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Abstract Subsurface two-phase flow in porous media often takes place in reser-
voirs with a high ratio between the associated lateral and vertical extent and the
lateral and vertical flow time scales. This allows for a two-scale approach with
effective quantities for two-dimensional horizontal flow equations obtained from
reconstructed hydrostatic vertical pressure and saturation distributions. Here, we
derive explicit expressions for the two dimensional constitutive relationships for
a play-type hysteretic Brooks-Corey capillary pressure function with a pore-size
distribution index of 2 and quadratic relative permeabilities. We obtain an explicit
hysteretic parametrization for the upscaled capillary pressure function and the up-
scaled relative permeabilities. The size of the hysteresis loop depends on the ratio
between buoyancy and the entry pressure, i.e. it scales with the reservoir height
and the ratio between drainage and imbibition capillary pressure. We find that
the scaling for the relative permeability is non-monotonic and hysteresis vanishes
for both small and large reservoirs.

1 Introduction

Subsurface two-phase flow processes are relevant for various applications ranging
from oil recovery, CO2 storage and soil remediation to water management and risk
assessment of contaminants in the vadose zone. These application involve lateral
spatial extents on the order of hundreds of meters to tens of kilometers and more.
Further, only statistical properties of the relevant parameter fields are known. This
renders models for the prediction of fluid and contaminant motion computation-
ally demanding. Often the lateral extent is large compared to the vertical extent
and horizontal flow dominates the large scale dynamics. The high density contrast
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between the two fluids and moderate horizontal driving forces, e.g. in the vadose
zone and in post injection plume migration scenarios in CO2 storage, yield vertical
redistributions on short time scales while lateral redistribution takes much longer.
In these cases it is reasonable to assume that the fluids are in vertical equilibrium
when the horizontal movement of the fluids is studied. This approximation per-
mits an integration over the vertical direction, reducing the dimensionality of the
problem from 3 to 2 and also reducing computational costs significantly. Limits
of the vertical equilibrium approximation are investigated in [4]. Consideration of
lateral symmetries may eliminate another dimension and even permit analytical
solutions [10,12,17,18].

Integration over the vertical extent generates a new set of equations with new
parameter functions that depend on the vertical fluid distributions. The vertical
equilibrium assumption permits a reconstruction of the vertical distributions from
the upscaled variables. In practice, the level of detail which is taken into account
in the reconstruction is often very low when the vertical fluid distributions are
determined. The most common approach in CO2-storage-modeling assumes e.g. a
complete segregation of the fluids. In this reconstruction scenario – referred to as
sharp interface approximation – the lighter fluid occupies the upper part of the
vertical domain and the denser fluid the lower part and the vertical position of the
interface between the two fluids determines the integrated amount of both fluids.
Recently, limitions of the sharp interface approximation have been observed and
discussed [19,16]. The authors observed that the velocity of the tip of CO2-plumes
is overestimated if the capillary transition zone is disregarded. Unfortunately, the
consideration of the capillary transition zone requires a numerical calculation of the
effective two-dimensional quantities for general rock and fluid properties. Yet, an
analytical closed-form expression for the upscaled quantities has been obtained [16]
for a specific parametrization of the constitutive parameter functions to improve
the understanding and to facilitate analytical studies.

Increasing the level of detail in the reconstruction of the fluid distribution re-
quires choices about additional phenomena to be taken into account. In [19,16] a
unique relation between capillary pressure and saturation has been assumed while
experiments clearly show [14] that this relation is hysteretic, i.e. it depends on
the process direction and is different whether the amount of one or the other fluid
is increased locally. Hence, the equilibrium is not unique and the reconstruction
has to account for the process history as well. If the unique capillary transition
zone requires numerical calculations of effective quantities, then a process depen-
dent equilibrium does as well. A broad assessment of wether the impact of the
hysteretic capillary fringe on upscaled quantities justifies the additional computa-
tional costs is in preparation [6]. In this contribution, we take a different approach
and incorporate the process dependence of the capillary fringe into the analytical
approach of [16] by a play-type hysteresis model [2]. Compromising on the level of
detail permits analytical closed-form expressions for the two-dimensional effective
quantities, improves our understanding, and allows for further analytical studies.

The article starts with a brief review of the vertically integrated approach to
two-phase porous media flow in section 2. In section 3, the upscaled constitutive
relations are derived and discussed. The first part, section 3.1, recalls the deriva-
tion for a unique, non-hysteretic relation between saturation and capillary pressure
from [16] and discusses the possible impact of the hysteresis by comparing results
for parametrizations according to the bounding primary drainage and imbibition.
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In its second part, section 3.2, the hysteretic upscaled constitutive relationships
for secondary processes are calculated. The article closes with a summary in sec-
tion 4. Further, explicit formulas for the hysteretic quantities are provided in the
appendix.

2 Vertically integrated model

In this section, we give a brief review of the equations of the vertically integrated
model for porous media flow. We apply several simplifications to focus on the
phenomena related to a process-dependent capillary pressure function. For more
general derivations we refer to the literature [1,13,8,19,15].

Consider two immiscible and incompressible fluids and a rigid porous medium
under isothermal conditions. The fluids are distinguishable by their wetting proper-
ties and we denote one fluid as the wetting fluid w and the other as the non-wetting
fluid n. The two fluids have different densities ρ with ρw > ρn. The connected pore
space Vφ = φV with porosity φ and sample volume V is filled with the two flu-
ids. The fluid volumes are expressed in terms of saturations sα = Vα/Vφ with
α ∈ {w, n} denoting the corresponding fluid. By this definition

sw + sn = 1 (1)

holds true. Mass conservation for each incompressible fluid requires

∂φsα

∂t
+∇ · uα = 0, (2)

when sources are absent. The fluid flow is denoted by uα. We assume that the
fluid flow is governed by the extended Darcy law

uα = −kλα (∇pα − ραg) (3)

with a scalar permeability k a scalar mobility λα, the fluid pressure pα and the
gravity acceleration vector g. The scalar mobility relates to the relative perme-
ability through the viscosity µα as krα = λαµα. The pressures are related by the
capillary pressure function

pc = pn − pw. (4)

We assume, that the capillary pressure and the relative permeability functions are
algebraic functions and depend only on saturation and the saturation history. An
explicit spatial dependency is neglected for the sake of simplicity. The contribution
of other variables and effects such as e.g. specific interfacial area [11], connectivity
of the fluids [7], dynamic effects [9] or apparent surface tensions [5] is active ongoing
research but not considered here. The equations (1)-(4) form a set of 10 equations
for 10 unknowns in three dimensions. They form a closed and solvable system,
provided that explicit parametrizations for pc and krα and proper initial and
boundary conditions are given.

In subsurface flow processes the lateral extent of interest is often substantially
larger (hundreds of meters to many kilometers) than the vertical extent (meters
to tens of meters). Hence, vertical fluid redistribution often happens on time-
scales much shorter than horizontal fluid redistributions and the vertical fluid
distribution may be considered to be in hydrostatic equilibrium. A more detailed
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estimation and description of involved time-scales is given in [15,19]. For the sake
of clarity, we assume that in the vertical direction the domain - referred to as the
reservoir - is bounded by impermeable layers, that the bounds are perpendicular to
the gravity vector and that the distance H between them is constant in the whole
reservoir. We choose to express terms in a cartesian coordinate system where
the z-axis is aligned opposite to gravity. Further, we assume for simplicity that
permeability k and porosity φ do not vary along the vertical direction.

The aim of the vertical integration is to obtain equations for the horizontal co-
ordinates with variables representative of quantities over the entire vertical extent
of the reservoir. We refer to the vertical domain as the fine scale and to the hor-
izontal extent as the coarse scale. Fine-scale quantities are denoted by lower-case
letter and coarse-scale quantities by upper-case letters. Equation (3) implies that
the pressure gradient in each phase compensates buoyancy in the vertical hydro-
static equilibrium (uαz = 0). Hence, the pressure at any vertical position can be
obtained by integrating from the value at a reference position. We normalize the
z-axis in terms of the reservoir height H with z = 0 at the bottom and z = 1 at
the top of the reservoir and choose the top as reference position

Pα = pα(z = 1). (5)

The reconstructed pressure then is

pα(z) = Pα + ραgH(1− z). (6)

The other coarse-scale quantities are introduced by integrating or averaging the
fine scale quantities. We assume a homogeneous system with isothermal and in-
compressible fluid. We have normalized the vertical axis to the reservoir height
and write the equations in dimensionless form. In this particular case, we do not
need to bother about the subtle difference and obtain the coarse-scale equivalents
of porosity Φ = φ, density Rα = ρα, permeability K = k and viscosity Mα = µα.
The spatial dependent quantities are given by

Sα =

1Z
0

sαdz, (7)

Uα =

1Z
0

uα||dz, (8)

Krα =

1Z
0

krαdz. (9)

We emphasize that the simplifying assumptions have been applied extensively
and refer to [15,19] for a less restrictive formulation. The subscript || denotes the
horizontal components and Uα is a two-dimensional vector. With these definitions
the integral of eq. (2) over the vertical extent is given by

∂ΦSα

∂t
+∇|| ·Uα = 0 (10)

with the coarse-scale Darcy law

Uα = −KΛα∇||Pα (11)
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and a two-dimensional horizontal operator ∇||. Also on the coarse-scale the pore
volume is conserved

Sw + Sn = 1 (12)

and the coarse-scale capillary pressure function is defined as

Pc(·) = Pn − Pw, (13)

where we used the notation (·) to highlight that the arguments of the capillary
pressure function are yet to be determined. Note that eqs. (10)-(13) are exact un-
der the given assumptions. Limits of these assumptions have been investigated e.g.
in [20,4]. Due to the nonlinear dependence at the fine-scale, the vertical fine-scale
saturation distributions sw(z; x, y) are required to obtain coarse-scale effective pa-
rameter functions. Therefore, a reconstruction procedure for sw has to be provided
for a pure coarse-scale model. The assumption of hydrostatic fluid distribution al-
lows for such a reconstruction. From eq. (6) we obtain that the fine-scale capillary
pressure has to compensate for buoyancy due to the density difference. From this
the fine-scale capillary pressure can be constructed and related to the coarse-scale
capillary pressure

pc = Pc − (ρw − ρn)gH(1− z). (14)

Experimental data for the pc(sw) relationship of a well-defined process provides
invertible pc− sw mappings from which we can reconstruct the vertical saturation
distribution for a given Pc and obtain a Pc−Sw relationship with eq. (7). We can
then use this relation to obtain the fine-scale saturation distribution sw(z; x, y) for
a given coarse-scale saturation Sw and hence are able to express the coarse-scale
relative permeabilities Krα in terms of coarse-scale saturations as well. We will
give two simple reconstruction methods now which will serve as bounding reference
cases.

Homogeneous saturation distribution

If the reservoir is rather thin it is reasonable to approximate the vertical saturation
distribution as constant over the whole vertical extent. From eq. (7)-(9) and (14)
we get that in this case, the coarse-scale quantities are identical with the fine-scale
quantities.

Sharp interface

If the capillary transition zone is small it may be reasonable to approximate the
vertical saturation distribution by assuming that the less dense non-wetting fluid
is segregated completely above the denser wetting fluid

ss
w(z, zI) =

(
0, z > zI ,

1, z ≤ zI ,
(15)

where zI is the vertical location of the interface between the two fluids. From eq.
(7) we obtain in the dimensionless notation

Sw = zI , (16)
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and from eq. (9) with eq. (16)

Krw(Sw) = Sw krw(sw = 1), (17)

Krn(Sw) = (1− Sw) krn(sw = 0). (18)

If the fluids segregate completely and entry pressure is negligible, the pressure dif-
ference between the two fluids must vanish at the interface between them. There-
fore we obtain from eq. (14)

Pc(Sw) = (ρw − ρn)gH(1− Sw). (19)

Note, that for simplicity we have ignored residual saturations.

3 Explicit hysteretic coarse-scale constitutive relationships

In this section, we will derive and discuss explicit coarse-scale constitutive relation-
ships which take into account the capillary transition zone and the difference in the
capillary pressure-saturation relationship for drainage and imbibition processes on
the fine-scale. The section is divided into two subsections. The first subsection con-
sideres primary processes. Primary processes are an imbibition into a completely
dry medium and a drainage of a completely wetting-fluid-saturated medium. The
second subsection addresses secondary processes. Secondary processes are an im-
bibition which starts during a primary drainage and vice versa. An extension of
the method to tertiary and higher order processes is straight forward but tedious.

3.1 Primary processes

The capillary transition zone is taken into account by a Brooks-Corey parametriza-
tion [3] of the capillary pressure saturation relationship. For the primary drainage
and imbibition branch it is given by

pχ
c (sw) = pχ

e s−1/λ
w (20)

with χ ∈ {i, d} indicating imbibition i and drainage d, pχ
e the corresponding dif-

ferent entry pressures and λ the pore-size distribution index which is assumed to
be process independent. We invert this and extend it to capillary pressures below
the entry pressure to obtain a function for the saturation depending on capillary
pressure

s̃χ(pc) =

8<:
“

pc

pχ
c

”−λ
, pc

pχ
e

> 1,

1, pc

pχ
e
≤ 1.

(21)

As stated in eq. (14) the pressure of each of the phases compensates buoyancy and
hence, the capillary pressure has to compensate for the density difference. With
the position z0 at which the fine-scale capillary pressure vanishes we write

pc = (ρw − ρn)gH(z − z0). (22)
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We introduce a dimensionless group similar to the Bond number in free multiphase
flow for the ratio between buoyancy and capillary forces

B =
(ρw − ρn)gH

pd
e

(23)

and the ratio between drainage and imbibition entry pressure

Π =
pi

e

pd
e
. (24)

This allows for determining the saturation distribution in terms of the dimension-
less vertical position and the position of the vanishing capillary pressure

sχ(z, z0) =

8<:sχ
1(z, z0) =

h
B
Γ (z − z0)

i−λ
, z > Γ

B + z0,

sχ
2(z, z0) = 1, z ≤ Γ

B + z0

(25)

with Γ = Π for χ = i and Γ = 1 for χ = d. The coarse-scale saturation for a
primary process (drainage or imbibition) is determined with respect to z0 as

Sχ(z0) =

1Z
0

sχ(z; z0)dz

=

8>>>>><>>>>>:

1
1−λ

“
B
Γ

”−λ h
(z − z0)

1−λ
iz=1

z=0
, z0 ≤ −Γ

B ,

Γ
B + z0 + 1

1−λ

“
B
Γ

”−λ h
(z − z0)

1−λ
iz=1

z= Γ
B

+z0

, −Γ
B < z0 < 1− Γ

B ,

1, 1− Γ
B < z0.

(26)

For λ = 2 this is a quadratic equation of Sw = Sχ(z0) in z0 and hence can be
explicitly solved for z0 and we obtain a relation z0 = Zχ(Sw) for the position at
which pc vanishes

Zχ(Sw) =

8>><>>:
Zχ

1 (Sw) = 1
2

 
1−

r
1 +

“
Γ
B

”2
4

Sw

!
, Sw ≤ Γ

B+Γ ,

Zχ
2 (Sw) = 1+Sw

2 − Γ
B −

q
4Γ+B

4B − 2Γ+B
2B Sw +

S2
w

4 , Sw > Γ
B+Γ .

(27)
The second possible solution yields unphysical z0 > 1 − Γ

B with negative contri-
butions to the total saturation.

Figure 1 illustrates reconstructed saturation distributions sχ(z, Zχ(Sw)) for
different coarse-scale saturations. The four pairs of profiles represent different
branches and their boundaries in eq. (25)-(27). The parameters for the curves
in the graph are B = 1 and Π = 1

2 . For these parameters, the minimum coarse
saturation at which the saturation at the bottom is 1 is Sw = 0.5 for drainage and
Sw = 1/3 for imbibition.



8 Florian Doster et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S = 0.7

S = 0.5

S = 1/3S = 0.2

s

z

Fig. 1 Reconstructed vertical saturation distributions for drainage (red curves) and imbibition
(blue dashed curves) for four different coarse-scale saturations with B = 1 and Π = 1

2
.

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

Sw

P
α c
/
p
d e

 

 

B = 10

B = 5

B = 1

B = 0.1

Imb
Dr

Fig. 2 Coarse capillary pressure function vs. coarse saturation for primary drainage (red solid
curves) and imbibition (blue dashed curves) for B = {0.1, 1, 5, 10} (from bottom upwards) and
Π = 1

2
. The curves for B = 0.1 are brighter to distinguish them from B = 1.

Coarse parameter functions

The macroscopic capillary pressure function is obtained by inserting eq. (22) into
eq. (14) and using eq. (27) for z0. The result is

P χ
c (Sw) = pd

eB (1− Zχ(Sw)) . (28)

Figure 2 illustrates the impact of the ratio of buoyancy and capillary forces
and the difference between drainage and imbibition on the coarse-scale capillary
pressure. The graph shows that for small values of B, P χ

c is almost independent
of B and the fine-scale capillary pressure is recovered. For B > 1 buoyancy starts
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contributing. For B � 1 buoyancy is the dominant contribution and P χ
c (Sw)

becomes linear in Sw. Further, for B → ∞ the difference between drainage and
imbibition capillary pressure is independent of B and Sw. Proofs for these three
statements are given in the appendix in eqs. (80)-(82).

To obtain the coarse-scale relative permeabilities we need to choose fine-scale
relative permeabilities. We assume quadratic relative permeabilities since they
provide the same qualitative non-linear behavior as relative permeabilities of real
materials while still permitting explicit and readable expressions for the coarse
parameter functions. They are given by

krw(sw) = s2
w, (29)

krn(sw) = (1− sw)2. (30)

Often, realistic relative permeabilities are more curved, e.g. higher-order polyno-
mials. Other polynomials are possible as well, e.g. [16], but yield even longer terms
for the coarse-scale relative permeabilities. The coarse-scale relative permeabilities
are given by

Kχ
rw(Sw) =

1Z
0

krw (sχ (z, Zχ(Sw))) dz

=

8><>:
−1

3

“
B
Γ

”−4 h
(z − Zχ

1 (Sw))−3
iz=1

z=0
, Sw ≤ Γ

B+Γ ,

Γ
B + Zχ

2 (Sw)− 1
3

“
B
Γ

”−4 h
(z − Zχ

2 (Sw))−3
iz=1

z= Γ
B

+Zχ
2 (Sw)

, Sw > Γ
B+Γ

(31)

for the macroscopic wetting phase relative permeability and

Kχ
rn(Sw) =

1Z
0

krn (sχ (z, Zχ(Sw))) dz

=

8><>:
h
z − Γ 4

3B4(z−z0)3
+ 2Γ 2

B2(z−z0)

iz=1

z=0
, Sw ≤ Γ

B+Γ ,h
z − Γ 4

3B4(z−z0)3
+ 2Γ 2

B2(z−z0)

iz=1

z= Γ
B

+Zχ
2 (Sw)

, Sw > Γ
B+Γ

(32)

for the non-wetting phase.
Figure 3 shows the impact of the ratio of buoyancy and capillary forces and the

difference between drainage and imbibition for the coarse-scale relative permeabil-
ity for the wetting (left) and non-wetting (right) phase. For small B the fine-scale
curves are recovered while for large B the relative permeabilities converge to the
linear ones of the sharp interface reconstruction. Both limits are process indepen-
dent. However, for intermediate values B = O(1) the different vertical saturation
distributions lead to different relative permeabilities for drainage and imbibition.
Here, the difference between them is moderate but it increases for relative per-
meabilities with a higher curvature than the quadratic relations. Further, keep in
mind that the governing equations for two-phase flow contain the relative perme-
abilities as products and fractions and hence, moderate alterations may lead to
significant changes in the predictions of fluid distributions.
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Fig. 3 Coarse wetting phase relative permeability vs. coarse saturation (left figure) and coarse
non-wetting phase relative permeability vs. coarse saturation (right figure) for primary drainage
(red solid curves) and primary imbibition (blue dashed curves) for B = {1/2, 2, 20} (from
bottom upwards) and Π = 1

2
. For reference, the fine-scale quadratic and the linear sharp

interface relative permeabilities are shown as black dotted curves.

3.2 Secondary processes

In the previous section we have discussed the analytic reconstruction for a primary
drainage and a primary imbibition. We use now a simple hysteresis model to
extend the reconstruction to a secondary imbibition and a secondary drainage. In
a secondary imbibition (di), the reservoir is imbibed after it has been drained to
a saturation St with St referred to as the turning saturation. The corresponding
equilibrium profile is sd(z, zt) with zt = Zd(St). An imbibition takes place when
the point of vanishing capillary pressure z0 (this corresponds to the water table
up to a constant Γ/B) is increased with respect to the turning position zt because
this decreases the capillary pressure at each vertical position z in the reservoir. In
a secondary drainage (id), the reservoir is drained after it has been imbibed to a
saturation St. The corresponding equilibrium profile is si(z, zt) with zt = Zi(St).
The reservoir is drained if the point of vanishing capillary pressure z0 is decreased
with respect to the turning position zt because this increases the capillary pressure
everywhere along the z-axis.

Differences between drainage and imbibition are considered in the capillary
pressure–saturation relation according to a play-type hysteresis model [2]. After
the process direction has changed, the saturation is not changed until the capillary
pressure is equal to the value of the primary capillary pressure–saturation relation-
ship of the current process. Only then does the saturation decrease (for a drainage
process) and increase (for an imbibition process). The fine-scale saturation for a
drainage after an imbibition can be written as follows,

sid(z, z0, z
t) =

8<:si(z, zt), pd
c

h
si(z, zt)

i
> pd

c

h
sd(z, z0)

i
,

sd(z, z0), pd
c

h
si(z, zt)

i
≤ pd

c

h
sd(z, z0)

i
.

(33)
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Similarly, the saturation for an imbibition after a drainage is

sdi(z, z0, z
t) =

8<:si(z, z0), pi
c

h
sd(z, zt)

i
< pi

c

h
si(z, z0)

i
,

sd(z, zt), pi
c

h
sd(z, zt)

i
≥ pi

c

h
si(z, z0)

i
.

(34)

The saturation distribution at the turning point zt is monotonic in the considered
parameterization and so are the capillary pressure relationships. Hence, there is
only one position z∗(z0, z

t) along the z-axis which separates a drainage branch
from an imbibition branch. In the considered parameterization of the capillary
pressure (20), the entry pressure for drainage pd

e and imbibition pi
e are process

dependent but the pore-size distribution index λ = 2 is independent of the process.
By inserting the first case of eq. (25) and eq. (20) into the branching inequalities
in eq. (33) and (34) we obtain

z∗(z0, z
t) =

(
1

1−Π

`
zt −Π z0

´
, id : z0 < zt,

1
1−Π

`
z0 −Π zt

´
, di : z0 > zt.

(35)

The separating position moves upwards in the reservoir for a secondary process
because the saturation decreases with height and the capillary pressure increases
for decreasing saturations. This is independent from whether a drainage after an
imbibition (id) or an imbibition after a drainage (di) is considered. To observe
that explicitly, compare z∗ for a diminishing z0 in the first, and an increasing z0

in the second line of eq. (35). The second case in eq. (25) provides a threshold
for the absolute difference

˛̨
z0 − zt

˛̨
below which z∗ is not uniquely defined. This

will be discussed below when the specific expressions for secondary drainage and
imbibition are given. Two values z∗ = 0 (bottom of the reservoir) and z∗ = 1
(top of the reservoir) are of specific interest because they define bounds of the
hysteresis loop and outside that interval the parametrization is independent of the
process history. If z∗ < 0 the difference

˛̨
z0 − zt

˛̨
is too small to induce a change of

saturation in the reservoir. Hence, z0 < zt/Π for id and z0 > Π zt for di. Because
of the second case in eq. (25) the difference has to be at least (1−Π)/B and hence
a saturation change is observed for

z∗ = 0 ⇒

8<:z0 < min
“

zt

Π , zt − 1−Π
B

”
, id : z0 < zt,

z0 > max
“
Π zt, zt + 1−Π

B

”
, di : z0 > zt.

(36)

If z∗ > 1 the difference
˛̨
z0 − zt

˛̨
is big enough so that in the whole reservoir the

current process is taking place and the turning point no longer has an influence
on the saturation distribution. Because of the monotonocity of pχ

c the branching
in eq. (25) has no impact on the solution and

z∗ = 1 ⇒
(

z0 < zt−(1−Π)
Π , id : z0 < zt,

z0 > 1−Π + Π zt, di : z0 > zt.
(37)

The points of vanishing capillary pressure at the fine-scale correspond to the
coarse-scale capillary pressure up to a linear transformation (28). A relation be-
tween the coarse saturation Sw and the coarse capillary pressure Pc is obtained
by integrating the fine-scale saturation distribution (33) and (34) over the vertical
extent. The branching in eq. (25)-(27) leads to various cases in this relationship
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as well. Further, often the coarse-scale equations are expressed in terms of satura-
tions and hence the inverted relationship Pc of Sw is of interest. This requires some
explicit calculations which are different for secondary drainage and imbibition and
are discussed in separate sections.

3.2.1 Secondary imbibition (di)

In eq. (36) and (37) the lower z̄di
` and the upper z̄di

u bound of the transition zone
are given as

z̄di
` (zt) =

(
Π zt, zt ≤ − 1

B ,

zt + 1−Π
B , zt > − 1

B ,
(38)

z̄di
u (zt) = 1−Π + Π zt (39)

and hence the coarse-scale saturation is

Sdi(z0, z
t) =

8>>>>>>>>><>>>>>>>>>:

Sd(z0), z0 < zt,

Sd(zt, ) zt ≤ z0 < z̄di
` ,

1R
0

sdidz, z̄di
` ≤ z0 < z̄di

u ,

Si(z0), z̄di
u ≤ z0.

(40)

Note that for sdi = sdi(z; z0, z
t), z̄di

` = z̄di
` (zt) and z̄di

u = z̄di
u (zt) the arguments

have been omitted for clarity. We define the largest z for which si(z, z0) = 1 holds
as

z̄di
1 (z0) =

Π

B
+ z0. (41)

The integral for the transition from a displacement, where only part of the column
is imbibed, to a displacement, where the whole column is imbibed, is given by

1Z
0

sdidz =

z∗Z
0

si(z; z0)dz +

1Z
z∗

sd(z; zt)dz

=

8>>>><>>>>:
z∗R
0

si
1(z; z0)dz +

1R
z∗

sd
1(z; zt)dz, z̄di

1 ≤ 0

z̄di
1R
0

dz +
z∗R

z̄di
1

si
1(z; z0)dz +

1R
z∗

sd
1(z; zt)dz, z̄di

1 > 0

=

8><>:
Sdi

1 = −
“

B
Π

”−2 h
1

z−z0

iz∗
0
−B−2

h
1

z−zt

i1
z∗

, z̄di
1 ≤ 0,

Sdi
2 = z̄di

1 −
“

B
Π

”−2 h
1

z−z0

iz∗
z̄di
1

−B−2
h

1
z−zt

i1
z∗

, z̄di
1 > 0.

(42)

Note that for sdi = sdi(z; z0, z
t), Sdi

1 = Sdi
1 (z0, z

t), Sdi
2 = Sdi

2 (z0, z
t), z∗ =

z∗(z0, z
t) and z̄di

1 = z̄di
1 (z0) the arguments have again been omitted for clarity.

To obtain a relation for the point of vanishing capillary pressure in terms of
coarse-scale saturations, eq. (40) has to be inverted with respect to z0 and the
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turning point has to be expressed in terms of the turning saturation St = Sd(zt).
The inversion is algebraically possible because the equations are quadratic (since
z∗(z0, z

t) is linear with respect to z0). However, the expressions are long and new
branches are induced because of the branches in eqs. (26) and (27). For the sake
of readability, we give the explicit expressions for the inverted quantities in the
appendix. Here, we will resolve the branches and stick to representative notations.

The first and the last case in eq. (40) have been inverted already for the primary
processes and the second case is trivial since it does not depend on z0 but only
defines St. Hence, only the two functions Sdi

1 (z0, z
t), Sdi

2 (z0, z
t) in eq. (42) have

to be inverted using zt = Zd
1 (St) and zt = Zd

2 (St). Note that the combination Zd
2

and Sdi
1 is not possible because saturations for the imbibition are equal or larger

than the drainage ones throughout the whole z-axis. We obtain

Zdi
1 (Sw, St) =

n
z0

˛̨̨
Sdi

1

h
z0, Z

d
1 (St)

i
= Sw

o
, (43)

Zdi
2 (Sw, St) =

n
z0

˛̨̨
Sdi

2

h
z0, Z

d
1 (St)

i
= Sw

o
, (44)

Zdi
3 (Sw, St) =

n
z0

˛̨̨
Sdi

2

h
z0, Z

d
2 (St)

i
= Sw

o
. (45)

These are quadratic equations and are solvable algebraically with two branches of
which one is omitted because of negative saturations and physically inconsistent
z0. The explicit expressions are given in the appendix in eqs. (83)-(85).

Figure 4 illustrates different characteristic saturation distributions. For a small
turning saturation, e.g. St = 0.1, z∗ becomes greater than one before a region
with sw = 1 appears in the column. The complete transition relation is therefore
determined by Zdi

1 (Sw, St). For St = 0.25, a region which is saturated by the
wetting phase appears during the transition. The transition relation is hence given
by Zdi

1 (Sw, St) for small saturations Sw and by Zdi
2 (Sw, St) for larger saturations.

For St = 0.6, there is always a wetting-phase-saturated domain and the complete
transition relation is determined by Zdi

3 (Sw, St).
The bounds also have to be expressed in saturations. The lower bound

S̄di
` (St) = St (46)

is trivial. The upper bound has three branches according to the three cases il-
lustrated in Fig. 4. These consist of either using Zd

1 (St) or Zd
2 (St) to obtain zt

from St and Si
1(z̄

di
u ) or Si

2(z̄
di
u ) to obtain S̄di

u from z̄di
u of eq. (39). Again, the

combination Zd
2 − Si

1 is not possible. Explicitly, this is given by

S̄di
u (St) =

8>>><>>>:
Si

1

“
z̄di

u

h
Zd

1 (St)
i”

, St < S̄di
1 ,

Si
2

“
z̄di

u

h
Zd

1 (St)
i”

, S̄di
1 ≤ St ≤ 1

1+B ,

Si
2

“
z̄di

u

h
Zd

2 (St)
i”

, St > 1
1+B ,

(47)

where S̄di
1 defines the turning saturation below which the transition from primary

drainage to primary imbibition happens before z̄di
1 enters the reservoir. Hence, it

is given as

S̄di
1 : z∗

»
Zi

1

„
Π

Π + B

«
, Zd

1 (S̄di
1 )

–
= 1

⇒ S̄di
1 =

Π2

B2(1−Π) + B(2−Π)Π + Π2
(48)
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Fig. 4 Reconstructed vertical saturation distributions for a secondary imbibition (blue curves)
and the turning profile (red dashed curves) for three different coarse-scale saturation-pairs
(Sw, St), B = 1 and Π = 1

2
.

For intermediate turning saturations (second case in eq. (47)) the position z̄di
1

passes 0 in the transition zone. The corresponding saturation is

S̄di
m(St) = Sdi

1

»
−Π

B
, Zd

1 (St)

–
. (49)

Finally, we can express the position of the vanishing capillary pressure in terms of
saturations as

Zdi(Sw, St) =

8>>><>>>:
Zd(Sw), Sw < S̄di

` (St),

Zdi
T (Sw, St), S̄di

` (St) ≤ Sw < S̄di
u (St),

Zi(Sw), S̄di
u (St) ≤ Sw,

(50)

where the transition zone function is given by

Zdi
T (Sw, St) =

8>>>>>>><>>>>>>>:

Zdi
1 (Sw, St), St < S̄di

1 ,8<:Zdi
1 (Sw, St), Sw < S̄di

m(St),

Zdi
2 (Sw, St), Sw ≥ S̄di

m(St),
S̄di

1 ≤ St < 1
1+B ,

Zdi
3 (Sw, St), 1

1+B ≤ St.

(51)

The jump ∆zdi = z̄di
` (zt) − zt of the vanishing capillary pressure position in

terms of the turning saturation is of interest because that is what carries to the
coarse-scale from the jump of the fine-scale play-type hysteresis model. From eq.
(38) we obtain

∆zdi(St) =

(
−(1−Π)Zd

1 (St), St ≤ 1
B+1 ,

1−Π
B , St > 1

B+1 .
(52)
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Fig. 5 The transition part (solid blue curves) of the coarse-scale capillary pressure – coarse-
scale saturation relation for a secondary imbibition for example turning saturations St =
{0.1, 0.4, 0.7}, B = 1

2
(left) and B = 2 (right) and Π = 1

2
. The bounding primary imbibition

curves are shown as dashed blue and the bounding primary drainage curves as dash-dotted
red curves. The values P d

c (St) are shown as upwards pointing triangles, the values P di
c (St, St)

as crosses, P di
c (S̄di

u (St), St) as downwards pointing triangles and P di
c (S̄di

m(St), St) as pluses.

With this, we can study how the fraction of the jump after the turning points
compares to the difference between the main loops, and obtain from eq. (28) and
eq. (82)

lim
B→∞

∆zdi(St)

Zd
2 (St)− Zi

2(S
t)

=
1

2
. (53)

Coarse parameter functions

The capillary pressure is obtained similar to eq. (28) and is given by

P di
c (Sw, St) = pd

eB
“
1− Zdi(Sw, St)

”
. (54)

Figure 5 illustrates the relationship for B = 1
2 (left) and B = 2 (right). The bound-

ing primary curves are shown as red dash-dotted (drainage) and blue dashed (imbi-
bition) curves. The transition zone is shown for three examples turning saturations
as blue solid curves. Starting from the turning saturation (upwards pointing tri-
angle) on the primary drainage curve, the capillary pressure decreases without a
change in saturation until the value P di

c (St, St) is reached (crosses). The jump
spans a smaller fraction of the difference between the bounding curves for B = 1

2
than for B = 2 and illustrates that for B → 0 the fine-scale play-type is recovered
(fraction of the jump is 1 and there is no transition zone) and for B → ∞ the
fraction is 1

2 . The transition curve approaches the primary imbibition curve and

hits it at S̄di
u (St) (downwards pointing triangles). If the transition zone includes

a transition from Zdi
1 to Zdi

2 at S̄di
m (this is the case for St = 0.4 at B = 1

2 and

St = 0.1 at B = 2) the corresponding value P di
c (S̄di

m) is shown by a plus.

The relative permeabilities are obtained similar to the coarse-scale saturation
in terms of z0 and zt. Since we have explicit expressions for z0 = Zdi(Sw, St) and
zt = Zd(St), it is also straight forward to obtain relative permeabilities in terms
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Fig. 6 The transition part (solid blue curves) of the coarse-scale wetting relative permeability
(left) – and non-wetting relative permeability (right) – coarse-scale saturation relation for a
secondary imbibition for example turning saturations St = {0.1, 0.4, 0.7}, B = 2 and Π = 1

2
.

The bounding primary imbibition curves are shown as dashed blue and the bounding primary
drainage curves as dash-dotted red curves. The values Kd

rα(St) are shown as upwards point-
ing triangles, the coinciding values Kdi

rα(St, St) as crosses, Kdi
rα(S̄di

u (St), St) as downwards
pointing triangles and Kdi

rα(S̄di
m(St), St) as pluses.

of Sw and St. They are given by

Kdi
rα(Sw, St) =

8>>><>>>:
Kd

rα(Sw), Sw < S̄di
` (St),

Kid
rαT (Sw, St), S̄di

` (St) ≤ Sw < S̄di
u (St),

Ki
rα(Sw), S̄di

u (St) ≤ Sw,

(55)

where the transition-zone relative permeability is given by

Kid
rαT (Sw, St) =

8>>>>>>><>>>>>>>:

Kdi
rα1(Sw, St), St < S̄di

1 ,8<:Kdi
rα1(Sw, St), Sw < S̄di

m(St),

Kdi
rα2(Sw, St), Sw ≥ S̄di

m(St),
S̄di

1 ≤ St < 1
1+B ,

Kdi
rα3(Sw, St), 1

1+B ≤ St

(56)

with the same branches as in eq. (50) and (51) and α ∈ {w, n}. These branches
yield integration boundaries for the upscaling procedure. Explicitly, the integrals
are given by

Kdi
rα1(Sw, St) =

z∗Z
0

krα

“
si
1

h
z, Zdi

1 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
sd
1

h
z, Zd

1 (St)
i”

dz, (57)
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where the arguments of z∗ = z∗
h
Zdi

1 (Sw, St), Zd
1 (St)

i
have been omitted and

Kdi
rα2(Sw, St) = z̄di

1 krα (1) +

z∗Z
z̄di
1

krα

“
si
1

h
z, Zdi

2 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
sd
1

h
z, Zd

1 (St)
i”

dz (58)

where the arguments of z∗ = z∗
h
Zdi

2 (Sw, St), Zd
1 (St)

i
and z̄di

1 = z̄di
1

h
Zdi

2 (Sw, St)
i

have been omitted and

Kdi
rα3(Sw, St) = z̄di

1 krα (1) +

z∗Z
z̄di
1

krα

“
si
1

h
z, Zdi

3 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
sd
1

h
z, Zd

2 (St)
i”

dz (59)

where the arguments of z∗ = z∗
h
Zdi

3 (Sw, St), Zd
2 (St)

i
and z̄di

1 = z̄di
1

h
Zdi

3 (Sw, St)
i

have been omitted.

Figure 6 illustrates the relative permeability for the wetting phase (left) and the
non-wetting phase (right) for a secondary imbibition with B = 2. The bounding
primary curves are shown as red dash-dotted (drainage) and blue dashed (imbibi-
tion) curves. The transition zone is shown for three example turning saturations
as blue solid curves. There is no jump similar to the capillary pressure curve and
the values Kd

rα(St) and Kdi
rα(S̄di

` (St), St) coincide. Crosses and upwards pointing
triangles are hence on top of each other. The transition leaves the drainage curve
with a substantial kink and approaches the primary imbibition curve smoothly
and hits it at S̄di

u (St) (downwards pointing triangles). The transition zone in-
cludes a transition from Zdi

1 to Zdi
2 at S̄di

m for St = 0.1 and the corresponding
values Kdi

rw(S̄di
m) and Kdi

rn(S̄di
m) are shown by pluses.

3.2.2 Secondary drainage (id)

In eq. (36) and (37) the lower and the upper bound of the transition zone are given
as

z̄id
u (zt) =

(
zt

Π , zt ≤ −Π
B ,

zt − 1−Π
B , zt > −Π

B ,
(60)

z̄id
` (zt) =

zt − (1−Π)

Π
. (61)

The notation is reversed with respect to the secondary imbibition di because z0

is lowered during a drainage but z∗ = 0 is still reached before z∗ = 1 during the
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Fig. 7 Reconstructed vertical saturation distributions for a secondary drainage (red curves)
and the turning profile (blue dashed curves) for three different coarse-scale saturation-pairs
(Sw, St), B = 1 and Π = 1

2
.

displacement. The coarse-scale saturation here is

Sid(z0, z
t) =

8>>>>>>>>><>>>>>>>>>:

Sd(z0), z0 < z̄id
` ,

1R
0

siddz, z̄id
` ≤ z0 < z̄id

u ,

Si(zt), z̄id
u ≤ z0 < zt,

Si(z0), zt ≤ z0.

(62)

Note that for sid = sid(z; z0, z
t), z̄id

` = z̄id
` (zt) and z̄id

u = z̄id
u (zt) the arguments

have been omitted for clarity. We define the largest z for which sd(z, z0) = 1 as

z̄id
1 (z0) =

1

B
+ z0. (63)

The integral for the transition from a displacement where only part of the column
is drained to a displacement where the whole column is drained is similar to (42)
and given by

1Z
0

siddz =

z∗Z
0

sd(z; z0)dz +

1Z
z∗

si(z; zt)dz

=

8><>:
Sid

1 = −B−2
h

1
z−z0

iz∗
0
−
“

B
Π

”−2 h
1

z−zt

i1
z∗

, z̄id
1 ≤ 0,

Sid
2 = z̄id

1 −B−2
h

1
z−z0

iz∗
z̄id
1

−
“

B
Π

”−2 h
1

z−zt

i1
z∗

, z̄id
1 > 0.

(64)

Note that for sid = sid(z; z0, z
t), Sid

1 = Sid
1 (z0, z

t), Sid
2 = Sid

2 (z0, z
t), z∗ =

z∗(z0, z
t) and z̄id

1 = z̄id
1 (z0) the arguments have again been omitted for clarity.

Again, we invert eq. (62) with respect to z0 and express the turning point in
terms of the turning saturation St = Si(zt) to obtain a relation for the point
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of vanishing capillary pressure in terms of coarse-scale saturations. Explicit ex-
pressions for the inverted quantities are once more moved to the appendix and
representative notations are used here.

The two new functions for secondary drainage are Sid
1 (z0, z

t) and Sid
2 (z0, z

t)
in eq. (64) and are inverted using zt = Zi

1(S
t) and Zi

2(S
t). Note that here the

combination Zi
1 − Sid

2 is not possible. We obtain

Zid
1 (Sw, St) =

n
z0

˛̨̨
Sid

1

h
z0, Z

i
1(S

t)
i

= Sw

o
, (65)

Zid
2 (Sw, St) =

n
z0

˛̨̨
Sid

1

h
z0, Z

i
2(S

t)
i

= Sw

o
, (66)

Zid
3 (Sw, St) =

n
z0

˛̨̨
Sid

2

h
z0, Z

i
2(S

t)
i

= Sw

o
. (67)

These are again quadratic equations and one of the solutions is discarded because
of negative saturations and physically inconsistent z0. The explicit expressions are
given in the appendix in eqs. (86)-(88).

Figure 7 illustrates different characteristic saturation distributions. If the turn-
ing profile has no region with sw = 1 the secondary drainage profile doesn’t
have one either. This is illustrated by the pair Sw = 0.15, St = 0.2. The rele-
vant relation hence is Zid

1 (Sw, St). For intermediate turning saturations, e.g. here
St = 0.5, which have a region with sw = 1 the secondary drainage profile may
lose that region in the transition zone as illustrated by the profile for a saturation
Sw = 0.4. The transition relation is therefore expressed for smaller saturations Sw

by Zid
1 (Sw, St) and for bigger saturations by Zid

2 (Sw, St). For large turning satu-
rations, here e.g. St = 0.8 with the example Sw = 0.7 secondary drainage profile,
z∗ > 1 and hence the transition from primary imbibition to primary drainage is
completed before the region with sw = 1 vanishes in the column The complete
transition relation is therefore expressed by Zid

3 (Sw, St).
The bounds are again expressed in saturations. For the secondary drainage,

the upper bound
S̄id

u (St) = St (68)

is trivial but the lower bound has three branches according to the three cases
illustrated in Fig. 4. These consist of either using Zi

1(S
t) or Zi

2(S
t) to obtain zt

from St and Sd
1 (z̄id

` ) or Sd
2 (z̄id

` ) to obtain S̄id
` from z̄id

` of eq. (60). Again the
combination Zi

1 − Sd
2 is not possible. Explicitly, this is given by

S̄id
` (St) =

8>>><>>>:
Sd

1

“
z̄id

`

h
Zi

1(S
t)
i”

, St < Π
Π+B ,

Sd
1

“
z̄id

`

h
Zi

2(S
t)
i”

, S̄id
1 ≥ St ≥ Π

Π+B ,

Sd
2

“
z̄id

`

h
Zi

2(S
t)
i”

, St > S̄id
1 ,

(69)

where S̄id
1 defines the turning saturation above which the transition from primary

imbibition to primary drainage happens before z̄id
1 leaves the reservoir. Hence, it

is given as

S̄id
1 : z∗

»
Zd

1

„
1

1 + B

«
, Zi

2(S̄
id
1 )

–
= 1

⇒ S̄id
1 =

1 + B −BΠ

1 + B
. (70)
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Fig. 8 Illustration of the transition region between the two primary curves for a secondary
imbibition (blue curves) and a secondary drainage (red curves). The solid curves show S̄di

u (St)
and S̄id

` (St). The dashed curves show S̄di
m(St) respectively S̄id

m(St). The dark curves correspond

to B = 1, brighter curves show B = 2 and B = 1
2

(labels over the solid curves).

For intermediate turning saturations (second case in eq. (69)) the position z̄id
1

passes 0 in the transition zone. The corresponding saturation is

S̄id
m(St) = Sid

1

»
− 1

B
, Zi

2(S
t)

–
. (71)

Finally, the position of the vanishing capillary pressure is expressed in terms of
saturations as

Zid(Sw, St) =

8>>><>>>:
Zd(Sw), Sw < S̄id

` (St),

Zid
T (Sw, St), S̄id

` (St) ≤ Sw < S̄id
u (St),

Zi(Sw), S̄id
u (St) ≤ Sw

(72)

where the transition zone function is given by

Zid
T (Sw, St) =

8>>>>>>><>>>>>>>:

Zid
1 (Sw, St), St < Π

Π+B ,8<:Zid
2 (Sw, St), Sw < S̄id

m(St),

Zid
3 (Sw, St), Sw ≥ S̄id

m(St),

Π
Π+B ≤ St < S̄id

1 ,

Zid
3 (Sw, St), S̄id

1 ≤ St.

(73)

Figure 8 illustrates the bounds S̄id
` (St) and S̄id

m(St) of the transition zone for the
secondary drainage (red curves) and also S̄di

u (St) and S̄di
m(St) for the secondary

imbibition (blue curves). Two things can be learned from this figure. First, inde-
pendent of B the size of the transition zone vanishes at large and small saturations
for drainage and imbibition. Second, for large B the linear branch for large turning
saturations dominates. This suggests a possible simplification: For sufficiently large
B the saturation at the end of the transition zone could be approximated only by
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Fig. 9 The transition part (solid red curves) of the coarse-scale capillary pressure – coarse-
scale saturation relation for a secondary drainage for example turning saturations St =
{0.3, 0.6, 0.8}, B = 1

2
(left) and B = 2 (right) and Π = 1

2
. The bounding primary imbibition

curves are shown as dashed blue and the bounding primary drainage curves as dash-dotted
red curves. The values P i

c (St) are shown as upwards pointing triangles, the values P id
c (St, St)

as crosses, P id
c (S̄id

` (St), St) as downwards pointing triangles and P id
c (S̄id

m(St), St) as pluses.

the linear branch. In combination with a linear interpolation between the values
on the primary curves for the bounding saturations the terms would simplify sub-
stantially. The model might even give better results because it compensates the
too simplistic approach to hysteresis on the fine-scale.

The jump ∆zid = zt − z̄id
u (zt) in terms of turning saturation is obtained from

eq. (61) and is given by

∆zid(St) =

(
Π−1

Π Zi
1(S

t), St ≤ Π
B+Π ,

1−Π
B , St > Π

B+Π .
(74)

The limit of the fraction for B →∞ of this difference with respect to the difference
between the main loops is hence identical with the secondary imbibition.

Coarse parameter functions

Given Zid, the capillary pressure, identical to eq. (28), can be written as

P id
c (Sw, St) = pd

eB
“
1− Zid(Sw, St)

”
. (75)

Figure 9 illustrates the relationship for B = 1
2 (left) and B = 2 (right) for the

secondary drainage similar to Fig. 5 for secondary imbibition. Here the transition
zone is shown for three example turning saturations as red solid curves. Starting
from the turning saturation (upwards pointing triangle) on the primary imbibi-
tion curve the capillary pressure increases without a change in saturation until
the value P id

c (St, St) is reached (crosses). The transition curve approaches the
primary drainage curve and hits it at S̄id

` (St) (downwards pointing triangles). If
the transition zone includes a transition from Zid

2 to Zid
3 at S̄id

m (this is the case
for St = 0.6 and St = 0.8 at B = 1

2 and St = 0.3 and St = 0.6 at B = 2) the

corresponding value P id
c (S̄id

m) is shown by a plus.
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Fig. 10 The transition part (solid red curves) of the coarse-scale wetting relative permeability
(left) – and non-wetting relative permeability (right) – coarse-scale saturation relation for a
secondary imbibition for example turning saturations St = {0.3, 0.6, 0.8}, B = 2 and Π = 1

2
.

The bounding primary imbibition curves are shown as dashed blue and the bounding primary
drainage curves as dash-dotted red curves. The values Ki

rα(St) are shown as upwards point-
ing triangles, the coinciding values Kid

rα(St, St) as crosses, Kid
rα(S̄id

` (St), St) as downwards

pointing triangles and Kid
rα(S̄id

m(St), St) as pluses.

The relative permeabilities are again obtained similar to the coarse-scale satu-
ration in terms of z0 and zt. For the secondary drainage the transition-zone relative
permeability Kid

rαT is given by

Kid
rαT (Sw, St) =

8>>>>>>><>>>>>>>:

Kid
rα1(Sw, St), St < Π

Π+B ,8<:Kid
rα2(Sw, St), Sw < S̄id

m(St),

Kid
rα3(Sw, St), Sw ≥ S̄id

m(St),

Π
Π+B ≤ St < S̄id

1 ,

Kid
rα3(Sw, St), S̄id

1 ≤ St

(76)

with the same branches as in eq. (72) and (75) and α ∈ {w, n}. These branches
yield integration boundaries for the upscaling procedure. Explicitly the integrals
are given by

Kid
rα1(Sw, St) =

z∗Z
0

krα

“
sd
1

h
z, Zid

1 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
si
1

h
z, Zi

1(S
t)
i”

dz (77)

where the arguments of z∗ = z∗
h
Zid

1 (Sw, St), Zi
1(S

t)
i

have been omitted and

Kid
rα2(Sw, St) =

z∗Z
0

krα

“
sd
1

h
z, Zid

2 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
si
1

h
z, Zi

2(S
t)
i”

dz (78)
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where the arguments of z∗ = z∗
h
Zid

2 (Sw, St), Zi
2(S

t)
i

have been omitted and

Kid
rα3(Sw, St) = z̄id

1 krα (1) +

z∗Z
z̄id
1

krα

“
sd
1

h
z, Zid

3 (Sw, St)
i”

dz

+

1Z
z∗

krα

“
si
1

h
z, Zi

2(S
t)
i”

dz (79)

where the arguments of z∗ = z∗
h
Zid

3 (Sw, St), Zi
2(S

t)
i

and z̄id
1 = z̄id

1

h
Zid

3 (Sw, St)
i

have been omitted.
Figure 10 illustrates the relative permeability for the wetting phase (left) and

the non-wetting phase (right) for a secondary drainage with B = 2 similar to Fig.
6 for the secondary imbibition. The transition zone is shown for three example
turning saturations as red solid curves. The values Ki

rα(St) and Kid
rα(S̄id

u (St), St)
coincide and crosses and upwards pointing triangles are on top of each other.
The transition leaves the imbibition curve with a substantial kink and approaches
the primary drainage curve smoothly and hits it at S̄id

` (St) (downwards pointing
triangles). The transition zone includes a transition from Zid

2 to Zid
3 at S̄id

m for
St = 0.3 and St = 0.6. The corresponding values Kid

rw(S̄id
m) and Kid

rn(S̄id
m) are

shown by pluses.

4 Summary

We have derived explicit analytic expressions for vertically integrated capillary
pressure and relative permeability functions for primary and secondary drainage
and imbibition for a Brooks-Corey fine-scale capillary pressure relation with pore-
size distribution index λ = 2 and quadratic fine-scale relative permeabilities. These
functions are particular helpful for analytical studies with vertically integrated
models which include the capillary fringe. The impact of the differences of a
drainage and imbibition parametrization has been studied in particular for the
relative permeabilities because of its non-monotonic behavior with respect to the
ratio between buoyancy and capillary forces B.

Appendix

Limits of capillary pressure relations for primary processes

For B → 0 the branch Zχ
1 (Sw) is relevant. Hence, for the limit lim

B→0
P χ

c we write

P χ
c (Sw) = pd

eB

241−
1

2

0@1−

s
1 +

4Γ 2

B2 Sw

1A35
=

pd
e

2

0@B +

s
B2 +

4Γ 2

Sw

1A B=0
= pχ

c (Sw), (80)
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where first the square root was approximated by its Taylor expansion and in the second
approximation terms of order B and higher have been neglected.

For B →∞ the branch Zχ
2 (Sw) is relevant. Therefore we write for the limit lim

B→∞
P χ

c

P χ
c (Sw) = pd

eB

0@1−
1 + Sw

2
+

Γ

B
+

s
4Γ + B

4B
−

2Γ + B

2B
Sw +

S2
w

4

1A
= pd

e

"
B

2
(1− Sw) + Γ +

B

2
(1− Sw)

s
1 +

4Γ

B

1

1− Sw

#
B�1
≈ pd

e

»
B

2
(1− Sw) + Γ +

B

2
(1− Sw)

„
1 +

2Γ

B

1

1− Sw

«–
= pd

e [B(1− Sw) + 2Γ ] ,

(81)

where the square root was approximated by its Taylor expansion. From eq. (81) we immediately
obtain the limit of the difference between drainage and imbibition as

lim
B→∞

P d
c (Sw)− P i

c (Sw) = 2pd
e(1−Π). (82)

Explicit expressions for secondary processes

Explicit analytic expressions for the relationship between coarse scale saturations and the
position of vanishing fine-scale capillary pressure are given.

Drainage followed by an imbibition

The three functions for the position of the vanishing capillary pressure for a drainage followed
by an imbibition are given by

Zdi
1 (Sw, St) =

1

2B2Sw(Zd
1 − 1)− 2

h
2Π − 1− (2Π + B2Sw)Zd

1 + B2SwZd
1
2

−
q

B2Sw(Zd
1 − 1)Zd

1 − 1q
4(Π2 −Π)(Zd

1 − 1)− 1 + B2Sw(Zd
1 − 1)Zd

1

–
(83)

and

Zdi
2 (Sw, St) =

1

2(B2Zd
1 −B2)

h
2BΠ − 1−B2Sw + (B2Sw −B2 − 2BΠ)Zd

1 + B2Zd
1
2

+

q
2B − 1−B2Sw + (B2Sw − 2B + B2)Zd

1 −B2Zd
1
2q

2B(2Π − 1)− 1−B2Sw + (2B + B2 − 4BΠ + B2Sw)Zd
1 −B2Zd

1
2

–
(84)

and

Zdi
3 (Sw, St) =

1

2(B2Zd
2 −B2)

h
2BΠ − 1−B2Sw + (B2Sw −B2 − 2BΠ)Zd

2 + B2Zd
2
2

+

q
2B − 1−B2Sw + (B2Sw − 2B + B2)Zd

2 −B2Zd
2
2q

2B(2Π − 1)− 1−B2Sw + (2B + B2 − 4BΠ + B2Sw)Zd
2 −B2Zd

2
2

–
. (85)

In eq. (83) and (84) the argument of Zd
1 = Zd

1 (St) and in eq. (85) the argument of Zd
2 = Zd

2 (St)
have been omitted to improve the readability.
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Imbibition followed by a drainage

The three functions for the position of the vanishing capillary pressure for an imbibition fol-
lowed by a drainage are given by

Zid
1 (Sw, St) =

1

2[Π2 −B2Sw(Zi
1 − 1)]

h
Π2 − 2Π + (2Π + B2Sw)Zi

1 −B2SwZi
1
2

−
q

4[B2Sw(Zi
1 − 1)−Π2](Zi

1 − 1)Zi
1 + [Π2 + 2Π(Zi

1 − 1)−B2Sw(Zi
1 − 1)Zi

1]2
–

(86)

and

Zid
2 (Sw, St) =

1

2[Π2 −B2Sw(Zi
2 − 1)]

h
Π2 − 2Π + (2Π + B2Sw)Zi

2 −B2SwZi
2
2

−
q

4[B2Sw(Zi
2 − 1)−Π2](Zi

2 − 1)Zi
2 + [Π2 + 2Π(Zi

2 − 1)−B2Sw(Zi
2 − 1)Zi

2]2
–

(87)

and

Zid
3 (Sw, St) =

1

2(B2Zi
2 −B2)

h
2B −Π2 −B2Sw + (B2Sw − 2B −B2)Zi

2 + B2Zi
2
2

+

„h
Π2 − 2B + B2Sw + (2B + B2 −B2Sw)Zi

2 −B2Zi
2
2

i2
− 4

ˆ
B2Zi

2 −B2
˜

×
h
2Π − 1−Π2 + (1− 2Π + 2B −B2Sw)Zi

2 + (B2Sw − 2B)Zi
2
2

i” 1
2

–
. (88)

In eq. (86) the argument of Zi
1 = Zi

1(St) and in eq. (87) and (88) the argument of Zi
2 = Zi

2(St)
have been omitted to improve the readability.
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