virus is added to the cultures. After 2 hours, the
tissue is washed and placed in fresh medium. The potency of
several entry inhibitors and non-nucleoside and nucleotide
reverse transcriptase inhibitors has been tested in non-
polarized tissue demonstrating that several log10 more drug
is needed to block HIV-1 infection of tissue than what is
found for traditional in vitro assays such as indicator cell
lines [59, 63, 67••, 68]. This has created the possibility of
defining the effective dose that will block HIV-1 infection
by 50 % to 100 % in the tissue–in essence creating a “tissue
concentration effective dose 50 % or 100 %”. These models
also demonstrated the benefits of drug combinations, which
much like therapy, show an additive effect even in the
presence of drug-resistant virus [67••, 68]. An additional
utilization of the non-polarized tissue models has been eval-
uating the ability of drug to block HIV-1 infection of the
cells that migrate out from the tissue thereby stopping dis-
semination of the virus [17, 59, 63, 64].

Evaluation of formulated API(s), whether they be aque-
ous gels, films, creams, tablets, or other dosage forms, is
typically done using polarized tissue because the use of the
topical product is intended to primarily interact with the
epithelium. The tissue is oriented with the apical surface
upward and sealed around the sides using agarose or Matri-
gel™. Most microbicides to date have been formulated as
aqueous-based gels [21, 24, 75–80, 81•, 82] (Table 1). Pre-
clinical testing of the gels adds additional complexity be-
cause pH, osmolality, and viscosity of the product will
impact the results. For instance, the polymers used in the
formulation may alter the overall toxicity or efficacy profile
due to smothering of individual cells or non-specifically
binding HIV-1. Tissue-based screening is advantageous be-
cause effects of the vehicle independent of the API can be
evaluated to define the impact the formulation may have on
the testing results. As new formulations are designed,
researchers need to become more creative with their testing.
For example, solid dosage forms using quick-dissolving
film technologies are first allowed to dissolute in a small
volume of liquid before being added to the apical tissue

surface. Testing these films has shown them to safely and
effectively deliver RC-101 [79] and dapivirine [83] to cer-
vical tissue. Using a more novel formulation approach,
researchers have created subliming matrices to deliver any
drug of interest thus creating a “universal” delivery system.
The solids are applied to the apical surface and while they
sublime away, drug is delivered to the tissue. Because de-
livery occurs over several days, the tissue can be challenged
with HIV-1 over this time period. This approach successful-
ly tested the delivery of tenofovir and emtricitabine to
polarized cervical tissue exposed repeatedly to HIV-1 and
prevented infection of the tissue [84••].

For topical microbicides, the original paradigm was the
development of vaginal products for women to protect
themselves against HIV-1 acquisition. However, it was re-
alized that products marketed for vaginal use would be used
by all persons wanting to protect themselves including those
engaging in receptive anal intercourse. With this in mind,
non-polarized [57] and polarized [24] colorectal tissue mod-
els were developed for screening the safety and efficacy of
vaginal microbicide products specifically for this compart-
ment. Several APIs have been tested and the relative effica-
cy in the tissue with non-nucleoside reverse transcriptase
inhibitors showing more potent activity than nucleotide
reverse transcriptase inhibitors and entry/fusion inhibitors
[66, 67••, 68]. While the APIs have shown no detrimental
toxicity to the mucosal tissue, formulations of several vag-
inal microbicide candidates showed loss of cervical and
colorectal epithelium [21, 24, 80]. This could be attributed
to the concentration of the API in the formulation, as was
the case for PRO 2000 where the 2 %, but not the 0.5 %,
concentration showed tissue toxicity [21, 24]. Or it could be
attributed to the formulation itself. The original tenofovir
1 % gel is hyperosmolar and the active and vehicle control
gels both showed epithelial sloughing and fracture [80].
When reformulated to lower the glycerin content and thus
reducing the osmolality, the new tenofovir 1 % gel showed
no epithelial changes [77]. This was reflected in the clinical
trials using the original tenofovir gel for rectal application;
several participants experienced cramping, abdominal bloat-
ing, and urgency–typical of hyperosmolar products such as
enemas [85]. When the reformulated tenofovir gel was
applied rectally, it was better tolerated than the original
formulation [86]. There is now a concerted effort to develop
microbicides specifically designed for use during receptive
anal intercourse [81•].

To begin to bring real life experiences into the laboratory,
mucosal secretions are being added to mucosal tissue to
study their effects on drug activity. Semen or seminal fluid
has been the most studied secretion and reduces the potency
of several microbicide polyanion drugs such as PRO 2000
and VivaGel [87, 88] while not impacting non-nucleoside
and nucleotide reverse transcriptase inhibitors [78, 89].
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While semen was purported to enhance HIV-1 replication in
tonsil tissue [90], its ability to enhance HIV-1 replication in
cervical and colonic tissue has not been demonstrated yet
(Dezzutti unpublished data). Incorporating female genital
tract fluid can be more problematic. If a cervicovaginal
lavage is used, the genital tract fluids are diluted 30- to
40-fold, thus limiting the usefulness of this approach for
testing drug activity. Likewise, undiluted female genital
tract fluid collected by direct aspirate or the Instead Cup
could be incorporated, but there are concerns about its
usefulness as well for several reasons: (i) volumes of mate-
rial collected are typically <1 ml making it difficult to use
for multiple assays, (ii) immune factors vary across the
menstrual cycle, and (iii) high levels of genital tract flora
will be problematic in mammalian tissue culture. However,
as progress is made, research groups will begin to incorpo-
rate mucosal secretions into their testing algorithms to reca-
pitulate the environment in which HIV-1 is transmitted.

The use of mucosal tissue to date has not only provided
critical information regarding the feasibility of using antire-
troviral drugs for HIV-1 prevention, but also demonstrated
some predictability of clinical success. Preclinical testing,
which included tissue explant testing, of products used in
phase 3 efficacy trials (Carraguard [91], nonoxynol-9 [92],
and cellulose sulfate [93]) showed these compounds either
(i) were not effective against HIV-1 infection [21, 54] and
resulted in no benefit for the trial participants or (ii) were

Table 1 Use of ex vivo human mucosal tissue to evaluate HIV-1 topical microbicides and antibodies using non-polarized and polarized models

Model Tissue type Drug (formulation) Reference

Non-polarized tissue Cervix PRO 2000, UC781, PPCM, PMPA, dapivirine [13, 63–65, 72]

Cervix nAb, B12 & CD4-IgG2 [17]

Cervix Cellulose acetate phthalate gel [69]

Cervix Griffithsin [62, 70]

Vaginal sheets Cellulose sulfate gel, T20 [61]

Penile Cyanovirin-N & PRO 2000 [59]

Colorectal UC781, Dapivirine, PMPA, emtricitabine [67••, 68]

Colorectal L’644, C34, T20, T1249 [66]

Tonsil AOP-RANTES, Cellulose acetate phthalate gel,
acyclovir, tenofovir

[71, 73•, 74]

Polarized tissue Cervix RC-101 (aqueous gel & film) [79, 82]

Cervix Tenofovir/UC781 combination (aqueous gel) [76]

Cervix Tenofovir & emtricitabine (subliming solid matrices) [84••]

Cervix Dapivirine (Film) [83]

Cervix/colorectal Cellulose acetate phthalate, Carraguard™, D2A21,
PRO 2000, UC781, VivaGel™ (aqueous gels)

[21, 24]

Cervix/Colorectal IQP-0528 & IQP-0528/tenofovir combination (aqueous gels) [75, 78]

Cervix/Colorectal Tenofovir (aqueous gel & reformulated aqueous gel) [77, 80]

Colorectal Rectal-specific placebos (gels) [81•]

Ex vivo challenge–non-polarized Colorectal biopsies UC781 gel–rectal use [95••]

Colorectal biopsies Tenofovir 1 % gel–rectal use [85]

Fig. 1 The HIV-1 pathogenesis and preclinical testing puzzle. Human
mucosal tissue when used ex vivo is termed explants and is one of the
corner stones of laboratory testing. The advantage of mucosal ex vivo
tissue is it provides the anatomical site where virus enters the host and
topical microbicides and antibodies encounter it. To fully address HIV-
1 pathogenesis questions as well as the safety and efficacy of HIV-1
preventatives, mucosal ex vivo tissue should be used in conjunction
with other models and modifiers

Curr HIV/AIDS Rep

Author's personal copy



toxic [21, 24, 63, 94] and thus led to increased HIV-1
infection in the clinical trial. A new approach to evalu-
ating topical microbicide products has been the incorpo-
ration of ex vivo mucosal tissue in early phase 1 safety
trials. Termed “ex vivo challenge” assays, participants
use a product daily for up to 7 or 28 days and tissue
biopsies are taken after the last dose. The biopsies are
placed in culture with HIV-1 in the laboratory, washed,
and followed for 14 to 21 days to determine if virus
replicates in the tissue or not. Using this approach, rectal
use of vaginal microbicide gels containing UC781 [95••]
and tenofovir [85] have shown significant protection
against HIV-1 infection of colonic tissue. These data are
the first to provide a linkage between drug levels
(pharmacokinetics) and drug activity (pharmacodynamics).
The use of ex vivo challenge assays after vaginal dosing of
topical microbicide products has been more challenging. Cur-
rently, it is not clear whether vaginal or ectocervical tissue is
better for testing. Preliminary work has shown while both
tissue types are infected with HIV-1, virus replicates to signif-
icantly higher levels in ectocervical tissue [96]. The use of ex
vivo challenge using ectocervical tissue is being tested in a
phase 1 microbicide trial and the results should be forth
coming in the next year [97].

Conclusion

The use of ex vivo mucosal tissue to investigate ques-
tions surrounding HIV-1 pathogenesis and the potential
of HIV-1 prevention modalities has expanded over the
past decade. While results are being generated regarding
HIV-1 passage through the epithelium, initial cellular
targets, and effective drugs and antibodies that prevent
HIV-1 infection there are several limitations for the use
of ex vivo mucosal tissue in research. Once removed
from the person, the tissue loses hormonal control (espe-
cially for cervical tissue), mucus and flora, and the
capacity to recruit immune cells. Moreover, after
~36 hours, cervical tissue begins to shed the upper layers
of epithelium [12, 13, 21], while colorectal tissue begins
to undergo autolysis [24, 57]. Consequently, the function-
al work done with ex vivo tissue needs to be completed
in a short period of time. Despite these challenges, ex
vivo explant tissue provides an important piece of the
HIV-1 laboratory testing puzzle (Fig. 1) and should ide-
ally be used in conjunction with other models such as
organotypic tissue and animal models to fully address the
gaps. Ex vivo mucosal tissue, serving as a surrogate for
the in vivo environment, remains a critical tool for teas-
ing out the mechanisms of HIV-1 transmission and
should continue to be used for the screening of topical
microbicides and pathogen-specific antibodies.
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