
Filip J R MeysmanUniversity of Antwerp | UA · Department of Biology
Filip J R Meysman
Professor
About
239
Publications
63,909
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,125
Citations
Introduction
Additional affiliations
January 2010 - February 2016
January 2008 - January 2017
Publications
Publications (239)
Eutrophication and global change are increasing the occurrence of seasonal hypoxia (bottom-water oxygen concentration <63 µM) in coastal systems worldwide. In extreme cases, the bottom water can become completely anoxic, allowing sulfide to escape from the sediments and leading to the development of bottom-water euxinia. In seasonally hypoxic coast...
Cable bacteria are multicellular sulfide oxidizing bacteria that display a unique metabolism based on long-distance electron transport. Cells in deeper sediment layers perform the sulfide oxidizing half-reaction whereas cells in the surface layers of the sediment perform the oxygen-reducing half-reaction. These half-reactions are coupled via electr...
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we...
Detailed validation of air quality models is essential, but remains challenging, due to a lack of suitable high-resolution measurement datasets. This is particularly true for pollutants with short-scale spatial variations, such as nitrogen dioxide (NO2). While street-level air quality model chains can predict concentration gradients at high spatial...
Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron trans...
Research in environmental science relies heavily on global climatic grids derived from estimates of air temperature at around 2 meter above ground1-3. These climatic grids however fail to reflect conditions near and below the soil surface, where critical ecosystem functions such as soil carbon storage are controlled and most biodiversity resides4-8...
Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limite...
It has been hypothesized that the evolution of animals during the Ediacaran–Cambrian transition stimulated the burial of phosphorus in marine sediments. This assumption is centrally based on data compilations from marine sediments deposited under oxic and anoxic bottom waters. Since anoxia excludes the presence of infauna and sediment reworking, th...
Cable bacteria are multicellular, Gram-negative filamentous bacteria that display a unique division of metabolic labor between cells. Cells in deeper sediment layers are oxidizing sulfide, while cells in the surface layers of the sediment are reducing oxygen. The electrical coupling of these two redox half reactions is ensured via long-distance ele...
Cable bacteria are electroactive bacteria that form a long, linear chain of ridged cylindrical cells. These filamentous bacteria perform centimeter-scale long-range electron transport through parallel, interconnected conductive pathways of which the detailed chemical and electrical properties are still unclear. Here, we combine ToF-SIMS (time of fl...
For most of Earth's history, the ocean's interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts...
Cable bacteria can strongly alter sediment biogeochemistry. Here, we used laboratory incubations to determine the potential impact of their activity on the cycling of iron (Fe), phosphorus (P) and sulphur (S). Microsensor depth profiles of oxygen, sulphide and pH in combination with electric potential profiling and fluorescence in-situ hybridisatio...
Abstract Filamentous cable bacteria exhibit long-range electron transport over centimetre-scale distances, which takes place in a parallel fibre structure with high electrical conductivity. Still, the underlying electron transport mechanism remains undisclosed. Here we determine the intrinsic electrical properties of the conductive fibres in cable...
Filamentous cable bacteria display unrivalled long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying ele...
It has been hypothesised that the evolution of animals during the Ediacaran-Cambrian transition had a major impact on atmospheric O 2 and CO 2 concentrations. The models upon which this hypothesis rests, critically assume that bioturbation by the newly evolved fauna increased the burial of organic phosphorus (P org) within the seafloor, relative to...
Reliable estimates of outdoor air pollution concentrations are needed to support global actions to improve public health. We developed a new approach to estimating annual average outdoor nitrogen dioxide (NO2) concentrations using approximately 20,000 ground-level measurements in Flanders, Belgium combined with aerial images and deep neural network...
Citizen science projects that monitor air quality have recently drastically expanded in scale. Projects involving thousands of citizens generate spatially dense datasets using low-cost passive samplers for nitrogen dioxide (NO2), which complement data from the sparse reference network operated by environmental agencies. However, there is a critical...
Air pollution remains a key environmental problem in an increasingly urbanized world. To quantify health impacts and support informed policies, the population exposure needs to be accurately monitored. However, the inherent spatial variability of air quality poses a tenacious challenge to this. While concentrations of traffic-related pollutants lik...
Cable bacteria can strongly alter sediment biogeochemistry. Here, we used laboratory incubations to assess whether cable bacteria can establish in iron (Fe) monosulphide-poor coastal Black Sea sediment and to determine the impact of their activity on the cycling of Fe, phosphorus (P) and sulphur (S). Microsensor depth profiles of oxygen, sulphide a...
Background
The International Maritime Organization (IMO) has set limits on sulphur content in fuels for marine transport. However, vessels continue to use these residual high-sulphur fuels in combination with exhaust gas cleaning systems (EGCS or scrubbers). Next to high sulphur, combustion of these fuels also results in higher emissions of contami...
Cable bacteria (Deltaproteobacteria, Desulfobulbaceae) are long filamentous sulfur-oxidizing bacteria that generate long-distance electric currents running through the bacterial filaments. This way, they couple the oxidation of sulfide in deeper sediment layers to the reduction of oxygen or nitrate near the sediment-water interface. Cable bacteria...
Long before the age of microelectronics, a group of filamentous microorganisms named cable bacteria developed an electrical network within their own cell structure. In article number 2000006, Jean V. Manca and co‐workers present the local electrical pathways for cable bacteria using conductive atomic force microscopy, showing a fail‐safe electrical...
Cable bacteria are an emerging class of electroactive organisms that sustain unprecedented long‐range electron transport across centimeter‐scale distances. The local pathways of the electrical currents in these filamentous microorganisms remain unresolved. Here, the electrical circuitry in a single cable bacterium is visualized with nanoscopic reso...
Citizen science projects that monitor air quality have recently drastically expanded in scale. Projects involving thousands of citizens generate spatially dense datasets using low-cost passive samplers for nitrogen dioxide (NO2), which complement data from the sparse reference network operated by environmental agencies. However, there is a critical...
Due to decreases in seawater pH resulting from ocean acidification, permeable calcium carbonate reef sands are predicted to be net dissolving by 2050. However, the rate of dissolution and factors that control this rate remain poorly understood. Experiments performed in benthic chambers predict that reefs will become net dissolving when the aragonit...
Over the last decades, hypoxia in marine coastal environments has become more and more widespread, prolonged and intense. Hypoxic events have large consequences for the functioning of benthic ecosystems. In severe cases, they may lead to complete anoxia and the presence of toxic sulfides in the sediment and bottom-water, thereby strongly affecting...
The East Anglian salt marsh system (UK) has recently generated intriguing data with respect to sediment biogeochemistry. Neighbouring ponds in these salt marshes show two distinct regimes of redox cycling: the sediments are either iron-rich and bioturbated, or they are sulphide-rich and unbioturbated. No conclusive explanation has yet been given fo...
Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport...
Dark carbon fixation (DCF) by chemoautotrophic microorganisms can sustain food webs in the seafloor by local production of organic matter independent of photosynthesis. The process has received considerable attention in deep sea systems, such as hydrothermal vents, but the regulation, depth distribution, and global importance of coastal sedimentary...
Filamentous cable bacteria exhibit unprecedented long-range biological electron transport, which takes place in a parallel fibre structure that shows an extraordinary electrical conductivity for a biological material. Still, the underlying electron transport mechanism remains undisclosed. Here we determine the intrinsic electrical properties of ind...
Cable Bacteria are an emerging class of electroactive organisms that sustain unprecedented long-range electron transport across centimeter-scale distances. The pathways of the electrical currents in these filamentous microorganisms remain unresolved. Here, the electrical circuitry in a single cable bacterium is visualized with nanoscopic resolution...
Iron, manganese, and trace elements play an important role in the marine carbon cycle as they are limiting nutrients for marine primary productivity. Water column concentrations of these bio-essential elements are controlled by the balance between input and removal, with burial in marine sediments being the main sink. The efficiency of this burial...
Over the last decades, hypoxia in marine coastal environments have become more and more widespread, prolonged and intense. These hypoxic events have large consequences for the functioning of benthic ecosystems. They profoundly modify early diagenetic processes involved in organic matter recycling, and in severe cases, they may lead to complete anox...
Biological electron transport is classically thought to occur over nanometre distances, yet recent studies suggest that electrical currents can run along centimetre-long cable bacteria. The phenomenon remains elusive, however, as currents have not been directly measured, nor have the conductive structures been identified. Here we demonstrate that c...
Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metage...
Oxygen depletion in coastal waters may lead to release of toxic sulfide from sediments. Cable bacteria can limit sulfide release by promoting iron oxide formation in sediments. Currently, it is unknown how widespread this phenomenon is. Here, we assess the abundance, activity, and biogeochemical impact of cable bacteria at 12 Baltic Sea sites. Cabl...
Climate variability has major implications for marine geochemical cycles and biogenic carbonate production. Therefore, past climate-driven changes in marine environments are often inferred from geochemical data of the marine carbonate archive. Proxy calibration studies are essential for the reconstruction of such past environmental changes. Here, w...
Cable bacteria are multicellular, filamentous microorganisms that are capable of transporting electrons over centimeter-scale distances. Although recently discovered, these bacteria appear to be widely present in the seafloor, and when active they exert a strong imprint on the local geochemistry. In particular, their electrogenic metabolism induces...
Undigestible, insoluble food particles, such as wheat bran, are important dietary constituents that serve as a fermentation substrate for the human gut microbiota. The first step in wheat bran fermentation involves the poorly studied solubilization of fibers from the complex insoluble wheat bran structure. Attachment of bacteria has been suggested...
Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the...
Dietary modulation can alter the gut microbiota composition and activity, in turn affecting health. Particularly, dietary fibre rich foods, such as wheat bran, are an important nutrient source for the gut microbiota. Several processing methods have been developed to modify the functional, textural and breadmaking properties of wheat bran, which can...
FIB-SEM data of filament BF2.
Cable bacteria represent a newly discovered group of filamentous microorganisms, which are capable of spatially separating the oxidative and reductive half‐reactions of their sulfide‐oxidizing metabolisms over centimeter distances. We investigated three ways that cable bacteria might interact with the nitrogen (N) cycle: (1) by reducing nitrate thr...
Petroleum hydrocarbons reach the deep-sea following natural and anthropogenic factors. The process by which they enter deep-sea microbial food webs and impact the biogeochemical cycling of carbon and other elements is unclear. Hydrostatic pressure (HP) is a distinctive parameter of the deep sea, although rarely investigated. Whether HP alone affect...
The intestinal epithelium plays an essential role in the balance between tolerant and protective immune responses to infectious agents. In vitro models do not typically consider the innate immune response and gut microbiome in detail, so these models do not fully mimic the physiologic aspects of the small intestine. We developed and characterized a...