About
10
Publications
4,095
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
563
Citations
Publications
Publications (10)
We describe in this paper the experimental procedure, the data treatment and the quantification of the black body correction: an experimental approach to compensate for scattering and systematic biases in quantitative neutron imaging based on experimental data. The correction algorithm is based on two steps; estimation of the scattering component a...
We propose a method for improving the quantification of neutron imaging measurements with scintillator-camera based detectors by correcting for systematic biases introduced by scattered neutrons and other sources such as light reflections in the detector system. This method is fully experimental, using reference measurements with a grid of small bl...
The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample...
Neutron imaging of sub-10-micrometres spatial resolution has been recently achieved in 2D mode within the framework of the Neutron Microscope project at the Paul Scherrer Institut. Here we report on the development of the PSI Neutron Microscope instrument and the results of the first microtomographic imaging experiment of multifilament superconduct...
Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sampl...
The combined utilization of neutron and X-ray imaging for non-invasive investigations of cultural heritage objects is demonstrated on the example of a short sword found a few years ago in lake Zug, Switzerland. After conservation treatments carried out at the Swiss National Museum the sword was examined at the Paul Scherrer Institut (PSI), Villigen...
The use of non-invasive and non-destructive methods is highly relevant for cultural heritage objects in particular, due to their uniqueness and the often high cost of material as well as immaterial value. It is, however, of great importance to gain a simple overview of their material distribution, the manufacturing techniques, the provenance and th...
Neutron imaging as a technique for non-destructive testing has its application range where the more common X-ray methods will come to their limits: transmission through thick layers of heavy metals, detection of small amounts of hydrogenous materials and some other light elements like Boron or Lithium. There are at least three approaches for the fu...
The beamline for Imaging with COld Neutrons (ICON) at Swiss spallation neutron source (SINQ) at Paul Scherrer Institut has a flexible design to meet the requests from a wide user community. The current status of the beamline and its characteristics are described. The instrumentation includes three experimental positions from which two are equipped...