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Abstract. Many recent experiments probed the off equilibrium dynamics of spin

glasses and other glassy systems through temperature cycling protocols, and observed

memory and rejuvenation phenomena. Here we show through numerical simulations,

using powerful algorithms, that such features can already be observed to some extent

in simple models such as two dimensional ferromagnets. We critically discuss these

results and review some aspects of the literature in the light of our findings.
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1. Introduction

One of the main field of research in ill-condensed matter over the last few years was

certainly the off equilibrium dynamics of glassy systems. These studies led to the

emergence of satisfying pictures and useful concepts that now allow a good qualitative

understanding of many experimental facts, such as aging [1, 2]. For instance, if one

quenches a glassy system from its high temperature phase to its low temperature phase,

this system will age and the longer the experimentalist will wait, the slower the system

will be (which is indeed what aging is in real life). To be more precise, after a quench at

t = 0, an observable like the magnetic susceptibility under a field applied at time tw —the

so-called waiting time— will typically decay following a scaling function f(t/tw). This

generic picture of aging is now well documented and quite ubiquitous, being observed in

many experimental and theoretical situations [1, 2]. However, one of the most striking

feature in the dynamics of these systems, which is not well taken into account so far,

is certainly their dependence to the complete history, so that more complex procedures

than a simple quench are of great interest. Indeed, following the early seminal work of

Struick and Kovacs [3], a number of more elaborate experiments have been performed

in a wide class of glassy materials such as polymers [4], colloidal suspensions under a

shear [5], disordered or frustrated magnets [6, 7] or, for what will matter here, spin

glasses [8, 9, 10]. Interesting and impressive hysteresis effects have been observed; they

are commonly referred to as memory and rejuvenation.

Let us briefly discuss these effects in the context of spin glasses (and refer for

instance to [1, 8, 9, 10, 11] for a more exhaustive description). In standard experiment,

a temperature cycle is performed: a system (with a glass transition at Tg) is at first

quenched from its high temperature phase to T1 < Tg and then kept at this temperature

for a while, before being cooled again to T2 < T1. After another time interval, it is

brought back to T1. Two striking effects are observed. 1) As the system is brought

to T2 its dynamics witnesses a large restart, although it looked almost equilibrated at

T1; in particular its susceptibility is initially much larger than what would be after the

same time in a direct quench at T2. In the aging phenomenology a system that responds

more is younger thus the name rejuvenation for this effect that has been observed in

many materials [4, 5, 8]. 2) After the stage at T2, when brought back to T1, the system

may behave (depending on the material and/or the parameters of the experiment) as

if the temperature cycle has not been done at all and its susceptibility seems just to

follow the T1 curve from where it was left in the first stage at T1. In AgMn spin glass

for instance [11], there are no differences (apart from a short transient) between the

susceptibility obtained for a long quench at T1, and the one obtained in a temperature

cycle if one just removes by hand all the data corresponding to the time spent at T2.

This is called the memory effect as the system, despite its rejuvenation, remembers how

it was when it left T1.

It is fair to say that we are still far from a complete theoretical understanding

of these two effects and their co-existence, apart from simple phenomenological
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descriptions [9, 11, 10, 12, 13, 14]. Numerical simulations would be of great help in

the understanding of this problem, but at the moment they have produced a number of

contradictory claims: while some authors [11] advocate also for off-equilibrium typical

configurations the presence of a property called temperature chaos [15] (equilibrium

configurations at different temperatures are completely reshuffled for sufficiently large

systems), others claim to observe these effects [13, 16] in the absence of any chaos, a

conclusion that has also been challenged [14]. It was even provocatively asked if the

Edwards-Anderson spin glass model was able to reproduce experimental findings [12],

or if other models would be more appropriate [17]. Many questions were raised by the

interpretation of numerical simulations, and in this situation it is natural for a physicist

to come back to what he knows best: the ferromagnetic models we simulated in our

early courses. Doing such quenches and T -cycling simulations in the 2d Ising and XY

models will indeed provide some interesting lessons [18] as we shall now discuss.

2. Models and methods

We consider T -cycle experiments (T = ∞ → T1 < Tg → T2 < T1 → T1) in Monte Carlo

(MC) simulations. We use large system sizes (typically L ≈ 103) to avoid finite size

effects and equilibration. We consider two models defined on a 2d square lattice: the first

has Ising spins and Hamiltonian H = −∑SiSj, and the second has 2-component vector

spins of unit length and Hamiltonian H = −∑ ~Si
~Sj , where the sums act on neighboring

spins. While the Ising model undergoes a standard second order ferromagnetic transition

at Tc , the XY model possesses a remarkable quasi-ordering characterized by a line of

critical points going from T = 0 up to a transition temperature TKT [19]. Finally, we

briefly discuss finite dimensional spin glasses with Gaussian random couplings (where

we use, for 4d, L ≈ 20). We express all temperatures in units of Tc or TKT and consider

Glauber as well as Kawasaki dynamics.

A few words on the numerical methods used in this work. So far simulations

computed magnetic susceptibilities from correlation functions, assuming the validity of

the Fluctuation-Dissipation Theorem (FDT); we will see that this can be sometime quite

dangerous at short times, when the system is still strongly out of equilibrium. Instead,

we used a generalization of a recently proposed algorithm to compute directly the linear

response to a (DC or AC) magnetic field without physically putting the field [20, 21].

We will unfortunately skip here these quite technical, but important, points (addressing

the reader to a more detailed paper [18]) and instead will focus on the results.

3. Effective temperatures in coolings and heatings

Let us start by few remarks on coolings from a initial high temperature Ti to a final lower

one Tf and on heatings from a low temperature Ti to a higher one Tf . We concentrate

on the 2d XY model (that will be useful later on) where some analytical results can

be obtained in both cases, when the system is initially equilibrated at Ti (under the
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so-called spin waves approximation [22]). One can show that the correlation between a

configuration at times tw and t > tw scales [22] as

C(t, tw) ∝ (1/tw)
η(Tf )

2

(

1 +
1

4 t
tw

( t
tw

+ 1)

)

η(Tf )−η(Ti)

4

, (1)

where η(T ) is a critical exponent, roughly proportional to the temperature T [22, 23].

The use of the FDT allow us to estimate the magnetic susceptibility at time t to a field

applied at time tw or, more conveniently, the susceptibility under an oscillatory field

of frequency ω ≈ 1/tw: roughly χ(ω, t) ≈ (1 − C(t + 1/ω, t))/T . Using expression (1)

we see that starting from a high temperature Ti and cooling down to Tf < Ti, then

η(Tf) < η(Ti) and therefore C(t + 1/ω, t) increases with t. As a consequence, when the

system ages one observes that its susceptibility decreases towards its equilibrium value,

as it is well known. However, when heating from a low temperature Ti to Tf > Ti one

has now η(Tf) > η(Ti) and C(t+1/ω, t) then decreases with t and thus the susceptibility

increases with t; in this case one observes a kind of inverse aging where the system is

initially too correlated for the new temperature Tf , so that it has to uncorrelate with

time.

At short times after a change of temperature from Ti to Tf the system is strongly

out of equilibrium and the FDT is violated, so that an effective temperature Teff [24]

can be defined. Computing it in the Langevin formalism we found [18]

Teff = Tf

(

1 +
1

ωt

Ti − Tf

Tf

)

= Tf

(

1 − 1

ωt

)

+ Ti
1

ωt
. (2)

This shows that, although Teff = Tf at large time (where FDT is valid), at shorter

time, when t = O(1/ω), Teff is a weighted average of Ti and Tf . All of that is in fact

completely general and we will see from our data that this scenario holds equally well

for ferromagnets and for spin glasses: the moral of this story is that FDT overestimates

the real susceptibility in coolings, and underestimates it in heatings.

4. Temperature Cycle experiment in Ising model

We now turn our attention to the numerical data in Fig.1(a), obtained from a T-cycling

simulation in the 2d Ising model with Glauber dynamics. A clear restart of the aging

dynamics (a rejuvenation) is observed when cooling from T1 = 0.8 to T2 = 0.4, while no

memory effect is seen (going back to T1, the susceptibility is lower than the last point

in the first stage at T1). Apart from this lack of memory (that we will discuss in the

next paragraph), this looks amazingly, and perhaps surprisingly, similar to the curves

obtained in cycling simulations of spin glasses [13, 16]; this rises the following questions.

First, should we be really surprised? After all, the temperature is changed so that

something has to happens as the system tries to equilibrate in the new environment.

Yet, it is easy to show in a simulation that this equilibration will be very fast, and hardly

observable, if we would start from a state with spatially homogeneous magnetization.

However, we know that after a quench the system is far from equilibrium. It is composed
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Figure 1. T -cycling experiments in the 2d Ising model with Glauber dynamics.

(a) Susceptibility at time t + 1/ω under a DC field applied at time t, by assuming

FDT, i.e. (1 − C(t + 1/ω, t))/T , and using the exact algorithm. The inset shows χ′

and χ′′ obtained with the exact algorithm for AC field of frequency ω. A transient

rejuvenation effect is observed upon cooling but no memory (full lines are data for

direct quenches to T1 and T2). (b) Same data for larger time scales, i.e. smaller ω, as

a function of the rescaled time t ω, using FDT (main plot) and the exact algorithm

(inset). As all times are rescaled rejuvenation vanishes fastly in the exact susceptibility

while a transient signal is still present assuming FDT.

by domains of positive and negative magnetizations separated by interfaces —or domain

walls— that grow with time [23]. While the bulk part of domains is indeed equilibrating

almost instantaneously to the new temperature, the interface itself needs more time to

re-equilibrate and this is the origin of the signal observed in Fig.1(a). The reader then

may find that this is a bit a trivial effect. How could this looks so impressive in Fig.1(a)?

We even observe that the susceptibility estimated by the FDT is initially larger at T2

than at T1, and we would thus be tempted to think that this is the sign of a very

strong rejuvenation effect (as it is sometimes claimed in the literature [16, 25]). This

is not completely true. Indeed, it is possible to show [18] that at large β = 1/T , while

the asymptotic equilibrium susceptibility χbulk behaves as βe−β, the aging part χdw

due to the domains walls scales as β, essentially because there are spins in zero local

field on these walls (this is in fact nothing else than the division by T in the dynamic

FDT formula). χdw is therefore very sensitive to T -changes so that χ(T2) can be made

arbitrary high by lowering T2, while nothing really changes in the physics of the system.

The relative high of the susceptibility at different temperatures is therefore not a very

good measure for a restart of the dynamics. Finally, we can check that, as predicted in

the last section, we strongly overestimate (resp. underestimate) the early time regime of

the susceptibility upon cooling (resp. heating) using the FDT, which therefore enhances

artificially the rejuvenation effect (a comment also made in [16]). The reason for that

can be easily understood: when a given spin is strongly out of equilibrium (for instance

when the temperature is changed), it will be forced to flip and this will affect the

correlation function. However, the susceptibility is only sensitive to flips due to thermal
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Figure 2. Similar plots to Fig.1 but for Kawasaki dynamics. (a) Exact DC

susceptibility in a T -cycle; memory and rejuvenation are both observed (in the inset we

remove the part at T2 to show better memory). (b) As for Glauber, the rejuvenation

signal vanishes at larger time scales, although in a much slower way.

fluctuations, not to those driven by off-equilibrium relaxation: this is the origin of the

large discrepancy between the FDT approximate and the exact susceptibility [18].

Still, a signal is observed in the exact susceptibility, so that the puzzled reader may

rightfully ask why then is there no rejuvenation in real ferromagnets? First of all, this

is not completely true as rejuvenation is observed in some particular class of frustrated

magnets [6], but the answer to this question is that before claiming any experimental

relevance one has to do numerical simulations on the same time scales than experiments,

i.e. in the t → ∞ limit. As can be seen in Fig.1(b), the rejuvenation signal tends to

vanish if one rescales all time scales by the period P of the oscillating field and send

P → ∞ (because the time needed to re-equilibrate interfaces is finite). Again, notice

that while this is clear on the correct susceptibility, the approximate one still reports

a misleading remaining signal in the P → ∞ limit. Observing a plot such as the one

in Fig.1(a) is thus meaningless without a systematic large time study. These points

obviously weaken many conclusions that have been obtained from simulations so far.

5. The magic of 2d Kawasaki dynamics

While we observed a (transient) rejuvenation in Fig.1(a), memory is lacking. This is

easily understood: the coarsening dynamics is almost T -independent, domains grows as√
t at any low temperatures, and thus the susceptibility measured coming back at T1 is

lower than the one the system had when it first left T1: essentially there are much less

domain walls! If, however, the coarsening at T2 < T1 is much slower, so that the density

of interface would not decreases too fast, we may expect a good memory effect.

This can be achieved easily just by switching to Kawasaki dynamics. While it is well

known that domains then coarsen as t1/3 at large times [23], it has been shown recently

that, due to initial moves that requires thermal activation, the Kawasaki dynamics of the
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2d ferromagnet get stuck for time scales shorter than τ = exp(8β) [26] so that the grow

is only logarithmic in this regime (where the system is actually hardly distinguishable

from a spin glass; even its Teff resembles those of mean field disordered systems [26]).

This strong temperature dependence of domains growth is sufficient to add memory

to our rejuvenation effect. In Fig.2(a), we now observe a quasi perfect memory effect

due to the freezing of the coarsening dynamics at T2, so that back to T1 the dynamics

continues where it has left (apart from a short, fast transient). We also see overaging,

another interesting effect observed in some experiments (that we will not discuss here).

The 2d Kawasaki model is probably the simplest model in finite dimension that display

these phenomena. This demonstrates that memory and rejuvenation can be observed

numerically even in simple models without disorder. All that are good news, given the

experimental ubiquity of these effects but it again demonstrates that caution has to be

taken when interpreting such data. Indeed, the rejuvenation signal tends to decrease,

although slowly, at larger time scales (Fig.2(b)).

An alternative simple way to introduce such a T -dependence in the dynamics is

to add small disorder and/or frustration in the couplings (or in the magnetic field), in

which case the dynamics at T2 could again be slow enough to allow the observation

of memory. The recipe how to cook a model with memory and rejuvenation is thus

quite simple. This explains the results of [16], where they observed similar effects in

site-diluted ferromagnet. All these results actually resemble what is experimentally

observed in disordered [6] and frustrated magnets [7], probably because the underlying

mechanism of interfaces pining is similar.

6. Temperature Cycle experiment in 2d XY model

We turn briefly to the 2d XY model where the situation is quite different: here we expect

a rejuvenation signal from equilibrium physics since the equilibrium correlation function

essentially behaves as C(r) ∝ r−T so that all length scales have to be re-equilibrated

upon T -changes, as is evidenced by Eq.(1). This model thus seems to be a good

illustration of the “many length scales” ideas advocated in [9]. It was suggested in [17]

that the 2d XY model may capture most of the experimental spin glass phenomenology,

but our numerical studies for this model are in disagreement with this picture [18].

Firstly, as can be checked in the data of Fig.3(a), the FDT violations we reported in the

Ising model are even stronger in the XY model, so that the impressive rejuvenation effect

previously seen in the correlation is actually very tiny for the susceptibility. Secondly,

due to the form of the correlation in Eq.(1), which is typical of aging at criticality, the

large time limit makes all the rejuvenation effect to concentrate in a vanishing small

time window, see Fig. 3(b).

All this makes the result of [17] a bit artificial. While the mechanism of re-

adaptation at all scales is certainly relevant to glassy dynamics, the use of the XY model

is not really justified, mainly because it is indeed a very special critical system, and

critical dynamics is quite different from the one observed in usual aging. Unfortunately
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Figure 3. T -cycling in the 2d XY model (same presentation of data as in Fig.1).

(a) The FDT-based susceptibility enhanced artificially the rejuvenation effect.

(b) Rejuvenation fastly vanishes at large time scales.

surfing on a critical line does not seem to be sufficient to interpret spin glass experiments.

7. Conclusion and discussion

Once again, studying simple models provided important lessons. Firstly, contrary to

what was believed, it is not so hard to observe either rejuvenation and memory in

simulations at finite times, in fact even a simple ferromagnetic model can do that. We

also showed that assuming FDT enhanced artificially the rejuvenation effect, and that

one can have a larger susceptibility at a lower temperature without any restart of the

dynamics. Therefore careful interpretations of simulation have to be made, and the long

time limit has to be studied before doing any comparison with experimental data. All

these points are valid for spin glasses, as can be checked in Fig.4(a).

In recent years, many authors concluded that since memory and rejuvenation can

be observed without temperature chaos, this concept is irrelevant (we saw indeed that

these effects can be obtained almost in any models if one tunes properly the parameters).

Nevertheless the phenomenology we observed remains quite far from what is observed

in spin glass experiments when looking more closely. Firstly, the large time limit is

different. Secondly, in spin glasses like AgMn the rejuvenation can be complete, so

that the susceptibility at T2 after the stage at T1 is the same as in a direct quench at

T2 (these are the only real rejuvenations according to [11]); it is hardly the case for

all the models considered here. It has been argued that temperature changes are not

instantaneous in experiments so that numerical quenches have to be also progressive in

order to obtain (maybe) a complete rejuvenation [13, 16]. We expect that this will not

affect too much the exact susceptibility, but rather its approximation based on FDT and

its “unphysical” part. It is finally important to mention the second rejuvenation effect

that is sometime observed in Heisenberg spin glass when heating back to T1 [8, 27, 11],

so that the dynamics looks like quenched from a higher temperature in this reheating
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Figure 4. (a) T -cycling in 4d spin glasses; data look very similar to what is obtained

in the ferromagnets (in the inset data in oscillatory field). (b) Chaotic length, beyond

which temperature chaos is observable, as a function of T in the 3d XY and Ising

spin glasses from real space renormalization (after [31], ∆T = 0.001 in the main plot,

∆T = 0.01 in the inset). Chaos is much stronger for continuous spins.

step. This is not observed in the models considered here, nor in simulations of spin

glass, and can neither be understood within the XY model, even qualitatively. This

suggests something new is at work, and this might well be temperature chaos. This is

an old issue in spin glass community that for a while shared many common points with

the Loch Ness monster: many people talk about it, yet no one really saw it. It seems

now that it exists in mean field as well as finite dimensional systems [28, 29, 30] and it

can also be shown that the lengths beyond which chaotic effects are observable should

be shorter for continuous spins than for Ising spins [31], see also Fig.4(b), which would

explain nicely why rejuvenation effects are stronger for Heisenberg spin glasses, and why

Ising samples do not seem to display a second rejuvenation.

As usual, it would be certainly funny to look to these statements in a few years,

when most of these questions will have hopefully found their answers.
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