
Finn Behrendt- Hamburg University of Technology
Finn Behrendt
- Hamburg University of Technology
About
38
Publications
2,019
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
147
Citations
Introduction
Skills and Expertise
Publications
Publications (38)
Recognizing the properties of elastic tissue can facilitate surgical navigation, e.g., when localizing lesions by palpation. However, palpation is very subjective and often unavailable in minimally invasive surgery. High-speed optical coherence elastography (OCE) adapted for intraoperative use could enable elasticity estimation by measuring the pro...
Purpose
Commonly employed in polyp segmentation, single-image UNet architectures lack the temporal insight clinicians gain from video data in diagnosing polyps. To mirror clinical practices more faithfully, our proposed solution, PolypNextLSTM , leverages video-based deep learning, harnessing temporal information for superior segmentation performan...
Unsupervised Anomaly Detection (UAD) methods rely on healthy data distributions to identify anomalies as outliers. In brain MRI, a common approach is reconstruction-based UAD, where generative models reconstruct healthy brain MRIs, and anomalies are detected as deviations between input and reconstruction. However, this method is sensitive to imperf...
Purpose
Clinical needle insertion into tissue, commonly assisted by 2D ultrasound imaging for real-time navigation, faces the challenge of precise needle and probe alignment to reduce out-of-plane movement. Recent studies investigate 3D ultrasound imaging together with deep learning to overcome this problem, focusing on acquiring high-resolution im...
Purpose
MRI-derived brain volume loss (BVL) is widely used as neurodegeneration marker. SIENA is state-of-the-art for BVL measurement, but limited by long computation time. Here we propose “BrainLossNet”, a convolutional neural network (CNN)-based method for BVL-estimation.
Methods
BrainLossNet uses CNN-based non-linear registration of baseline(BL...
Purpose
Paranasal anomalies, frequently identified in routine radiological screenings, exhibit diverse morphological characteristics. Due to the diversity of anomalies, supervised learning methods require large labelled dataset exhibiting diverse anomaly morphology. Self-supervised learning (SSL) can be used to learn representations from unlabelled...
Pulmonary nodules may be an early manifestation of lung cancer, the leading cause of cancer-related deaths among both men and women. Numerous studies have established that deep learning methods can yield high-performance levels in the detection of lung nodules in chest X-rays. However, the lack of gold-standard public datasets slows down the progre...
Objective
Computer aided diagnostics (CAD) systems can automate the differentiation of maxillary sinus (MS) with and without opacification, simplifying the typically laborious process and aiding in clinical insight discovery within large cohorts.
Methods
This study uses Hamburg City Health Study (HCHS) a large, prospective, long‐term, population‐b...
Compression-based optical coherence elastography (OCE) enables characterization of soft tissue by estimating elastic properties. However, previous probe designs have been limited to surface applications. We propose a bevel tip OCE needle probe for percutaneous insertions, where biomechanical characterization of deep tissue could enable precise need...
Purpose:
Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approache...
Lung cancer is a serious disease responsible for millions of deaths every year. Early stages of lung cancer can be manifested in pulmonary lung nodules. To assist radiologists in reducing the number of overseen nodules and to increase the detection accuracy in general, automatic detection algorithms have been proposed. Particularly, deep learning m...
Needle positioning is essential for various medical applications such as epidural anaesthesia. Physicians rely on their instincts while navigating the needle in epidural spaces. Thereby, identifying the tissue structures may be helpful to the physician as they can provide additional feedback in the needle insertion process. To this end, we propose...
Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paran...
The use of supervised deep learning techniques to detect pathologies in brain MRI scans can be challenging due to the diversity of brain anatomy and the need for annotated data sets. An alternative approach is to use unsupervised anomaly detection, which only requires sample-level labels of healthy brains to create a reference representation. This...
Deep learning (DL) algorithms can be used to automate paranasal anomaly detection from Magnetic Resonance Imaging (MRI). However, previous works relied on supervised learning techniques to distinguish between normal and abnormal samples. This method limits the type of anomalies that can be classified as the anomalies need to be present in the train...
Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep le...
Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep le...
Radiographs are a versatile diagnostic tool for the detection and assessment of pathologies, for treatment planning or for navigation and localization purposes in clinical interventions. However, their interpretation and assessment by radiologists can be tedious and error-prone. Thus, a wide variety of deep learning methods have been proposed to su...
Radiographs are a versatile diagnostic tool for the detection and assessment of pathologies, for treatment planning or for navigation and localization purposes in clinical interventions. However, their interpretation and assessment by radiologists can be tedious and error-prone. Thus, a wide variety of deep learning methods have been proposed to su...
The increasing workloads for radiologists in clinical practice lead to the need for an automatic support tool for anomaly detection in brain MRI-scans. While supervised learning methods can detect and localize lesions in brain MRI-scans, the need for large, balanced data sets with pixel-level annotations limits their use. In contrast, unsupervised...
Narrow Band Imaging (NBI) is increasingly being used in laryngology because it increases the visibility of mucosal vascular patterns which serve as important visual markers to detect premalignant, dysplastic and malignant lesions. To this end, deep learning methods have been used to automatically detect and classify the lesions from NBI endoscopic...
The detection of lesions in magnetic resonance imaging (MRI)-scans of human brains remains challenging, time-consuming and error-prone. Recently, unsupervised anomaly detection (UAD) methods have shown promising results for this task. These methods rely on training data sets that solely contain healthy samples. Compared to supervised approaches, th...
Lesion detection in brain Magnetic Resonance Images (MRIs) remains a challenging task. MRIs are typically read and interpreted by domain experts, which is a tedious and time-consuming process. Recently, unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results to provide a quick, initial assessment. So far, th...
Purpose. Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervise...
Purpose
Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervised...
Robot-assisted minimally-invasive surgery is increasingly used in clinical practice. Force feedback offers potential to develop haptic feedback for surgery systems. Forces can be estimated in a vision-based way by capturing deformation observed in 2D-image sequences with deep learning models. Variations in tissue appearance and mechanical propertie...