Florian Schäfer

Florian Schäfer
Universität Kassel · Energy Management and Power System Operation

Master of Science

About

15
Publications
4,839
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
593
Citations
Citations since 2017
15 Research Items
595 Citations
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
Introduction
Additional affiliations
July 2016 - September 2017
Universität Kassel
Position
  • Research Assistant

Publications

Publications (15)
Article
Solving AC-Optimum Power Flow (OPF) problems is an essential task for grid operators to keep the power system safe for the use cases such as minimization of total generation cost or minimization of infeed curtailment from renewable DERs (Distributed Energy Resource). Mathematical solvers are often able to solve the AC-OPF problem but need significa...
Article
Full-text available
Fast approximations of power flow results are beneficial in power system planning and live operation. In planning, millions of power flow calculations are necessary if multiple years, different control strategies, or contingency policies are to be considered. In live operation, grid operators must assess if grid states comply with contingency requi...
Article
Full-text available
Integrating active power curtailment (APC) of renewable energy sources (RES) in power system planning reduces necessary investments in the power system infrastructure. In current target grid planning methods, APC is considered by fixed curtailment factors without considering the provided flexibility to its full extent. Time-series-based planning me...
Preprint
Fast approximations of power flow results are beneficial in power system planning and live operation. In planning, millions of power flow calculations are necessary if multiple years, different control strategies or contingency policies are to be considered. In live operation, grid operators must assess if grid states comply with contingency requir...
Article
Full-text available
Combining switching state optimization (SSO) and network expansion planning (NEP) in AC systems results in a mixed-integer non-linear optimization problem. Two methodically different solution approaches are mathematical programming and heuristic methods. In this paper, we develop a hybrid optimization method combining both methods to solve the comb...
Chapter
In this chapter, we introduce various applications for artificial neural networks in the context of power systems. Due to a fast pace of development in recent years, multiple libraries for setting up and training artificial neural networks are available as open-source software. In the field of power system analysis, the open-source software pandapo...
Preprint
The power system planning task is a combinatorial optimization problem. The objective function minimizes the economic costs subject to a set of technical and operational constraints. Meta-heuristics are often used as optimization strategies to find solutions to this problem by combining switching, line reinforcement or new line measures. Common heu...
Conference Paper
Full-text available
The accurate evaluation of grid losses is important for grid operators, especially in the era of high penetration of distributed generations (DGs). However, determining distribution grids’ losses in large scales is a difficult task. An advanced methodology for evaluation of energy losses in large distribution systems is developed in this work. Eval...
Article
Power flow calculations for systems with a large number of buses, e.g. grids with multiple voltage levels, or time series based calculations result in a high computational effort. A common power flow solver for the efficient analysis of power systems is the Newton-Raphson algorithm. The main computational effort of this method results from the line...
Article
Pandapower is a Python based, BSD-licensed power system analysis tool aimed at automation of static and quasi-static analysis and optimization of power systems. It is a full fledged power system analysis tool that provides power flow, optimal power flow, state estimation, topological graph searches and short circuit calculations according to IEC 60...

Network

Cited By