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CHAPTER ONE

Continuous and discrete
symmetry methods for fractional
differential equations
Youness Chatibia, El Hassan El Kinanib, and Abdelaziz Ouhadanc
aLaboratory of Mathematics, Statistics and Applications, CeReMAR Center, Department of
Mathematics, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
bLaboratory of Modeling, Analysis and Control of Systems, Department of Mathematics,
Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
cRegional Center for Education and Training Professions, Fez-Meknes, Morocco

1.1. Introduction

Differential equations are the main instrument used by scientists to
describe natural phenomena. These phenomena are generally modeled
by ordinary differential equations (ODEs) or partial differential equations
(PDEs). The search for explicit solutions of these latter has many appli-
cations in modeling because they provide information and predict the be-
havior of the phenomena studied. Several analytical and numerical methods
have been studied and developed for the resolution of differential equations.
Among these methods we find the Lie symmetry method.

Historically, the Lie symmetry method for the resolution of differential
equations was introduced towards the end of the 19th century by the Nor-
wegian mathematician S. Lie [21]. The basic idea of this theory is based
on the invariance of a differential equation under a transformation of inde-
pendent and dependent variables. Lie’s most striking contribution was the
discovery that the majority of integration methods were intrinsically linked.
This crucial consideration by S. Lie in the field of differential equations has
been brought up-to-date thanks to various fundamental contributions over
the past decades, notably the works of L.V. Ovsiannikov [29], N.H. Ibragi-
mov [17], G. Bluman [5], P.J. Olver [23], H. Stephani [34], P. Hydon [16],
W.H. Steeb [33], A. Ouhadan, and E.H. El Kinani [24,25].

The determination of continuous or discrete symmetries of a differential
equation leads to several applications. Among these, it is used to build new
nontrivial solutions from trivial ones. For ODEs, the invariance under a
one-parameter group of transformations reduces the order of one. And for
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Control
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PDEs, the dependent and independent variables can be combined in order
to reduce the number of independent variables.

Recently, the application of the fractional derivative in the physical
sciences and engineering, particularly in mechanics and rheology, is the
subject of contributions by several authors [10,14,22]. Indeed, it has been
used as a modeling tool in particular to describe the viscoelastic behavior
of materials which preserve the memory of past deformations and whose
behavior is said to be viscoelastic. These fields of application of fractional
calculus have been the subject of a wide range of studies; we cite for exam-
ple the works of A.A. Kilbas et al. [18] and S. Das [10].

Historically, the first definition of fractional integral and fractional
derivative was introduced by Riemann and Liouville as a consequence of
the solution of Abel’s integral equations. This approach is based on the
iteration of the classical integral operator n times [31]. Other versions of
the fractional derivative have been introduced to take account of certain
physical considerations, in particular the Caputo approach, which was in-
troduced to take account of the initial conditions of a system when these
are required. Other approaches have emerged since then (see, e.g., [30]).

In [12,13], the authors developed the Lie symmetry method for FDEs
in the sense of Riemann–Liouville and Caputo. Since then, several authors
have taken an interest in this subject. We mention the works of R.A. Leo et
al., who showed the existence of Lie symmetries of an FDE [20], Q. Huang
and R. Zhdanov, who studied the fractional Harry Dym equation [15], and
A. Ouhadan and E.H. El Kinani, who studied the fractional Kolmogorov
equation [27] and others [2,3,7,8,26,28].

The main purpose of this chapter is to discuss the basics of continuous
and discrete symmetry methods to construct some exact solutions of FDEs.
These methods are presented with several illustrative examples.

This chapter is organized as follows. Section 1.2 contains basic defini-
tions and facts about continuous and discrete symmetry methods and the
prolongation of the generator of symmetry for ODEs and PDEs. Some
applications of this technique are considered. A possibility to find exact so-
lutions of ODEs and PDEs is illustrated. Section 1.3 contains the definitions
of fractional derivatives in the senses of Riemann–Liouville and Caputo and
some results of symmetry analysis for some classes of FDEs with examples
of constructing solutions. Section 1.4 is devoted to construct discrete sym-
metries of the fractional Harry Dym equation.
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1.2. Continuous and discrete symmetry for classical
differential equations

1.2.1 Continuous symmetry method
Let us consider the general case of a differential equation of order n in
p-independent and q-dependent variables given by

�(x,u(n)) = 0, (1.1)

where x = (x1, ...,xp), u = (u1, ...,uq), and u(n) represents all the derivatives
of u of all orders from 0 to n.

We consider the invertible transformations

Tε : x̄i = φi(x,u, ε), ūj = ψ j(x,u, ε), 1 ≤ i ≤ p, 1 ≤ j ≤ q, (1.2)

where x̄i|ε=0 = xi, ūj|ε=0 = uj, φi and ψ j are two functions, and ε ∈ � ⊂ R

belongs to some neighborhood � of point ε = 0. These transformations
form a one-parameter group G if for all ε1, ε2, ε1 + ε2 ∈ � the following
conditions hold:

T0 = I ∈ G, Tε1Tε2 = Tε1+ε2 ∈ G, T−1
ε1

= T−ε1 ∈ G, (1.3)

where I is the identity transformation.
A first-order linear differential operator

X =
p∑

i=1

ξ i(x,u)∂xi +
q∑

j=1

ηj(x,u)∂uj , (1.4)

where ∂xi = ∂/∂xi, ∂uj = ∂/∂uj,

ξ i(x,u) = ∂φi(x,u, ε)

∂ε

∣∣∣∣
ε=0

, and ηj(x,u) = ∂ψ j(x,u, ε)

∂ε

∣∣∣∣
ε=0

, (1.5)

is called the infinitesimal generator of the one-parameter group (1.2).
A symmetry group of a differential equation is a group of transforma-

tions acting on the independent and dependent variables of this equation
such that it maps its solutions to other solutions. To be more precise, let
S� denote the space of all solutions of Eq. (1.1), a symmetry G is a map-
ping of S� into itself, i.e., G : S� → S�. Thus if u ∈ S�, then we must have
G · u ∈ S�.
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We consider a one-parameter group of infinitesimal transformations act-
ing on x and u,

x̄i = xi + εξ i(x,u) + o(ε), (1.6)

ūj = uj + εηj(x,u) + o(ε). (1.7)

The infinitesimal generator X associated with the above group of transfor-
mations can also be written as

X =
p∑

i=1

ξ i(x,u)∂xi +
q∑

j=1

ηj(x,u)∂uj . (1.8)

The group transformations corresponding to the infinitesimal generators
are found by solving the Lie equations

dx̄i

dε
= ξ i(x,u),

dūj

dε
= ηj(x,u), (1.9)

with the initial conditions

x̄i|ε=0 = xi, ūj|ε=0 = uj. (1.10)

The invariance of Eq. (1.1) under the infinitesimal transformations leads to
the invariance condition [23]

X (n)[�(x,u(n))] = 0 whenever �(x,u(n)) = 0, (1.11)

where X (n) is the nth-order prolongation of the infinitesimal generator X
given by [23]

X (n) = X +
q∑

σ=1

∑
J

ησ
J (x,u(n))∂uσ

J
, (1.12)

with J = (j1, ..., jk), 1 ≤ jk ≤ p, 1 ≤ k ≤ n,
∑

J

=
p∑

j1=1

p∑
j2=1

· · ·
p∑

jk=1

, and

ησ
J (x,u(n)) = DJ

(
ησ −

p∑
i=1

ξ iuσ
i

)
+

p∑
i=1

ξ iuσ
J,i, (1.13)

where DJ = Dj1Dj2 · · · Djk , uσ
i = ∂uσ

∂xi , uσ
J = ∂kuσ

∂xj1 · · · ∂xjk
, and uσ

J,i =
∂uJ

σ

∂xi .
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Conditions on infinitesimals ξ i and ηj are determined by equating co-
efficients of like derivatives of monomials in uxi and higher derivatives by
zero. This leads to a system of PDEs from which we can determine ξ i

and ηj.
For an ODE, the nth-order prolongation of the infinitesimal generator

X = ξ(x,y)∂x + η(x,y)∂y is written [23]

X (n) = X +
n∑

k=1

η[k] ∂

∂y(k)
, (1.14)

where

η[k] = Dx
(
η[k−1])− y(k)Dx(ξ), (1.15)

and Dx denotes the total derivation operator defined by

Dx = ∂x + y(1)∂y + y(2)∂y(1) + y(3)∂y(2) + ... . (1.16)

The generators of a continuous symmetry group of a differential equation
form a Lie algebra, so any linear combination of generators of symmetry of
this group is also a generator of symmetry.

Now, we give two examples of construction of continuous symmetry
groups for an ODE and for a PDE.

Example 1.1 (Ordinary differential equation). We consider the following
equation:

y(2)(x) = 0. (1.17)

Let X = ξ(x,y)∂x +η(x,y)∂y be a generator of a group of symmetries of this
equation. Its second-order prolongation is given by

X (2) = X + η(1)∂y(1) + η(2)∂y(2) . (1.18)

The invariance criterion is written

X (2)[�]|�=0 = η(2)|�=0 = 0, where �(x,y) = y(2)(x). (1.19)

The system of determining equations is written in the form

(y(1))3 : ξyy = 0,

(y(1))2 : ηyy − 2ξxy = 0,

y(1) : 2ηxy − ξxx = 0,

1 : ηxx = 0.
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The resolution of this system gives

ξ(x,y) = (a1x + a2)y + p1x2 + b1x + b2 and

η(x,y) = a1y2 + (p1x + p2)y + q1x + q2, (1.20)

where a1, a2, b1, b2, a, p1, p2, q1, and q2 are arbitrary constants.
It follows that the Lie algebra of symmetries of Eq. (1.17) is generated

by the following eight generators:

X1 = xy∂x + y2∂y, X2 = y∂x, X3 = x2∂x + xy∂y, X4 = x∂x,

X5 = ∂x, X6 = y∂y, X7 = x∂y, X8 = ∂y.

Example 1.2 (Partial differential equation). We consider the following
equation:

ut = uxx, u = u(t,x). (1.21)

The Lie algebra of symmetries of this equation is generated by the following
six generators:

X1 = ∂x, X2 = ∂t, X3 = u∂u,

X4 = x∂x + 2t∂t, X5 = 2t∂x − xu∂u, X6 = 4tx∂x + 4t2∂t − (2t + x2)u∂u,

and by the infinite family of generators Xβ = β(t,x)∂u, where β(t,x) is an
arbitrary solution of (1.21).

From these generators, we can construct the symmetry groups of the
heat equation (1.21) which are presented in Table 1.1.

Table 1.1 Symmetry groups of the heat equation (1.21).
Groups x̄ t̄ ū Symmetry transformations
G1 x + ε t u Space translation
G2 x t + ε u Time translation
G3 x t eεu Scale transformation
G4 eεx e2ε t u Scale transformation
G5 x + 2εt t ue−(εx+ε2t) Galilean boost

G6
x

1−4εt
t

1−4εt u
√

1 − 4εt exp
( −εx2

1−4εt

)
Projection

Gβ x t u + εβ(t,x) Superposition principle
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By applying the group G6 to a trivial solution u(t,x) = 1, we obtain a
nontrivial solution of the heat equation

G6 · u = 1√
1 + 4εt

exp

(
−εx2

1 + 4εt

)
. (1.22)

Among the applications of the continuous symmetry groups of a differential
equation is the construction of its solutions. Often, for some equations it
is not easy to get exact solutions. However, a class of solutions, namely
invariant solutions, can be determined in certain situations. We say that a
solution u = u(t,x) of Eq. (1.1) is an invariant solution if it is a solution of
the characteristic equation

dxi

ξ i(x,u)
= duj

ηj(x,u)
, 1 ≤ i ≤ p, 1 ≤ j ≤ q. (1.23)

In order to obtain an invariant solution one must solve Eq. (1.23) and
examine whether the solutions found are indeed solutions of the initial
differential equation. Some examples of this technique have been discussed
in the literature (see for example [23]).

We can also reduce the order of an nth-order ODE by using the invari-
ant solutions drawn from the equation

dxi

ξ i(x,u)
= duj

ηj(x,u)
= du(k)

η[k] , 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ n. (1.24)

For more details, see [23].
Other applications of continuous symmetry analysis exist; we cite for

example integrating factor, canonical coordinates, linearization of nonlinear
PDEs, and determination of conservation laws.

1.2.2 Discrete symmetry method
We consider Eq. (1.1) and we assume that the Lie algebra g of contin-
uous symmetry generators of this equation is r-dimensional and that the
generators

Xi =
q∑

γ=1

ξ
γ

i (z)∂zγ , when zγ ∈ {x1, ...,xp,u1, ...,uq}, i = 1, ..., r,

(1.25)
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form a basis for g, with [Xi,Xj] = ckijXk. Let  : Xi �→ X̃i be a discrete sym-
metry. Then each Xi can be written as a linear combination of X̃i’s as follows
[16]:

Xi =
r∑

l=1

bl
iX̃l, (1.26)

where bl
i satisfy the relations

r∑
l=1

r∑
m=1

cnlmbl
ib

m
j =

r∑
k=1

ckijb
n
k, when 1 ≤ i < j ≤ n, 1 ≤ n ≤ r. (1.27)

The coefficients bl
i are constants which are determined by symmetry  and

the basis {X1, ...,Xr} is useful to regard these coefficients as elements of an
r × r matrix B = (bl

i).

In [16], it is shown that if Xi ∈ g, then

X̃i = Xi
−1 =

∑
p

ξ
p
i (z̃p)∂z̃p (1.28)

generates a group of symmetries of the differential equation (1.1).
Moreover, at least some of the continuous symmetries can be factored

out using their adjoint action upon the generators in g,

Ad(exp(εjXj))Xi = Xi −εj[Xj,Xi]+
ε2

j

2! [Xj, [Xj,Xi]]− ... = ap
i (εj, j)Xp. (1.29)

Let A(εj, j) = exp (εjC(j)) denote the matrix whose components are ap
i (εj, j).

System (1.26) is equivalent under the group generated by Xj to

Xi =
r∑

l=1

b̃l
iX̃l, (1.30)

where b̃l
i are the coefficients of B̃ = A(εj, j)B. First, we replace B by either

BA(εj, j) or A(εj, j)B, and then choose a value that simplifies, at least, one
entry in the new matrix. The aim is to create zeros in matrix B, in order to
simplify the determining equations and nonlinear constraints. Each matrix
A(εj, j) should be used at most once.

Example 1.3. We consider the nonlinear diffusion equation that describes
the behavior of the collective displacement of particles in a medium caused
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by the random movement [6]

ut = (uux)x, where u = u(t,x). (1.31)

In [12], Gazizov et al. found that this equation has four continuous sym-
metry groups generated by the generators

X1 = ∂t, X2 = ∂x, X3 = 2t∂t + x∂x, X4 = x∂x + 2u∂u. (1.32)

The commutation relations of these generators are written

[X1,X2] = [X3,X4] = 0, [X1,X3] = 2X1, [X2,X3] = [X3,X4] = X2.

(1.33)
The nonzero structure constants are c113 = 2, c223 = c224 = 1. Matrices C(j) are

C(1) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0

−2 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , C(2) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 −1 0 0
0 −1 0 0

⎞
⎟⎟⎟⎠ ,

C(3) =

⎛
⎜⎜⎜⎝

2 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , C(4) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ .

Using matrices εC(j) and adjoint action, we get

A(1) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

−2ε 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , A(2) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 −ε 1 0
0 −ε 0 1

⎞
⎟⎟⎟⎠ ,

A(3) =

⎛
⎜⎜⎜⎝

e2ε 0 0 0
0 eε 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , A(4) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 eε 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (1.34)

Using the relations (1.27), we obtain the nonlinear constraints for (1.31)
which are presented in Table 1.2.

After solving the above constraints, using the adjoint matrices to factor
out the Lie symmetries, so far, we have been able to simplify B to the
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Table 1.2 Nonlinear constraints for nonlinear diffusion equation (1.31).
(i, j) n = 1 n = 2 n = 3 n = 4
(1,2) - - - -
(1,3) b1

1b3
3 = b1

1 b2
1(b

3
3 + b4

3) = 2b2
1 b3

1 = 0 b4
1 = 0

(1,4) b1
1b3

4 = 0 b2
1(b

3
4 + b4

4) = 0 - -
(2,3) 2b1

2b3
3 = b1

2 b2
2(b

3
3 + b4

3) = b2
2 b3

2 = 0 b4
2 = 0

(2,4) 2b1
2b3

4 = b1
2 b2

2(b
3
4 + b4

4) = b2
2 b3

2 = 0 b4
2 = 0

(3,4) 2(b1
3b3

4 − b3
3b1

4) = 0 b2
3(b

3
4 + b4

4) = b2
4(b

3
3 + b4

3) - -

following:

B1 =

⎛
⎜⎜⎜⎝

b1
1 0 0 0
0 b2

2 0 0
b1

3 b2
3 1 0

0 b2
3 0 1

⎞
⎟⎟⎟⎠ , B2 =

⎛
⎜⎜⎜⎝

0 b2
1 0 0

b2
1 0 0 0

b1
3 b2

3 1/2 3/2
b1

3 0 1/2 −1/2

⎞
⎟⎟⎟⎠ . (1.35)

From the expression

B̃1 = A(1, b1
3/2b1

1)A(2, b2
3/b2

2)A(3,− ln |b1
1|/2)A(4,− ln |b1

1|)B1, (1.36)

we find

B1 =

⎛
⎜⎜⎜⎝

λ 0 0 0
0 μ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , λ,μ = ±1. (1.37)

The determining equations for the discrete symmetries are given by the
system ⎛

⎜⎜⎜⎝
Xt̃ Xx̃ Xũ
Y t̃ Y x̃ Y ũ
Zt̃ Zx̃ Zũ
T t̃ Tx̃ Tũ

⎞
⎟⎟⎟⎠= B1

⎛
⎜⎜⎜⎝

1 0 0
0 1 0
2t̃ x̃ 0
0 x̃ 2ũ

⎞
⎟⎟⎟⎠ . (1.38)

The solution of the above system is given by t̃ = λt, x̃ = μx, ũ = cu, with
c being an arbitrary nonzero constant. Substituting this solution into the
symmetry condition, we find that c = 1/λμ = ±1. Hence, the discrete sym-
metry groups are

1 : (t,x,u) �→ (t,x,u), 2 : (t,x,u) �→ (−t,−x,u),

3 : (t,x,u) �→ (t,−x,−u), 4 : (t,x,u) �→ (−t,x,−u).
(1.39)
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In [35], Wazwaz obtained a solution of (1.31) given by u1(t,x) = x2

C − 6t
,

x > 0, where C is an arbitrary positive constant.
Applying groups 2, 3, and 4 to this solution, we obtain other new

solutions,

u2(t,x) = x2

C + 6t
, u3(t,x) = (ix)2

C − 6t
, u4(t,x) = (ix)2

C + 6t
, (1.40)

where i is the complex number
√−1.

Example 1.4. In mathematical finance, the Black–Scholes equation gov-
erns the price evolution of a European call or European put under the
Black–Scholes model [4]

Vt + 1
2
σ 2S2VSS + rSVS − rV = 0, (S, t) ∈ R

+ × (0,T), (1.41)

where V (t,S) is the price of the option as a function of stock price S and
time t, r is the risk-free interest rate, and σ is the volatility of the stock.

Its generators of continuous symmetry were computed by Gazizov and
Ibragimov in [11] and are

Y1 = ∂t, Y2 = S∂S,

Y3 = 2t∂t + (ln (S) + Dt)S∂S + 2rtV ∂V ,

Y4 = σ 2tS∂S + (ln (S) − Dt)V ∂V , (1.42)

Y5 = 2σ 2t2∂t + 2σ 2tS ln (S)∂S + [(ln (S) − Dt)2 + 2σ 2rt2 − σ 2t]V ∂V ,

Y6 = V ∂V , Y∞ = f (t,S)∂V ,

where D = r − σ 2

2 	= 0 and f is an arbitrary solution of (1.41).
By solving the Lie equations (1.9), we find the continuous symmetry

groups as follows:

G1 : (t,S,V ) �→ (t + ε,S,V ),

G2 : (t,S,V ) �→ (t, εS,V ), ε 	= 0,

G3 : (t,S,V ) �→ (ε2t,Sε exp (D(ε2 − ε)t),V exp (r(ε2 − 1)t)),

G4 : (t,S,V ) �→
(

t,S exp (εσ 2t),VSε exp

{(
σ 2

2
ε2 − Dε

)
t

})
,
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G5 : (t,S,V ) �→
(

t
1 − 2σ 2εt

,S
t

1−2σ2εt ,

V
√

1 − 2σ 2εt exp

{
[(ln (S) − Dt)2 + 2σ 2rt2]ε

1 − 2σ 2εt

})
,

G6 : (t,S,V ) �→ (t,S, εV ), ε 	= 0,

G∞ : (t,S,V ) �→ (t,S,V + f (t,S)).

Consequently, if V = V (t,S) is a solution of Eq. (1.41), so are the functions

V1 = G1 · V (t,S) = V (t − ε,S),

V2 = G2 · V (t,S) = V (t,S/ε),

V3 = G3 · V (t,S) = exp

{
r
(

1 − 1
ε2

)
t

}
V
(

t
ε2 ,S1/ε2

exp

{
D
(

1
ε2 − 1

ε

)
t

})
,

V4 = G4 · V (t,S) = Sε exp

{
−
(

σ 2ε2

2
+ Dε

)
t

}
V (t,S exp {−εσ 2t}),

V5 = G5 · V (t,S) = 1√
1 + 2σ 2εt

exp

{ [(ln (S) − Dt)2 + 2rσ 2t2]ε
1 + 2σ 2εt

}

× V
(

t
1 + 2σ 2εt

,S
t

1+2σ2εt

)
,

V6 = G6 · V (t,S) = εV (t,S),

V∞ = G∞ · V (t,S) = V (t,S) + f (t,S).

If we choose V (t,S) = ert, using group G4 with ε = 1, we obtain the solu-
tion

V4(t,S) = S, (1.43)

and if we apply group G5, we get the following solution:

V5,4(t,S) = S
t

1+2σ2t√
1 + 2σ 2t

exp

{
(ln (S) − Dt)2 + 2rσ 2t2

1 + 2σ 2t

}
. (1.44)

Thus, beginning with the simplest solution (1.43) we arrive at the rather
complicated solution (1.44). The iteration of this procedure yields more
complex solutions.
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In order to simplify the computations, we change the set of genera-
tors (1.42) of the Lie algebra as follows:

X1 = 1
σ 2 (Y1 + DY2 + rY6), X2 = Y2, X3 = Y3 − 1

2
Y6,

X4 = Y4, X5 = 1
2

Y5, X6 = Y6.

The discrete symmetries of Eq. (1.41) are [32]

1 : (t,S,V ) �→(t,S,V ),

2 : (t,S,V ) �→(t, exp {2Dt − ln (S)},V ),

3 : (t,S,V ) �→
(

− σ−4t−1, exp {σ−2D − σ−4Dt−1 − σ−2t−1 ln (S)},

σ
√

t exp

{
− σ−2

2
[(ln (S) − Dt)2 + 2σ 2rt2 + 2σ−2r]

}
V
)

,

4 : (t,S,V ) �→
(

− σ−4t−1, exp {σ−2D − σ−4Dt−1 + σ−2t−1 ln (S)},

σ
√

t exp

{
− σ−2

2
[(ln (S) − Dt)2 + 2σ 2rt2 − 2σ−2r]

}
V
)

.

Like for continuous symmetries, other solutions of the Black–Scholes equa-
tion (1.41) can be constructed by using the above discrete symmetry groups.

Example 1.5. We consider the Harry Dym equation that represents an
evolution system in which dispersion and nonlinearity are coupled together
[19]:

ut = u3uxxx. (1.45)

This equation has a 5D Lie algebra of continuous symmetry spanned by
[23]

X1 = ∂x, X2 = x∂x+u∂u, X3 = x2∂x+2xu∂u, X4 = ∂t, X5 = ∂t − u
3
∂u.

(1.46)
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Eq. (1.45) admits eight groups of discrete symmetry, namely [16]

1 : (t,x,u) �→ (t,x,u), 2 : (t,x,u) �→ (−t,−x,u),

3 : (t,x,u) �→ (t,−x,−u), 4 : (t,x,u) �→ (−t,x,−u),

5 : (t,x,u) �→ (t,−1
x
,

u
x2 ), 6 : (t,x,u) �→ (−t,

1
x
,

u
x2 ),

7 : (t,x,u) �→ (t,
1
x
,− u

x2 ), 8 : (t,x,u) �→ (−t,−1
x
,− u

x2 ).

(1.47)

If we choose u(t,x) = [−3a(x + 4a2t)] 2
3 , which is a solution of the

Harry Dym equation (1.45), where a is an arbitrary constant, we can gen-
erate other solutions of this equation. For example,

2 · u = [3a(x + 4a2t)] 2
3 ,

3 · u = −[3a(x − 4a2t)] 2
3 ,

4 · u = −[−3a(x − 4a2t)] 2
3 .

1.3. Continuous symmetry for fractional differential
equation

1.3.1 Some basic results on fractional calculus
Recall that, in the literature, there are two popular approaches to define
fractional derivatives. The first one is the Riemann–Liouville approach.
The second one is the Caputo approach, which is usually used in cases of
initial value problems of FDEs. For more results, we refer to [30,31].

The Riemann–Liouville fractional integral is defined by

Jα
t u(t,x) := 1

(α)

∫ t

0
(t − τ)α−1u(τ,x)dτ, (1.48)

where α ∈ R
+ and  is the Euler Gamma function

(α) =
∫ +∞

0
sα−1e−sds. (1.49)

By definition, we have J0
t u(t,x) = u(t,x) and it satisfies the semigroup prop-

erty: Jα
t Jβ

t u(t,x) = Jα+β
t u(t,x).
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The Riemann–Liouville fractional derivative of u = u(t,x) for order α

is defined as follows [30]: for m ∈ N,

Dα
t u(t,x) :=

⎧⎪⎪⎨
⎪⎪⎩

1
(m − α)

∂m

∂tm
∫ t

0(t − τ)m−α−1u(τ,x)dτ, m − 1 ≤ α < m,

∂mu
∂tm

, α = m.

(1.50)
The Riemann–Liouville integral and the Riemann–Liouville derivative sat-
isfy the following properties [30]:

Dα
t Jα

t u(t,x) = u(t,x), (1.51)

Jα
t Dα

t u(t,x) = u(t,x) −
m−1∑
k=0

Dα−k−1
t u(0,x)

(α − k)
tα−k−1. (1.52)

Let u ∈ ACm([0, t]), where ACm([0, t]) is the class of functions which are
continuously differentiable in [0, t] up to order (m − 1) with u(m−1) ∈
AC([0, t]). The Caputo fractional derivative is given by: for m ∈ N,

CDα
t u(t,x) :=

⎧⎪⎪⎨
⎪⎪⎩

1
(m − α)

∫ t
0(t − τ)m−α−1 ∂mu(τ,x)

∂τm dτ, m − 1 ≤ α < m,

∂mu
∂tm

, α = m.

(1.53)
The Caputo derivative (1.53) and the Riemann–Liouville integral (1.48)
satisfy the following properties:

CDα
t Jα

t u(t,x) = u(t,x), (1.54)

Jα
t

CDα
t u(t,x) = u(t,x) −

m−1∑
k=0

u(k)
t (0,x)

k! tk. (1.55)

The relation between the Caputo fractional derivative and the Riemann–
Liouville fractional derivative is

Dα
t u(t,x) = CDα

t u(t,x) +
m−1∑
k=0

u(k)
t (0,x)

(k − α + 1)
tk−α. (1.56)
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1.3.2 Continuous symmetry for fractional ordinary differential
equations

We consider the fractional ODE (FODE) [12]

Dα
xy(x) = F(x,y,y(1), ...,y(n)), where y(k) = dky

dxk for k = 1, · · ·,n,

(1.57)
and a one-parameter group of transformations in the infinitesimal form

x̄ = x + εξ(x,y) + o(ε), ȳ = y + εη(x,y) + o(ε), (1.58)

where y = y(x) and

ξ(x,y) = ∂ x̄
∂ε

∣∣∣∣
ε=0

, η(x,y) = ∂ ȳ
∂ε

∣∣∣∣
ε=0

. (1.59)

Along with (1.58), we consider the infinitesimal operator

X = ξ(x,y)
∂

∂x
+ η(x,y)

∂

∂y
. (1.60)

With the condition of invariance of Eq. (1.57) in x = 0, we get

ξ(x,y)|x=0 = 0. (1.61)

For simplicity, we denote

ξ [x] = ξ(x,y) and η[x] = η(x,y). (1.62)

We find the infinitesimal transformation of the fractional derivative Dα
xy

Dα
x̄ ȳ(x̄) = 1

(1 − α)

d
dx̄

∫ x̄

0

ȳ(t̄)
(x̄ − t̄)α

dt̄

= 1
(1 − α)

1
1 + εD(ξ [x])

d
dx

∫ x+εξ [x]

0

y(t̄ − εξ [t̄]) + εη(t̄ − εξ [t̄])
(x + εξ [x] − t̄)α

dt̄.

As t̄ = t + εξ [t] we have dt̄ = (1 + εD(ξ [t]))dt, where D is first derivative.
Then

Dα
x̄ ȳ(x̄) = 1

(1 − α)

1
1 + εD(ξ [x])

d
dx

∫ x

0

(y(t) + εη[t])(1 + εD(ξ [t]))
(x + εξ [x] − t − εξ [t])α

dt

= 1 − εD(ξ [x])
(1 − α)

d
dx

∫ x

0

y(t) + εη[t] + εy(t)D(ξ [t]))
(x − t)α

(
1 + ε

ξ [x] − ξ [t]
x − t

)α dt.
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Consider the second factor in the denominator of the integrand. Owing to
the smallness of the parameter ε it can be written

(
1 + ε

ξ [x] − ξ [t]
x − t

)α

= 1 + αε
ξ [x] − ξ [t]

x − t
+ o(ε). (1.63)

This relation is valid if the function ξ [x] is continuously differentiable as a
function of x for x ≥ 0. Then

Dα
x̄ ȳ(x̄) = 1 − εD(ξ [x])

(1 − α)

d
dx

∫ x

0

y(t) + εη[t] + εy(t)D(ξ [t]))
(x − t)α

(
1 + αε

ξ [x] − ξ [t]
x − t

)dt

= 1 − εD(ξ [x])
(1 − α)

d
dx

∫ x

0

y(t) + εη[t] + εy(t)D(ξ [t]))
(x − t)α

×
(

1 − αε
ξ [x] − ξ [t]

x − t

)
dt

= 1 − εD(ξ [x])
(1 − α)

d
dx

∫ x

0

y(t)
(x − t)α

dt + ε

(1 − α)

d
dx

∫ x

0

η[t]
(x − t)α

dt

+ ε

(1 − α)

d
dx

∫ x

0

y(t)(Dξ [t])
(x − t)α

dt

− εα

(1 − α)

d
dx

∫ x

0

y(t)(ξ [x] − ξ [t])
(x − t)1+α

dt.

Then,

Dα
x̄ ȳ(x̄) = Dα

xy − εDx(ξ)Dα
xy + εDα

xη + εDα
x(yDx(ξ)) − ε

d
dx

Iα(x,y),

(1.64)

where Dx is the total derivative and

Iα(x,y) = α

(1 − α)

∫ x

0

y(t)(ξ [x] − ξ [t])
(x − t)1+α

dt. (1.65)

Let us simplify Iα(x,y). From [31] we know that a differentiable function
f (x) has the representation

Dα
x f (x) = f (x)

(1 − α)xα
+ α

(1 − α)

∫ x

0

f (x) − f (t)
(x − t)1+α

dt. (1.66)
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Then

Iα(x,y) = α

(1 − α)

∫ x

0

y(t)(ξ [x] − ξ [t])
(x − t)1+α

dt

= α

(1 − α)

∫ x

0

y(t)(ξ [x] − ξ [t]) + y(x)ξ [x] − y(x)ξ [x]
(x − t)1+α

dt

= α

(1 − α)

(
ξ [x]

∫ x

0

y(t) − y(x)

(x − t)1+α
dt +

∫ x

0

y(x)ξ [x] − y(t)ξ [t]
(x − t)1+α

dt
)

= α

(1 − α)

(
(1 − α)

α
(Dα

x(ξy) − ξDα
x(y))

)
= Dα

x(ξy) − ξDα
x(y).

Differentiating Iα(x,y) we obtain

d
dx

Iα(x,y) = Dα+1
x (ξy) − Dx(ξ)Dα

xy − ξDα+1
x y. (1.67)

Substituting (1.67) in (1.64), we find the desired infinitesimal transforma-
tion fractional derivative

Dα
x̄ ȳ = Dα

xy + εζα + o(ε), (1.68)

where

ζα = Dα
xη + Dα

x(Dx(ξ)y) + ξDα+1
x y − Dα+1

x (ξy). (1.69)

Applying the generalized Leibniz rule [31]

Dα
x(f (x)g(x)) =

∞∑
n=0

(
α

n

)
Dα−n

x f (x)Dn
xg(x), (1.70)

where (
α

n

)
= (−1)n−1α(n − α)

(1 − α)(n + 1)
,

for the second and last terms of (1.69), we find

ζα = Dα
xη − αDx(ξ)Dα

x (y) +
∞∑

n=1

[(
α

n

)
−
(

α + 1
n + 1

)]
Dα−n

x (y)Dn+1
x (ξ)

= Dα
xη − αDx(ξ)Dα

x (y) −
∞∑

n=1

(
α

n + 1

)
Dα−n

x (y)Dn+1
x (ξ).
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We can explain the derivation Dα
x(η) = Dα

x(η(x,y)) using Leibniz’s for-
mula (1.70) as

Dα
t (η) = Dα

t (1 · η) =
∞∑

n=0

(
α

n

)
Dα−n

t (1)Dn
t (η), (1.71)

and given the generalization of the chain rule for composite functions, we
find

Dn
t [η] =

n∑
m=0

(
n
m

) m∑
k=0

k∑
r=0

(
k
r

)
1
k! [−u(t,x)]rDm

t [uk−r(t,x)]

× ∂n−m+kη(t,x,u(t,x))

∂tn−m∂uk .

Then,

Dn
t [η] =

∞∑
n=0

n∑
m=0

m∑
k=0

k∑
r=0

(
α

n

)(
m
n

)(
k
r

)
1
k!

tn−α

(n + 1 − α)

× [−u(t,x)]rDm
t [uk−r(t,x)]∂

n−m+kη(t,x,u)

∂tn−m∂uk .

Therefore

Dα
t (η) = ∂αη

∂tα
+ ηu

∂αu
∂tα

− u
∂αηu

∂tα
−

∞∑
n=1

(
α

n

)
∂n(ηu)

∂tn
Dα−n

t (u) + μ,

where

μ =
∞∑

n=0

n∑
m=0

m∑
k=0

k∑
r=0

(
α

n

)(
m
n

)(
k
r

)
1
k!

tn−α

(n + 1 − α)
×

× [−u(t,x)]rDm
t [uk−r(t,x)]∂

n−m+kη(t,x,u)

∂tn−m∂uk .

In summary,

ζα = ∂αη

∂tα
+
(

ηu − αDt(τ )

)
∂αu
∂tα

− u
∂αηu

∂tα
+ μ

+
∞∑

n=1

[(
α

n

)
∂nηu

∂tn
−
(

α

n + 1

)
Dn+1

t (τ )

]
Dα−n

t (u)
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−
∞∑

n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux).

If η is linear, then μ vanishes.
Similarly, with a continuation of order α it is possible to construct an

extension of order α + 1. Then ζα+1 has the form

ζα+1 = Dx(ζα) − Dx(ξ)Dα+1
x (y)

= Dα+1
x η + Dα+1

x (Dx(ξ)y) + ξDα+2
x y − Dα+2

x (ξy)

= Dα+1
x η − (α + 1)Dx(ξ)Dα+1

x (y) − α(α + 1)

2
D2

x(ξ)Dα
x (y)

−
∞∑

n=0

(
α + 1
n + 2

)
Dα−n

x (y)Dn+2
x (ξ).

In general, we can generalize to an arbitrary extension order α + n, α ∈
(0,1), and n ∈ Z,

ζα+n = Dα+n
x η + Dα+n

x (Dx(ξ)y) + ξDα+1+n
x y − Dα+1+n

x (ξy). (1.72)

The prolongation formula order α for the Caputo fractional derivative has
the form

Cζα =C Dα
x(η) − αDx(ξ)CDα

x(y) −
∞∑

n=1

(
α

n + 1

)
In
x (CDα

x(y))Dn+1
x (ξ). (1.73)

Also, this formula is easily generalized to an arbitrary order (α + n).

Example 1.6. We consider the following FODE:

Dα
xy(x) = 0. (1.74)

For this equation, the determining equation

ζα|Dα
x y(x)=0 = 0 (1.75)

can be rewritten in the following form:

∂αη

∂xα
− y

∂αηy

∂xα
+ μ +

∞∑
n=1

[(
α

n

)
∂nηy

∂xn −
(

α

n + 1

)
Dn+1

t (ξ)

]
Dα−n

x (y) = 0.

(1.76)



Continuous and discrete symmetry methods for fractional differential equations 21

Variables x, y, y′ = dy
dx , y′′ = d2y

dx2 , ... (contained in μ,Dn+1
x (ξ) and Dα−n

x (y))
are considered independent here. Splitting with respect to Dα−n

x (y) leads to
an infinite overdetermined system of linear FDEs:

∂αη

∂xα
− y

∂αηy

∂xα
+ μ = 0,(

α

n

)
∂nηy

∂xn −
(

α

n + 1

)
Dn+1

t (ξ) = 0, n ∈ N.

Further splitting allows to solve this system and to find admitted operators

X1 = x∂x, X2 = y∂y, X3 = x2∂x + (α − 1)xy∂y, X4 = xα−1∂y.

(1.77)
Below are the one-parameter groups of transformations associated to the
above infinitesimal generators:

X1 : x̄ = eεx, ȳ = y, (1.78)

X2 : x̄ = x, ȳ = eεy, (1.79)

X3 : x̄ = x
1 − εx

, ȳ = y
(1 − εx)α−1 , (1.80)

X4 : x̄ = x, ȳ = y + εxα−1. (1.81)

By using the last two groups above, and from a solution y = y(x) of (1.74),
we can construct two other solutions of Eq. (1.74), which are

y3(x) = (1 + εx)α−1y
(

x
1 + εx

)
, y4(x) = y(x) + εxα−1. (1.82)

Example 1.7. Let us consider a fractional Riccati equation,

Dα
xy + ay2 = b

x2α
, 0 < α < 1, (1.83)

where a and b are arbitrary constants.
This equation admits a generator of continuous symmetry which is de-

fined by

X = x∂x − αy∂y. (1.84)

The invariant solution of (1.83) corresponding to X is y(x) = c
xα , where the

constant c satisfies

ac2 + (1 − α)

(1 − 2α)
c − b = 0. (1.85)
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1.3.3 Continuous symmetry for fractional partial differential
equations

Here, we consider a time fractional PDE (FPDE) with two independent
variables given in the following form:

Dα
t u(t,x) = F(t,x,u,ux,uxx, ...), 0 < α < 1, (1.86)

where ut,ux,uxx, ... represent the partial derivatives of the dependent vari-
able u.

Similarly to the case of FODEs, we can construct the prolongation
formula for the generator of continuous symmetry. We consider the con-
tinuous group of transformations

t̄ = t + ετ(t,x,u) + o(ε),

x̄ = x + εξ(t,x,u) + o(ε),

ū = u + εη(t,x,u) + o(ε), (1.87)

where τ , ξ , and η are the infinitesimals of the transformations.
When transformations (1.87) are applied to usual partial derivatives ux,

uxx, ..., we have

ūx̄(t̄, x̄) = ux(t,x) + εηx + o(ε),

ūx̄x̄(t̄, x̄) = uxx(t,x) + εηxx + o(ε),
...

ūkx̄(t̄, x̄) = ukx(t,x) + εηkx + o(ε), k ∈ N
∗,

Dα
t̄ ū(t̄, x̄) = Dα

t u(t,x) + εζα + o(ε),

where ηx, ηxx, ..., ηkx, and ζα are extended infinitesimals of order 1,2, ...,k
and α, respectively, defined by prolongation formulas

ηx = Dx(η) − utDt(τ ) − uxDx(ξ),

ηxx = Dx(η
x) − uxtDt(τ ) − uxxDx(ξ),

...

ηkx = Dx(η
(k−1)x) − u(k−1)x,tDt(τ ) − ukxDx(ξ),

ζα = Dα
t (η) + ξDα

t (ux) − Dα
t (ξux) + Dα

t (Dt(τ )u)

− Dα+1
t (τu) + τDα+1

t (u),
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where ukx = ∂ku
∂xk .

With the Caputo derivative we have

Cζα = CDα
t (η) + ξCDα

t (ux) − CDα
t (ξux) + τCDα

t (ut) − CDα
t (τut). (1.88)

The infinitesimal generator X can be written in the following form:

X = τ(t,x,u)∂t + ξ(t,x,u)∂x + η(t,x,u)∂u. (1.89)

A solution u = θ(t,x) is said to be an invariant solution of (1.86) if and only
if:
1. u = θ(t,x) is an invariant surface, i.e., Xθ = τθt + ξθx + ηθu = 0;
2. u = θ(t,x) satisfies Eq. (1.86).
The infinitesimal generator X must satisfy the invariance conditions for
Eq. (1.86), which are given as follows:

X (α)[�u]|�u=0 = 0, (1.90)

where �u = Dα
t u − F and X (α) denotes the α-extended prolongation of

generator X given by

X (α) = X + ζα

∂

∂(Dα
t u)

+
k∑

i=1

ηkx ∂

∂ukx
, (1.91)

with

ζα = ∂αη

∂tα
+
(

ηu − αDt(τ )

)
∂αu
∂tα

− u
∂αηu

∂tα
+ μ

+
∞∑

n=1

[(
α

n

)
∂nηu

∂tn
−
(

α

n + 1

)
Dn+1

t (τ )

]
Dα−n

t (u)

−
∞∑

n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux).

As the lower limit t = 0 of the integral in the definition of Riemann–
Liouville fractional partial derivative is fixed, it should be invariant with
respect to the transformations (1.87). Such invariance condition arrives at

τ(t,x,u)|t=0 = 0. (1.92)
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1.3.4 Some illustrative examples
Example 1.8. We consider the time-fractional heat equation

Dα
t u = uxx, t > 0, 0 < α < 1. (1.93)

The invariance condition for this equation is written

(ζα − ηxx)|Dα
t u=uxx = 0. (1.94)

Substituting ζα and ηxx into the invariance condition and eliminating uxx

by setting uxx = Dα
t u, we get a system of equations for unknown functions

ξ1, ξ2, and η. This system contains the variables t, x, u, ux, ut, and utx and
fractional derivatives of orders α and α + 1 with respect to t as follows:

u3
x : ξuu = 0,

u2
x : ηuu − 2ξxu = 0,

ux : 2ηxu − ξxx = 0,

uxut : τxu = 0,

u2
xut : τuu = 0,

utx : τx = 0,

uxutx : τu = 0,

uxDα
t u : ξu = 0,

Dα−k
t ux : Dk

t (ξ) = 0, k = 1,2, ... .

Solving the above system, we find

τ = τ(t), ξ = ξ(x), η = β(t,x) +
(

1
2
ξx + a(t)

)
u, (1.95)

where a(t) is an arbitrary function and β(t,x) is an arbitrary solution of
Eq. (1.93).

Substituting (1.95) into the remaining part of the determining equa-
tion and applying the generalized Leibnitz rule, we get the equation

Dα
t β − βxx +

(
2ξx − ατt − 1

2
τxxxu

)
Dα

t (u)

+
∞∑

k=1

(
α

k

)
Dα−k

t (u)

(
a(k) − k − α

k + 1
(τ )(k+1)

)
= 0. (1.96)



Continuous and discrete symmetry methods for fractional differential equations 25

Splitting this equation with respect to u, Dα
t u, and Dα−k

t u, k = 1,2, ..., we
obtain the overdetermined system

Dα
t β = βxx, 2ξx = C, ατt = C, a(k) = k − α

k + 1
(τ )(k+1), k = 1,2, ...,

(1.97)
where C is an arbitrary constant. The solution of this system satisfying the
condition τ(0) = 0 has the form

τ = 2C2t, ξ = αC2x + C1, a(t) = C3, β = β(t,x), (1.98)

where C1, C2 = C/2α, and C3 are arbitrary constants.
Then we obtain the following generators of continuous symmetry

for (1.93):

X1 = ∂x, X2 = 2t∂t + αx∂x, X3 = u∂u, X∞ = β(t,x)∂u. (1.99)

Invariant solution under the generator X = X1 + ρX3, where ρ = cte, has
the form

uR(t,x) = φ(t)eρx, (1.100)

where φ(t) satisfies the equation Dα
t φ(t) = ρ2φ(t), which gives

uR(t,x) = tα−1Eα,α(ρ
2tα)eρx, (1.101)

where Eα,α is the generalized Mittag-Leffler function defined as Eα,α[z] =
∞∑

k=0

zk

(αk + α)
.

Similarly, if we replace the Riemann–Liouville derivative in
Eq. (1.93) by the Caputo derivative, we obtain the following solution:

uC(t,x) = Eα(ρ
2tα)eρx, (1.102)

where Eα is the classical Mittag-Leffler function: Eα[z] =
∞∑

k=0

zk

(αk + 1)
.

If α → 1, we get the solution u(t,x) = eρ(x+ρt), which is obviously a
solution of the classical heat equation.
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Figure 1.1 The solution uR(t, x) of (1.93).

Figure 1.2 The solution uC(t, x) of (1.93).

The graphical representations of the above solutions uR(t,x), uC(t,x),
and u(t,x) are respectively displayed in Fig. 1.1, Fig. 1.2, and Fig. 1.3 for
ρ = 1 and α = 0.5.

Example 1.9. We consider the time-fractional Black–Scholes equation
given by [36]

∂αV
∂tα

+ 1
2
σ 2S2VSS + rSVS − rV = 0, 0 < α < 1. (1.103)



Continuous and discrete symmetry methods for fractional differential equations 27

Figure 1.3 The solution u(t, x) of (1.93).

Using the Lie symmetry analysis described in the last section, we retrieve
the invariance criterion of the form

ζα + σ 2SξVSS + rξVS + 1
2
σ 2S2ηSS + rSηS − rη = 0. (1.104)

Then, we can obtain the determining equations for the symmetry group of
Eq. (1.103):

τS = τV = ξt = ξV = 0,

1
2
σ 2S2(ηV − 2ξS) − 1

2
σ 2S2(ηV − αDt(τ )) + σ 2Sξ = 0,

1
2
σ 2S2(2ηSV − ξSS) − rS(ηV − αDt(τ )) + rS(ηV − ξS) + rξ = 0,

∂αη

∂tα
− V

∂αηV

∂tα
+ 1

2
σ 2S2ηSS + rSηS + r(ηV − αDt(τ ))V − rη = 0,(

α

n

)
∂nηV

∂tn
−
(

α

n + 1

)
Dn+1

t (τ ) = 0.

(1.105)

The solution of the system is given by

τ = at + b, ξ = aα
2

S ln (S) + cS,

η =
[(

a(α − 1)

2
+ d

)
− aα

2σ 2 D ln (S)

]
V + ν(t,S),
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where a, b, c, and d are arbitrary constants, D = r − σ 2/2 	= 0, and ν(t,S) is
an arbitrary solution of the time-fractional Black–Scholes equation.

Consequently, the Lie algebra of continuous symmetry g is spanned
by the following generators:

X1 = t∂t + α

2
S ln (S)∂S +

[
α − 1

2
− α

2σ 2 D ln (S)

]
V ∂V ,

X2 = S∂S, X3 = V ∂V , X∞ = ν(t,S)∂V .

Using these continuous symmetry, we obtain some invariant solutions of
the studied equation.
− If X = X2, the invariance solution with respect to X2 will be of the form
V (t,S) = V (t), and it yields the reduced equation ∂α

t V = rV . Then, the
solution is given by

V1(t,S) = K1tα−1Eα,α[rtα],

where K1 is an arbitrary constant.
− If X = X3 or X = X∞, we get a trivial solution.
− If X = X2 + μX3 where μ = −D/σ 2, the similarity variable and simi-
larity transformation corresponding to this infinitesimal generator can be
obtained by solving the associated characteristic equations

dt
0

= dS
S

= dV
μV

.

Hence, an exact solution of Eq. (1.103) is obtained of the form

V2(t,S) = K2tα−1Eα,α

[
(1 − μ)

(
r + μσ 2

2

)
tα
]
Sμ,

where K2 is an arbitrary constant.
If α → 1, we get the solutions

V1(t,S) = K1ert and V2(t,S) = K2e(1−μ)

(
r+ μσ2

2

)
tSμ, (1.106)

which are obviously solutions of the classical Black–Scholes equation.

Example 1.10. We consider the time-fractional Kolmogorov equation

Dα
t u = xuxx + f (x)ux, α ∈]0,1]. (1.107)
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The above equation has been extensively studied in the case of α = 1 in [9]
with different expressions of the drift function f which satisfies a family of
Riccati type differential equations.

In [28], A. Ouhadan and E.H. El Kinani found its continuous sym-
metries when f (x) = λ ∈ R or f (x) = 1+3

√
x

2(1+√
x)

.
Case 1: We have f (x) = λ.
• Subcase 1: If λ = 1

2 , a basis for the Lie algebra of symmetries admitted
by (1.107) is

X1 = t∂t + αx∂x, X2 = √
x∂x, X3 = ∂t, X4 = ∂u,

X∞ = h(t,x)∂u, (1.108)

with h being an arbitrary solution of (1.107).
The corresponding invariant solution for generator X = X2 + X4 has
the form

u(t,x) = 1
2

e2
√

x
q−1∑
k=0

{
Et

(
− k

α

2
,1
)

− (−1)q−k−1Et

(
− k

α

2
, (−1)q

)}
,

(1.109)
where function Et is defined by

Et(a, b) = ta
∞∑

k=0

(bt)k

(a + k + 1)
. (1.110)

• Subcase 2: If λ = 3
2 , the Lie algebra is spanned by X1, X3, X4, X∞, and

the infinitesimal generator X5 given by

X5 = √
x∂x − 1

2
√

x
u∂u. (1.111)

The corresponding invariant solution for generator X5 is given by

u(t,x) = ctα−1

√
x

, (1.112)

with c being an arbitrary constant.
• Subcase 3: Therefore, if the drift does not belong to { 1

2 , 2
3 }, the only

possible symmetries are X1, X3, X4, and X∞.
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Case 2: If f (x) = 1 + 3
√

x
2(1 + √

x)
, the symmetry algebra admitted by (1.107) is

spanned by X3, X4, X∞, and the infinitesimal generators

X6 = t∂t + αx∂x + α

2(
√

x + 1)
u∂u, X7 = √

x∂x − 1
2(

√
x + 1)

u∂u.

(1.113)

The corresponding invariant solution for the generator X7 is

u(t,x) = c√
x + 1

tα−1, (1.114)

with c being an arbitrary constant.
By using the continuous symmetry group generated by X6,

G6 : (t,x,u) �→
(

eαεx, eε t,
√

x + 1√
x + e− α

2 ε
u
)

, (1.115)

and if u = u(t,x) is a solution of Eq. (1.107), we can derive a new exact
solution of (1.107) which is defined by

G6 · u(t,x) =
√

x + e
α
2 ε

√
x + 1

u(e−ε t, e−αεx). (1.116)

1.4. Discrete symmetry for fractional Harry Dym
equation

We consider the fractional Harry Dym equation [15]

Dα
t u(x, t) = u3uxxx, 0 < α < 1. (1.117)

This equation has a 4D Lie algebra g of continuous symmetry [15]. The
basis of g is spanned by the generators

X1 = ∂x, X2 = x∂x +u∂u, X3 = t∂t − αu
3

∂u, X4 = x2∂x +2xu∂u.

(1.118)
The following nonzero structure constants ckij are
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c112 = −c121 = 1, c214 = −c241 = 2, c424 = −c442 = 1. (1.119)

By using the matrices C(j), we obtain

A(1; ε1) =

⎛
⎜⎜⎜⎝

1 0 0 0
−ε 1 0 0
0 0 1 0
ε2 −2ε 0 1

⎞
⎟⎟⎟⎠ , A(2; ε2) =

⎛
⎜⎜⎜⎝

eε 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−ε

⎞
⎟⎟⎟⎠ ,

A(3; ε3) =

⎛
⎜⎜⎜⎝

1 2ε 0 ε2

0 1 0 ε

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ .

The nonlinear constraints of (1.117) are presented in Table 1.3.

Table 1.3 Nonlinear constraints (1.27) for fractional Harry Dym equation (1.117).

(i, j) n = 1 n = 2 n = 3 n = 4

(1,2) b1
1b2

2 − b2
1b1

2 = b1
1 2(b1

1b4
2 − b4

1b1
2) = b2

1 b3
1 = 0 b2

1b4
2 − b4

1b2
2 = b4

1

(1,3) b1
1b2

3 − b2
1b1

3 = 0 b1
1b4

3 − b4
1b1

3 = 0 - b2
1b4

3 − b4
1b2

3 = 0
(1,4) b1

1b2
4 − b2

1b1
4 = 2b1

2 b1
1b4

4 − b4
1b1

4 = b2
2 b3

2 = 0 b2
1b4

4 − b4
1b2

4 = 2b4
2

(2,3) b1
2b2

3 − b2
2b1

3 = 0 b1
2b4

3 − b4
2b1

3 = 0 - b2
2b4

3 − b4
2b2

3 = 0
(2,4) b1

2b2
4 − b2

2b1
4 = b1

4 2(b1
2b4

4 − b4
2b1

4) = b2
4 b3

4 = 0 b2
2b4

4 − b4
2b2

4 = b4
4

(3,4) b1
3b2

4 − b2
3b1

4 = 0 b1
3b4

4 − b4
3b1

4 = 0 - b2
3b4

4 − b4
3b2

4 = 0

After solving these constraints and using the adjoint matrices to factor
out the Lie symmetries, so far, we have been able to simplify B to the
following:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
1 b2

1 0
(b2

1)
2

4b1
1

0 1 0
1

2b1
1

0 0 b3
3 0

0 0 0
1
b1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 b4
1

0 −1 0
−b4

1b
2
4

2
0 0 b3

3 0
1
b4

1
b2

4 0
b4

1(b
2
4)

2

4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(1.120)

The remaining three equivalence transformations can be used to make two
more simplifications where A(1; ε1)B1 with ε1 = 2/(b2

1)
2 gives
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B1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1
1 b2

1 0
(b2

1)
2

4b1
1

0 1 0 0
0 0 b3

3 0

0 0 0
1
b1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.121)

A(2; ε2)B1 with ε2 = − ln |b1
1| gives

B1,2 =

⎛
⎜⎜⎜⎜⎝

λ b2
1 0

(b2
1)

2

4λ
0 1 0 0
0 0 b3

3 0
0 0 0 λ

⎞
⎟⎟⎟⎟⎠ , where λ ∈ {−1,+1}, (1.122)

and finally, A(3; ε3)B1,2 with ε3 = −b2
1/2 gives

B1,3 =

⎛
⎜⎜⎜⎝

λ 0 0 0
0 1 0 0
0 0 b3

3 0
0 0 0 λ

⎞
⎟⎟⎟⎠ , with λ ∈ {−1,+1}. (1.123)

We also need to consider the case B2 and in the same manner we obtain
another simplified matrix B2 but it is singular since its determinant is equal
to zero. Therefore, the simplified matrix to be used with the Lie symmetry
algebra (1.118) is given by B1.

In order to keep the fractional derivative unchanged, we must consider
that b3

3 = 1. The determining equations for the discrete symmetries are
given by the system

⎛
⎜⎜⎜⎝

X1x̃ X1 t̃ X1ũ
X2x̃ X2ỹ X2ũ
X3x̃ X3 t̃ X3ũ
X4x̃ X4 t̃ X4ũ

⎞
⎟⎟⎟⎠= B1

⎛
⎜⎜⎜⎜⎝

1 0 0
x̃ 0 ũ

0 t̃
−α

3
ũ

x̃2 0 2x̃ũ

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

λ 0 0
x̃ 0 ũ

0 t̃
−α

3
ũ

λx̃2 0 2λx̃ũ

⎞
⎟⎟⎟⎟⎠ . (1.124)

The solution of the previous system is given by

x̃ = λx, t̃ = t, ũ = cu, (1.125)

with c being an arbitrary nonzero constant. Substituting (1.125) into the
fractional Harry Dym equation (1.117), we find that c = λ is required for
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the symmetry condition to be satisfied. Consequently, the discrete symme-
try groups are

1 : (x, t,u) �→ (x, t,u), 2 : (x, t,u) �→ (−x, t,−u). (1.126)

Similarly, we can use its discrete symmetry groups to build solutions of the
fractional Harry Dym equation from the solutions found in [1].

1.5. Conclusion

During the last two decades, fractional calculus has increasingly been
used in practice for modeling systems with memory and spatial nonlocality.
Finding exact solutions of FODEs and FPDEs is a challenging problem,
especially for nonlinear problems. On the other hand, the Lie symmetry
method has been developed considerably and it is the most important ap-
proach for constructing analytical solutions of ODEs, PDEs, and recently
FODEs and FPDEs.

The purpose of this chapter is to present continuous and discrete sym-
metries for ODEs, PDEs, FODEs, and FPDEs. We restrict our attention to
FDEs with the Riemann–Liouville and Caputo fractional derivatives since
these derivatives are the most commonly used in practice. Using symme-
try analysis techniques, some exact solutions are constructed for different
equations.

Finally, we hope that this chapter will be useful to researchers concerned
with fractional calculus and Lie symmetry analysis.
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2.1. Introduction

Presently the whole globe is facing a pandemic of COVID-19, which
originates from Wuhan, a large city in China. Between December 2019
and 18 July 2020, 0.59 million people died due to the mentioned disease,
and 13.81 million have had the infection all over the world. Also 7.72
million infected people have recovered from the disease, according to the
WHO [1]. The death-to-recovery ratio is different in different countries
and depends on the health situation of the people of the respective areas.
Different researchers and policy makers are struggling to control the disease
from further spreading. One big factor influencing the spread of this dis-
ease is migration of infected people, which affect more people and hence
spread this disease. Therefore, on an international level, many countries
have banned air traffic for some time, and they have also announced lock-
down in cities to reduce loss of human lives. Also, each country tries to
reduce unnecessary traveling of people and to reduce the number of new
cases of infection [2,3]. It is remarkable that such outbreaks in the past have
caused the death of millions of people around the globe. Researchers are
trying to develop a cure or a vaccine so that the pandemic may be con-
trolled in the future.

During March and April of 2020, Italy, Iran, and Spain reported the
highest numbers of COVID-19 cases. Recently, the USA, the UK, Russia,
Brazil, and India became the top countries with most COVID-19 cases.
Currently, the disease is spreading at a very high rate all over the world.
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During March, April, May, and June 2020, various countries implemented
lockdowns. Some countries, like Saudi Arabia, UAE, and Qatar, announced
curfew, but the infection is still spreading at high rates in these countries.
Researchers and medical specialists are working day and night to prepare a
vaccine. The economical situation of many countries in the wold is very
bad. A large numbers of companies and organizations have been stopped
production. As a result, millions of people have lost their jobs. Therefore,
poverty and unemployment have greatly increased in various countries.
Moreover, the healthcare systems of some of the most powerful coun-
tries, like the USA, European countries, Middle Eastern countries, and
some South Asian countries like India and Pakistan, have collapsed due
to COVID-19. In short, the world is facing a severe situation. Through-
out human history, such outbreaks have occurred, and millions of people
lost their lives. During the Spanish flu outbreak in 1920, nearly 10 million
people died worldwide. Such outbreak again appeared during the 1970s,
killing 50 million people in Europe and North and South America. In
2003 and 2008, SARS and MARS, two serious infectious diseases, broke
out. But these diseases did not result in global pandemics. Moreover, cures
were introduced, and these controlled the spread of the diseases.

COVID-19 is an infectious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Fever, cough, fatigue, shortness
of breath, and loss of smell and taste are common symptoms of the disease.
However, in some people the symptoms do not appear clearly. Such people
are silent spreaders of the disease. Since the infection is transmitted from
person to person, silent spreaders transmit it easily. Therefore, many coun-
tries have advised their public to keep social distance and avoid gathering
and other social activities where many people are crowding. The duration
from exposure to onset of symptoms is typically around 5 days, but may
range from 2 to 14 days. Basically, the virus spreads between people during
close contact and via small droplets released by coughing, sneezing, and
talking. Various methods are adopted to cure infected people. Also some
precautionary measures are taken, including frequent hand washing, main-
taining social distance (especially from people with symptoms), quarantine
(especially people with symptoms), covering coughs, and avoiding to touch
one’s face without washing hands (for details see [3,4]).

From a medical engineering point of view, infectious diseases can be
well understood by using mathematical models. This concept was started
during in 1927. Since then, various mathematical models have been estab-
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lished for different diseases. For some famous studies, we refer to [5–8] and
the papers cited therein.

Researchers have investigated COVID-19 from several points of view
(for details see [9–12]). Mathematical models can help us understand and
construct disease control strategies and establish precautionary measures.
In this regard, some SARS-CoV-2 models have been studied (for details
see [13]). Since the infection is rapidly transmitted from person to person,
people are advised to keep social distance. Some authors have considered
the effects of migration on the transmission dynamics of this disease by
considering a modified version of the susceptible–infected (SI) model [14]
given by

Ḣ = aH(t) − bH(t)I(t) + eH(t),

İ = bH(t)I(t) + (c − d − e)I(t),

H(0) = H0, I(0) = I0.

(2.1)

The mathematical models that we use in this chapter are inspired by the
SI model [15,16] for analyzing computative dynamics. The classic model
has been suitably modified to build the healthy–infected individual popu-
lation dynamics model. The healthy individual population is given by H(t)
at time t. The infected individual population is given by I(t) at time t.
The infection rate is given by b = (1 − protectionrate). The migration rate of
healthy individuals is given by a. The migration rate of infected individuals
is given by c. The collective death rate (natural+ due to corona) is given
by d and the cure rate is given by e. This model is just an indication to see
what happens in a community if migration of individuals is not controlled.

Keeping in mind the aforementioned points, we are going to study the
model given in (2.1) for fractional order derivative with 0 < σ ≤ 1 as given
by

DσH(t) = aH(t) − bH(t)I(t) + eH(t),

DσI(t) = bH(t)I(t) + (c − d − e)I(t),

H(0) = H0 > 0, I(0) = I0,

(2.2)

where H0 > 0 and I0 ≥ 0 are the initial values for healthy and infected class
population density in percent. In the last few years, the concepts of modern
calculus of fractional differentials and integrals have attracted much inter-
est of researchers, because of the realistic applications of modern calculus,
producing precise and accurate output in many applied and medical fields,
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regarding various phenomena. Arbitrary-order differential and antidifferen-
tial operators are generally global operators which involve global problems.
Due to this, the mentioned calculus has received more interest, and many
articles from different areas touch the aforesaid fields [17–20]. Such fields
have been analyzed for various aspects like existence and uniqueness of
approximate solutions. In this regard a lot of papers, and monographs are
available in the current literature.

It should be kept in mind that classical calculus and differential equations
(DEs) have been extended to many fields of pure and applied mathemat-
ics; for example, classical calculus has been extended to modern calculus
and fuzzy calculus. Similarly, DEs have been extended to fractional-order
DEs (FODEs) and FODEs have been extended to fuzzy fractional differ-
ential equations. Different problems in our daily life have been formulated
by DEs and systems of DEs, and models of individual small organisms and
large animals have been described using computative models, SIR, SEIR,
etc. Most of the models in the beginning were of natural or integer or-
der, so scientists have extended the integer-order models to any real order
models. Such models are well comparable with integer-order models but
more reliable with respect to output [21–24]. FODEs have been studied by
many authors for existence theory of solutions [25–27]. For this, various
researchers applied basic theories like “topological degree theory,” “Banach
contraction,” and Leray–Schauder fixed point theory” [28].

Keeping in mind the above discussed points, we are now going to study
the system taken in (2.2) for fuzzy arbitrary-order derivative where uncer-
tainty lies in initial data with fractional order 0 < σ ≤ 1 as given by⎧⎪⎪⎨

⎪⎪⎩
cDσ

t (̃u(t)) = ãu(t) − b̃u(t)̃v(t) + ẽu(t),
cDσ

t (̃v(t)) = b̃u(t)̃v(t) + (c − d − e)̃v(t),

ũ(0) = ũ0 = (u0,u0), ṽ(0) = ṽ0 = (v0, v0),

(2.3)

where ũ0 and ṽ0 are the initial values for healthy and infected population
density in fuzzy form.

One of the extensions we make here is to extend FODEs to the area
in which fuzziness lies in some output results such as natural and physical
sciences. For this, Zadeh [29] defined fuzzy concepts about set theory in
1965. It is obvious that the ideas of fuzziness have been used in a variety of
areas, including fixed point theory of fuzziness, topological fuzziness, fuzzi-
ness in control systems, etc. Chang and Zadeh [30] extended the notion of
fuzzy set to provide a definition about fuzzy mapping and control. Upon
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fuzzy function and control, many scholars generalized such aspects to define
new calculus for basic fuzziness [31–33]. Since the beginning of the 21st
century, fuzzy arbitrary-order differential and antidifferential equations have
got significant attention in the area of physical fields. Dobius and Prada de-
fined the basic concept of fuzzy antidifferential equations [34]. Therefore,
where data imprecision or vagueness occurs, the fuzzy concept is better to
describe the parameters instead of the crisp number. Hence fuzzy calcu-
lus of differentiation and integration plays a central role in modeling such
processes. This area has received much attention recently.

Fuzzy integral equations have much more applications due to many
practical problems in industrial engineering, computer science, physics, and
artificial intelligence. Also operations research may be converted to un-
certain process problems of fractional order. They have great significance
in the fuzzy analysis theory and its applications in fuzzy control mod-
els, artificial intelligence, quantum optics, measure theory, and atmosphere
studies [35–38]. In a few cases, results about real-life problems, which are
always pervaded with uncertainty, are included. This uncertainty results
from several factors, such as measurement errors, deficient data, or the
determination of constraint conditions. The Volterra integro-differential
equations under uncertainty concerned with fractional derivatives are sim-
ply generalizations of classical forms, which have various uses in physics and
engineering.

Partial differential equations (PDEs) have significant applications in
modeling of many real-world problems like heat transfer problems, propa-
gation of sound in wave form, water waves, tidal energy, etc. (see [39–41]).
The concerned area has been further extended to fractional calculus and
many fruitful results have been established in the literature. For some appli-
cations of kinds of PDEs under the concept of fractional calculus, we refer
to [42,43]. Further, fuzzy fractional-order PDEs have many applications in
dynamical systems, nonlinear propagation of traveling waves, damped non-
linear strings, electronics, telecommunications, etc. For more details about
the applications, we refer to [44–46].

Therefore, we investigated the effects of different migration values on
the transmission dynamics of the current pandemic. We obtained the out-
put results for parameter values of migration rates present in model (2.2)
and (2.3) applying a fractional order, predicting future transmission.

Significant work has been performed to investigate and mathematically
model COVID-19. Very detailed contributions have been provided by dif-
ferent researchers in this regard. In the present study, we considered a simple
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model under the concept of fractional calculus by involving migration type
parameters. This model indicates the effects of increasing the values of some
parameters or reducing its margin on the transmission dynamics of the
disease and its control. Furthermore, we have also investigated the model
under uncertainty, i.e., a fuzzy concept, and we evaluated the model using
fuzzy Laplace transform. The results are presented graphically for various
orders using both the classical model and the fuzzy concept.

2.2. Background materials

Here, we recall some definition from [18,47].

Definition 2.2.1. For a function H(t) we define the fractional integral
corresponding to t as

Iσ
t H(t) = 1

�(σ)

∫ t

0
(t − η)σ−1dη, σ > 0,

such that the integral on the right-hand side exists.

Definition 2.2.2. [44,47] Let us take a continuous fuzzy mapping ũ on
some interval [0, c] ⊂ R. We formulate the arbitrary-order antiderivative in
fuzzy form with respect to t in the “Riemann–Liouville” sense given as

Iσ ũ(t) = 1
�(σ)

∫ t

0
(t − η)γ−1ũ(η)dη, σ, η ∈ (0,∞).

Next, if ũ ∈ intervalCF[0, c] ∩ LF[0, c], where CF[0, b] is the space of con-
tinuous mappings in fuzzy form and LF[0, c] is the space of “Lebesgue
integrable functions” in fuzzy form, then the arbitrary antiderivative in
fuzzy form is given as

[Iσ ũ(t)]p = [Iσ up(t), I
σ up(t)], 0 ≤ p ≤ 1,

such that

Iσ up(t) =
∫ t

0

(t − η)σ−1up(η)

�(σ )
dη, σ, η ∈ (0,∞),

Iσ up(t) =
∫ t

0

(t − η)σ−1ur(η)

�(σ )
dη, γ, η ∈ (0,∞).
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Definition 2.2.3. For a function H(t), we define the Caputo fractional
derivative corresponding to t as

DσH(t) = 1
�(n − σ)

∫ t

0
(t − η)n−σ−1[H(n)(η)]dη, σ > 0,

with the right-hand side being pointwise defined on R+ and n = [σ ] + 1.
If σ ∈ (0,1], then one has

DσH(t) = 1
�(1 − σ)

∫ t

0
(t − η)−σ [H(1)(η)]dη.

Definition 2.2.4. [44,47] In the same sense for a mapping ũ ∈ CF[0, c] ∩
LF[0, c], such that ũ = [up(t),up(t)], 0 ≤ p ≤ 1 and t0 ∈ (0, c), then the “Ca-
puto fractional derivative” is given as

[Dσ ũ(t0)]p = [Dσ p
p
(t0),Dσ up(t0)], 0 < γ ≤ 1,

where

Dσ up(t0) = 1
�(n − σ)

[∫ t

0
(t − η)n−σ−1 dn

dηn up(η)dη

]
t=t0

,

Dσ up(t0) = 1
�(n − σ)

[∫ t

0
(t − η)n−σ−1 dn

dηn up(η)dη

]
t=t0

.

The antiderivative on the right-hand sides exists and n = �σ	. As σ ∈ (0,1],
n = 1.

Lemma 2.2.5. [18] The solution of

DσH(t) = h(t), 0 < σ ≤ 1,

is given by

H(t) = c0 + 1
�(1 − σ)

∫ t

0
h(η)(t − η)σ−1dη.

Lemma 2.2.6. [18] The Laplace transform of DσH(t) for 0 < σ ≤ 1 is provided
by

L

[
DσH(t)

]
= sσL [H(t)] − sσ−1H(0)].
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Lemma 2.2.7. [44,48,49] The “Laplace transform” to a fuzzy mapping of
cdγ ũ(t)

dtγ for 0 < γ ≤ 1 is given as

L

[ cdγ ũ(t)
dtγ

]
= sγ L [̃u(t)] − sγ−1 [̃u(0)].

Definition 2.2.8. [44,48,49] A “fuzzy number” is a mapping P : 
 →
[0,1] if it obeys the following conditions:

(i) P will be “upper semicontinuous”;
(ii) P {μ(u1) + μ(u2)} ≥ min{P(u1),P(u2)};
(iii) ∃ u0 ∈ R such that P(u0) = 1, i.e., P is “normal”;
(iv) cl{u ∈ 
, P(u) > 0} is “compact.”

Here we denote the set of all fuzzy numbers by E.

Definition 2.2.9. [44,48,49] The “parametric form” of a fuzzy number
can be written in the form of order pair as

[P(θ)),P(θ)], such that 0 ≤ θ ≤ 1

and satisfying following conditions:
(i) P(θ) is a left continuous, bounded, and increasing function over

(0,1] and right continuous at 0;
(ii) K(θ) is a right continuous, bounded decreasing function over [0,1]

and right continuous at 0;
(iii) P(θ) ≤ P(θ).

Here, θ is called the “crisp number” if P(θ) = P(θ) = θ .

Let E denote the set of “upper semicontinuous,” “convex,” and “normal
fuzzy numbers” with bounded θ-level interval. If ν ∈ E, then the θ-level
set

[ν]θ = {t : ν(t) ≥ θ}, 0 ≤ θ ≤ 1,

whose bounded and closed interval is represented by

[ν]θ = [ν(θ), ν(θ)].

For arbitrary fuzzy number

ν = (ν(θ), ν(θ)), ω = (ω(θ),ω(θ)),

and for κ1 ≥ 0, various operations are defined as follows:
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(i) Addition: (ν(θ) + ω(θ), ν(θ) + ω(θ)) = (ν(θ) + ω(θ), ν(θ) + ω(θ)).
(ii) Subtraction: (ν(θ) − ω(θ), ν(θ) − ω(θ)) = (ν(θ)−ω(θ), ν(θ)−ω(θ)).

(iii) Scalar multiplication: κ1 · ν(θ) =
{

(κ1ν(θ), κ1ν(θ)), κ1 ≥ 0,

(κ1ν(θ), κ1ν(θ)), κ1 < 0.

Definition 2.2.10. [44] Let D1 : E × E → R+ ∪ {0} be a mapping, and let
ν = (ν(θ), ν(θ)) and ω = (ω(θ),ω(θ)) be any two fuzzy numbers in para-
metric form. Then the “Hausdorff distance” between (ν,ω) is measured
as

D1(ν,ω) = sup
θ∈[0,1]

max{|ν(θ) − ω(θ)|, |ν(θ) − ω(θ)|}.

In E, a metric D1 as defined above has the following properties (see [44]):
(i) D1(ν + υ,ω + υ) = D1(ν,ω) for all ν,υ,ω ∈ E,
(ii) D1(κ1 · ν, κ1 · ω) = |κ1|D1(ν,ω) for all κ1 ∈ R, ν,ω ∈ E,
(iii) D1(ν + μ,ω + υ) ≤ D1(ν,ω) + D1(μ,υ) for all ν,ω,μ,υ ∈ E,
(iv) (E,D1) is a complete metric space.

Definition 2.2.11. [44] Suppose that y1,y2 ∈ E. If there exist y3 ∈ E such
that

y1 = y2 + y3,

then y3 is said to be the H-difference of y1 and y2 denoted as y1 � y2.

Definition 2.2.12. [44,48,49] Consider the fuzzy mapping h : R → E.
Then h is called continuous for any fixed y0 ∈ [β1, β2], if for every ε > 0,
there exist δ > 0 such that |y − y0| < δ, which implies that

D1(h(y),h(y0)) < ε.

Definition 2.2.13. [48] A levelwise continuous mapping h : [β1, β2] ⊂
R → E is defined at a ∈ [β1, β2] if the set-valued mapping hθ (y) = [h(y)]θ is
continuous at y = a with respect to the H-metric D1 for all θ ∈ [0,1].

Theorem 2.2.14. [48] Consider the following:
(i) h(y) is a levelwise continuous function on [a, a + y0], y0 > 0;
(ii) k(y, s) is a levelwise continuous function on � : a ≤ s ≤ y ≤ a + y0 and

D1(ν(y),h(y0)) < y1, where y1 > 0;
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(iii) for any (y, s, ν(s)), (y, s,ω(s)) ∈ �, we have

D1([k(y, s, ν(s))]θ , [k(y, s,ω(s))]θ ) ≤ MD1([ν(s)]θ , [ω(s)]θ ),
where the constant M > 0 is given and for any θ ∈ [0,1].
Then, the levelwise continuous solution ν(y) exists and is unique for
Eq. (2.3) and defined for y ∈ (a, a + θ), where θ = min{y0,

y1
N }, and N =

D1(k(y, s, ν(s)), (y, s,ω(s))) ∈ �, where we keep in mind that y = (u, v).

Theorem 2.2.15 (Fuzzy convolution theorem). [49] Let φ1 and φ2 be
fuzzy-valued functions of exponential order c > 0, which are piecewise continuous
on [0,∞). Then

L [(φ1 ∗ φ2)(s)] = L [φ1(s)] · L [φ2(s)], (2.4)

where L represents the integral transform due to Laplace.

2.3. Main work

2.3.1 Qualitative analysis of (2.2)
In this section we discuss “existence and uniqueness” of the arbitrary-order
system (2.2). The “existence” of a physical model is discussed by the “fixed
point theory” approach. So we will apply the Schauder and Banach fixed
point theorems to prove the main results. We consider the arbitrary-order
system (2.2) using U = H(t) + I(t). We have

DσU(t) = F(t,U), 0 < σ ≤ 1, (2.5)

H(0) = H0.

On using Lemma 2.2.5, Eq. (2.5) is equivalent to the integral equation
given by

U(t) = H0 + 1
�(σ)

∫ t

0
(t − η)σ−1F(η,U(η))dη. (2.6)

Furthermore, letting 0 ≤ t ≤ T < ∞, we define the Banach space by E1 =
C[0,T ] under the norm

‖(U)‖ = max
t∈[0,T ]

|U(t)|.

To derive the “existence and uniqueness,” we imposed some growth con-
ditions on the nonlinear function as follows:
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(A1) There exists a constant LF > 0 such that for each U, Ū ∈ E

|F(t,U) −F(t, Ū)| ≤ LF |U − Ū |.

(A2) There exist constants CF > 0 and MF > 0 such that

|F(t,U(t))| ≤ CF |U | + MF .

Theorem 2.3.1. Under the continuity of F and with Assumption (A2), prob-
lem (2.5) has one or more than one solution.

Proof. By the Schauder fixed point theorem, we will prove the result. Let
us define a closed subset B of E as

B = {U ∈ E : ‖U‖ ≤R, R > 0}.

We define an operator T : B → B by using (2.6) as

T(U) = U0(t) + 1
�(σ)

∫ t

0
(t − η)σ−1F(η,U(η))dη. (2.7)

For any U ∈ B, we have

|T(U)(t)| ≤ |U0| + 1
�(σ)

∫ t

0
(t − η)σ−1|F(η,U(η))|dη

≤ |U0| + 1
�(σ)

∫ t

0
(t − η)σ−1[CF |U | + MF ]ds

≤ |U0| + Tσ

�(σ + 1)
[CF‖U‖ + Mf ],

which implies that

‖T(U)‖ ≤ |U0| + Tσ

�(σ + 1)
[CF‖U‖ + Mf ]

≤R. (2.8)

From (2.8), one implies that U ∈ B. Thus T(B) ⊂ B. Also this proves that
operator T is “bounded.” For “complete continuity” we proceed as follows.
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Let t1 < t2 ∈ [0,T ]. Then consider

|T(U)(t2) − T(U)(t1)|
=

∣∣∣∣ 1
�(σ)

∫ t2

0
(t2 − η)σ−1,

F(s,U(η))dη − 1
�(σ)

∫ t1

0
(t1 − η)σ−1F(η,U(η))dη

∣∣∣∣
≤ 1

�(σ)

[∫ t2

0
(t2 − η)σ−1 −

∫ t1

0
(t1 − η)σ−1

]
(CFR+ MF )dη

≤ (CFR+ MF )

�(σ + 1)
[tσ2 − tσ1 ]. (2.9)

Now from (2.9), we see that as t1 → t2, the right-hand side also goes to
zero. So we see that

|T(U)(t2) − T(U)(t1)| → 0, as t1 → t2.

Consequently we have

‖T(U)(t2) − T(U)(t1)‖ → 0, as t1 → t2.

Hence T is an “equicontinuous” operator. By using the Arzelá–Ascoli
theorem, the operator T is a “completely continuous operator” and also
uniformly bounded, as proved already. By Schauder’s fixed point theorem
the given system (2.2) has at least one solution.

Next we provide results about the uniqueness of solution.

Theorem 2.3.2. Under Assumption (A1), the considered system has a unique
solution if Tσ

�(σ+1)
LF < 1.

Proof. As T : E → E , defined already, we take U and Ū ∈ E and consider

‖T(U) − T(Ū)‖ = max
t∈[0,T ]

∣∣∣∣ 1
�(σ)

∫ t

0
(t − η)σ−1F(η,U(η))dη

− 1
�(σ)

∫ t

0
(t − η)σ−1F(η, Ū(η))dη

∣∣∣∣
≤ Tσ

�(σ + 1)
LF‖U − Ū‖. (2.10)

From (2.10), we have

‖T(U) − T(Ū)‖ ≤ 2Tσ

�(σ + 1)
LF‖U − Ū‖. (2.11)
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Hence F is a contraction. By the Banach contraction theorem, the consid-
ered system has a unique solution.

2.3.2 Qualitative analysis for (2.3)
In this section we discuss qualitative analysis of an arbitrary-order sys-
tem (2.3). The existence of a physical model is discussed by the fixed point
theory approach. So we will apply the Schauder and Banach fixed point
theorems to prove the main results. We have considered the arbitrary-order
system (2.3) as

cDσ
t (̃u(t)) = f1(t, ũ(t), ṽ(t)),

cDσ
t (̃v(t)) = f2(t, ũ(t), ṽ(t)), (2.12)

ũ(0) = ũ0, ṽ(0) = ṽ0, 0 < σ ≤ 1.

Applying a fuzzy arbitrary-order integral of order σ as Iσ to (2.12), using
initial conditions, we get

ũ(t) = ũ0 + 1
�(σ)

∫ t

0
(t − ζ )σ−1f1(ζ, ũ(ζ ), ṽ(ζ ))dζ,

ṽ(t) = ṽ0 + 1
�(σ)

∫ t

0
(t − ζ )σ−1f2(ζ, ũ(ζ ), ṽ(ζ ))dζ. (2.13)

We express system (2.13) as

Ỹ(t) = Ỹ0(t) + 1
�(σ)

∫ t

0
(t − η)σ−1�(η, Ỹ(η))dη, (2.14)

where

Ỹ(t) =
{

ũ(t),
ṽ(t),

Ỹ0(t) =
{

ũ0(t),
ṽ0(t),

�(t, Ỹ(t)) =
{

f1(t, ũ(t), ṽ(t)),
f2(t, ũ(t), ṽ(t)).

(2.15)

For a discussion of existence and uniqueness, let us define the Banach
space by B = B1 × B2 under the fuzzy norm ‖(̃u, ṽ)‖ = maxt∈[0,T ] |̃u(t)| +
maxt∈[0,T ] |̃v(t)|. Furthermore, we make some assumptions as growth con-
ditions on the nonlinear vector mapping as

ψ : [0,T ] ×R×R →R

as:
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(B1) There exists a constant Lψ > 0 such that for each Ỹ(t), ¯Ỹ(t) ∈ R×R

such that

|ψ(t, Ỹ(t)) − ψ(t, ¯Ỹ(t))| ≤ Lψ |Ỹ(t) − ¯Ỹ(t)|.

(B2) There exist constants Cψ > 0 and Mψ > 0 such that

|ψ(t, Ỹ(t))| ≤ Cψ |Ỹ| + Mψ.

Theorem 2.3.3. Let ψ be continuous, fulfilling Assumption (B2). It is guaran-
teed that at least one solution to system (2.14) will exist.

Proof. By the Schauder fixed point theorem, we will prove the theorem.
Define a closed subset G of B given as

G = {Ỹ ∈ B : R ≥ |Ỹ‖}.

Define a mapping τ : G → G by using (2.13) as

τ (Ỹ) = Ỹ0(t) + 1
�(σ)

∫ t

0
(t − η)σ−1�(η, Ỹ(η))dη, (2.16)

For any Ỹ ∈ G, we have

|τ (Ỹ)| ≤ |Ỹ0| + 1
�(σ)

∫ t

0
(t − η)σ−1|�(η, Ỹ(η))|dη

≤ |Ỹ0| + 1
�(σ)

∫ t

0
(t − η)σ−1[C� |Ỹ | + M�]dη

≤ |Ỹ0| + Tσ

�(σ + 1)
[C�‖Ỹ‖ + M�],

which implies that

‖τ (Ỹ)‖ ≤ |Ỹ0| + T γ

�(γ + 1)
[C�‖Ỹ‖ + M�]

≤ R. (2.17)

From (2.17), one implies that Ỹ ∈ G. Thus τ (G) ⊂ G. This also proves that
operator τ is bounded. For “complete continuity” we go ahead as follows.
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Let “t1 < t2 ∈ [0,T ].” Then

|τ (Ỹ)(t2) − τ (Ỹ)(t1)|
=

∣∣∣∣ 1
�(σ)

∫ t2

0
(t2 − η)σ−1�(s, Ỹ(η))dη

− 1
�(σ)

∫ t1

0
(t1 − η)σ−1�(η, Ỹ(η))dη

∣∣∣∣
≤ 1

�(σ)

[∫ t2

0
(t2 − η)σ−1 −

∫ t1

0
(t1 − η)σ−1

]
(C�R+ M�)dη

≤ (C�R+ M�)

�(σ + 1)
[tσ2 − tσ1 ]. (2.18)

Now from (2.18), we see that as “t1 → t2,” the right-hand side will clearly
go to zero. So we conclude as

|τ (Ỹ)(t2) − τ (Ỹ)(t1)| → 0, as t1 → t2.

By this we can write

‖τ (Ỹ)(t2) − τ (Ỹ)(t1)‖ → 0, as t1 → t2.

By this we have proved that τ is an equicontinuous operator. By using
the Arzelá–Ascoli theorem, operator τ is a completely continuous operator
and also uniformly bounded, as proved already. By Schauder’s fixed point
theorem, the given model (2.3) has one or more than one solution.

Furthermore, we provide results about uniqueness of solution as follows.

Theorem 2.3.4. Under Assumption (B1), system (2.14) will have a unique
solution if Tσ

�(σ+1)
L� < 1.

Proof. As τ : B → B, defined already, we take Ỹ and ¯̃Y ∈ B and consider

‖τ (Ỹ) − τ ( ¯̃Y)‖ = max
t∈[0,T ]

∣∣∣∣ 1
�(σ)

∫ t

0
(t − η)σ−1�(η, Ỹ(η))dη

− 1
�(σ)

∫ t

0
(t − η)σ−1�(η, ¯̃Y(η))dη

∣∣∣∣
≤ Tσ

�(σ + 1)
L�‖Ỹ − ¯̃Y‖. (2.19)
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From (2.19), we have

‖τ (Ỹ) − τ ( ¯̃Y)‖ ≤ 2Tσ

�(σ + 1)
L�‖Ỹ − ¯̃Y‖. (2.20)

Hence τ is a contraction. By the Banach contraction theorem, the consid-
ered system has a unique solution.

2.4. Series solution of the considered system (2.2)
under normal Caputo derivative

To produce a semianalytical solution to the considered model, con-
sider a general problem as

DσU(t) = N (U) + L(U), 0 < σ ≤ 1, (2.21)

U(0) = U0, U0 ∈ R
+, (2.22)

where N (U) is a nonlinear term and L(U) represents the linear term. Tak-
ing the Laplace transform of (2.21) and using initial conditions, we have

L

[
U(t)

]
= 1

s
U0 + 1

sσ
L

[
N (U) + L(U)

]
. (2.23)

Let us consider the needed solution as U(t) = ∑∞
n=0 Un(t). The nonlinear

term N (U) may be expressed as N (U) = ∑∞
n=0 Pn(t), where Pn is defined

by

Pn = 1
�(n + 1)

d
dξ

[
N

( n∑
k=0

Uk

)]∣∣∣∣
ξ=0

.

Therefore (2.23) becomes

L

[ ∞∑
n=0

Un(t)
]

= 1
s
U0 + 1

sσ
L

[ ∞∑
n=0

Pn(H,I) + L
( ∞∑

n=0

Un

)]
.

Comparing terms on both sides, we have

L

[
U0(t)

]
= 1

s
U0,

L

[
U1(t)

]
= 1

sσ
L

[
P0(H,I) + L(U0)

]
,
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L

[
U2(t)

]
= 1

sσ
L

[
P1(H,I) + L(U1)

]
,

L

[
U3(t)

]
= 1

sσ
L

[
P2(H,I) + L(U2)

]
,

...

L

[
Un+1(t)

]
= 1

sσ
L

[
Pn(H,I) + L(Un)

]
, n ≥ 0.

Evaluating the inverse Laplace transform, we have

U0(t) = U0,

U1(t) = L −1
[

1
sσ

L

[
P0(H,I) + L(U0)

]]
,

U2(t) = L −1
[

1
sσ

L

[
P1(H,I) + L(U1)

]]
,

...

Un+1 = L −1
[

1
sσ

L

[
Pn(H,I) + L(Un)

]]
. (2.24)

Hence the required series solution of (2.2) will be obtained as

U(t) = U0(t) + U1(t) + U2(t) + · · · . (2.25)

Remark 2.4.1. Convergence of the series (2.25) is easy to establish.

2.4.1 Approximate solution and discussion for (2.2)
To compute the approximate results of the considered model by using the
procedure given in (2.24), we now take some values for parameters of (2.1)
under fractional order. Let us assume the healthy population is 0.5 and the
infected population is 0.5. Taking various values for transmission rates we
discuss certain cases as follows:⎧⎪⎪⎨

⎪⎪⎩
DσH(t) = aH(t) − bH(t)I(t) + eH(t),

DσI(t) = bH(t)I(t) + (c − d − e)I(t),

H(0) = 0.5, I(0) = 0.5.

(2.26)

Using the proposed algorithm to (2.26) as constructed in (2.24), analo-
gously one has
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0(t) = 0.5, I0(t) = 0.5,

H1(t) = [
0.5a − 0.25b + 0.5e

] tσ

�(σ + 1)
,

I1(t) = [
0.25b − 0.5c − 0.5d − 0.5e

] tσ

�(σ + 1)
,

H2(t) = [
aH11 + eI11

] t2σ

�(2σ + 1)
− [

bH11I11
](�(2σ + 1)

�2(σ + 1)

)
t3σ

�3σ + 1
,

I2(t) = [
bH11I11

](�(2σ + 1)

�2(σ + 1)

)
t3σ

�3σ + 1
+ [

(c − d − e)I11
] t2σ

�2σ + 1
,

H3(t) = aH111
t3σ

�(3σ + 1)
− aI111

�(2σ + 1)

�2(σ + 1)

t4σ

�(4σ + 1)

− bH111I111
�(5σ + 1)

�2(σ + 1)�(3σ + 1)�(6σ + 1)
t6σ

− bH111I22
�(4σ + 1)

�2(2σ + 1)�(5σ + 1)
t5σ

+ b(I111)
2 �2(2σ + 1)

�4(σ + 1)�2(3σ + 1)
t6σ

+ bI111I22
1

�2(σ + 1)�(3σ + 1)
t5σ

+ eI111
�(2σ + 1)

(�(σ + 1))2(�(4σ + 1))
t4σ + eI22

t3σ

�(3σ + 1)
,

I3(t) = bH111I111
�(5σ + 1)

�2(σ + 1)�(3σ + 1)�(6σ + 1)
t6σ

+ bH111I22
�(4σ + 1)

�2(2σ + 1)�(5σ + 1)
t5σ

− b(I111)
2 �2(2σ + 1)

�4(σ + 1)�2(3σ + 1)
t6σ

− bI111I22
1

�2(σ + 1)�(3σ + 1)
t5σ

+ (c − d − e)I111
�(2σ + 1)

�2(σ + 1)(�(4σ + 1))
t4σ

+ (c − d − e)I22
t3σ

�(3σ + 1)
,

(2.27)

and so on. Further terms can be calculated in the same way. The unknown
values in (2.27) are given as

H11 = 0.5a − 0.25b + 0.5e, I11 = 0.25b − 0.5c − 0.5d − 0.5e,

H111 = aH11 + eI11, I111 = bH11I11, I22 = (c − d − e)I11.
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Figure 2.1 Dynamical behaviors of population dynamics in the absence of migration
corresponding to different fractional orders.

Case I
We simulate the results above taking a = 0.000001, b = 0.03, c = 0.05, d =
0.03, e = 0.05. Here the migration of both infected and healthy individuals
is taken as zero, as shown in Fig. 2.1.

From Fig. 2.1, we see that in the absence of migration, there is no
transfer of healthy or infected people from one place to another, producing
a great impact on the control of the infection. In other words, isolation
and social distance greatly help in controlling the current outbreak from
further spread. The growth and decay of the different compartments have
been shown for different fractional orders. The order of derivatives also
produces a certain impact on the process; at smaller order the initial process
of growth is faster, up to 45 days. After that, the process starts to exhibit
reverse behavior. The same behavior is observed for the infected class after
one month.

Case II
We simulate the results taking a = 0.0, b = 0.03, c = 0.05, d = 0.03, e = 0.05.
Here the migration of infected individuals is included, and migration of the
healthy population is taken as zero (Fig. 2.2). We see that migration of the
infected class greatly disturbs the balance of the healthy population. This
disturbance is different at different fractional orders, while the infection
class shows the same decay as in Fig. 2.1, because it leaves the commu-
nity.
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Figure 2.2 Dynamical behaviors of population dynamics in the absence of migration
corresponding to different fractional orders.

Figure 2.3 Dynamical behaviors of population dynamics in the absence of migration of
infected individuals corresponding to different fractional orders.

Case III
We simulate the results taking a = 0.05, b = 0.03, c = 0.05, d = 0.03, e = 0.0.
Here the migration of infected individuals is included and migration of the
healthy population is taken as zero (Fig. 2.3) If proper protection is al-
lowed, then migration of the healthy class in the absence of migration of
infected individuals and its dynamical behaviors are shown. The effect of
the fractional order derivative an be observed which globalize the dynam-
ics.

Case IV
We simulate the results taking a = 0.0005, b = 0.05, c = 0.003, d = 0.004,
e = 0.0009. Here the migration of infected as well as healthy individuals
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Figure 2.4 Dynamical behaviors of population dynamics in the presence of migration
of both populations corresponding to different fractional orders.

Figure 2.5 Dynamical behaviors of population dynamics in the presence of very low
migration of both populations corresponding to different fractional orders.

is included (Fig. 2.4). We see that if migration of both classes is present,
then the healthy population density decreases while the infected population
density increases with different rates due to the fractional order.

Case V
Here we present the results for very low values of migration of both classes
from a community with a = 0.00005, b = 0.005, c = 0.003, d = 0.004,
e = 0.00009 (Fig. 2.5). The corresponding migration values are low. The
dynamical behaviors for both classes are presented corresponding to the
different fractional orders in Fig. 2.5. Both class densities decrease.

Remark 2.4.2. Clearly from (2.26), corresponding to the given values
of parameters, the conditions of Theorem 2.3.3 and Theorem 2.3.4 are



58 Muhammad Arfan et al.

satisfied with LF = 0.05, T = 4. We see that LFTσ

�(σ+1)
= 0.20

�(σ+1)
< 1, for all

σ ∈ (0,1]. The same can be verified for other cases.

2.5. General series solution of the considered
system (2.3)

To produce a semianalytical solution to the considered model, we
first generated a general algorithm by using system (2.3). We apply the
fuzzy Laplace transform to (2.3) on both sides as

L [cDγ
t (̃u(t))] = L

[
f1(t, ũ(t), ṽ(t))

]
,

L [cDγ
t (̃v(t))] = L

[
f2(t, ũ(t), ṽ(t))

]
, (2.28)

and using initial conditions, we have

sγ L

[̃
u(t)

]
= sγ−1̃u0 + L

[
f1(t, ũ(t), ṽ(t))

]
,

sγ L

[̃
v(t)

]
= sγ−1̃v0 + L

[
f2(t, ũ(t), ṽ(t))

]
, (2.29)

or

L

[̃
u(t)

]
= 1

s
ũ0 + 1

s
L

[
f1(t, ũ(t), ṽ(t))

]
,

L

[̃
v(t)

]
= 1

s
ṽ0 + 1

s
L

[
f2(t, ũ(t), ṽ(t))

]
. (2.30)

Considering the unknown as

ũ(t) =
∞∑

n=0

ũn(t), ṽ(t) =
∞∑

n=0

ṽn(t)

and considering the product of two terms ũ(t)̃v(t) may be written as

ũ(t)̃v(t) =
∞∑

n=0

ũn(t)
∞∑

n=0

ṽn(t),
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(2.30) becomes

L

[ ∞∑
n=0

ũn(t)
]

= 1
s
ũ0 + 1

sγ
L

[
f1(t,

∞∑
n=0

ũn(t),
∞∑

n=0

ṽn(t))
]
,

L

[ ∞∑
n=0

ṽn(t)
]

= 1
s
ṽ0 + 1

sα
L

[
f2(t,

∞∑
n=0

ũn(t),
∞∑

n=0

ṽn(t))
]
. (2.31)

We take ũ(t) = (u(t),u(t)), ṽ(t) = (v(t), v(t)). Comparing terms on both
sides,

L

[
u0(t)

]
= 1

s
u0, L

[
u0(t)

]
= 1

s
u0,

L

[
v0(t)

]
= 1

s
v0, L

[
v0(t)

]
= 1

s
v0,

L

[
u1(t)

]
= 1

sγ
L

[
f1(t,u0(t), v0(t))

]
,

L

[
u1(t)

]
= 1

sγ
L

[
f2(t,u0(t), v0(t))

]
,

L

[
v1(t)

]
= 1

sγ
L

[
f1(t,u0(t), v0(t))

]
,

L

[
v1(t)

]
= 1

sγ
L

[
f2(t,u0(t), v0(t))

]
,

L

[
u2(t)

]
= 1

sγ
L

[
f1(t,u1(t), v1(t))

]
,

L

[
u2(t)

]
= 1

sγ
L

[
f2(t,u1(t), v1(t))

]
,

L

[
v2(t)

]
= 1

sγ
L

[
f1(t,u1(t), v1(t))

]
,

L

[
v2(t)

]
= 1

sγ
L

[
f2(t,u1(t), v1(t))

]
,

...

L

[
un+1(t)

]
= 1

sγ
L

[
f1(t,un(t), vn(t))

]
,

L

[
un+1(t)

]
= 1

sγ
L

[
f2(t,un(t), vn(t))

]
,
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L

[
vn+1(t)

]
= 1

sγ
L

[
f1(t,un(t), vn(t))

]
,

L

[
vn+1(t)

]
= 1

sγ
L

[
f2(t,un(t), vn(t))

]
.

Taking the inverse Laplace transform, one has[
u0(t)

]
= u0,

[
u0(t)

]
= u0,[

v0(t)
]

= v0,

[
v0(t)

]
= v0,[

u1(t)
]

= L −1
[

1
sγ

L

[
f1(t,u0(t), v0(t))

]]
,[

u1(t)
]

= L −1
[

1
sγ

L

[
f2(t,u0(t), v0(t))

]]
,[

v1(t)
]

= L −1
[

1
sγ

L

[
f1(t,u0(t), v0(t))

]]
,[

v1(t)
]

= L −1
[

1
sγ

L

[
f2(t,u0(t), v0(t))

]]
,[

u2(t)
]

= L −1
[

1
sγ

L

[
f1(t,u1(t), v1(t))

]]
,[

u2(t)
]

= L −1
[

1
sγ

L

[
f2(t,u1(t), v1(t))

]]
,[

v2(t)
]

= L −1
[

1
sγ

L

[
f1(t,u1(t), v1(t))

]]
,[

v2(t)
]

= L −1
[

1
sγ

L

[
f2(t,u1(t), v1(t))

]]
.

...

Conversely, one may write general terms for n ≥ 0 as[
un+1(t)

]
= L −1

[
1
sγ

L

[
f1(t,un(t), vn(t))

]]
,[

un+1(t)
]

= L −1
[

1
sγ

L

[
f2(t,un(t), vn(t))

]]
,[

vn+1(t)
]

= L −1
[

1
sγ

L

[
f1(t,un(t), vn(t))

]]
,[

vn+1(t)
]

= L −1
[

1
sγ

L

[
f2(t,un(t), vn(t))

]]
. (2.32)
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Hence the required series solution of the system (2.3) will be

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t) = u0(t) + u1(t) + u2(t) + · · · ,

u(t) = u0(t) + u1(t) + u2(t) + · · · ,

v(t) = v0(t) + v1(t) + v2(t) + · · · ,

v(t) = v0(t) + v1(t) + v2(t) + · · · .

(2.33)

2.5.1 Numerical results and discussion for (2.3)
For the justification of the numerical results, we now take the exam-
ple of (2.1) in fuzzy fractional form. Let the healthy population be ũ0 =
(u0,u0) = (θ − 1,1 − θ) and let the infected population be ṽ0 = (v0, v0) =
(θ −1,1− θ). Taking various values for rates we discuss certain cases below,
where

⎧⎪⎪⎨
⎪⎪⎩

cDγ
t (̃u(t)) = ãu(t) − b̃u(t)̃v(t) + ẽu(t),

cDγ
t (̃v(t)) = b̃u(t)̃v(t) + (c − d − e)̃v(t),

ũ(0) = ũ0 = (θ − 1,1 − θ), ṽ(0) = ṽ0 = (θ − 1,1 − θ).

(2.34)

Applying the proposed method to (2.34) as in (2.32), we get

u0(t) = θ − 1, u0(t) = 1 − θ,

v0(t) = θ − 1, v0(t) = 1 − θ,

u1(t) =
[
(θ − 1)a − (θ − 1)2b + (θ − 1)e

]
tγ

�(γ + 1)
,

u1(t) =
[
(1 − θ)a − (1 − θ)2b + (1 − θ)e

]
tγ

�(γ + 1)
,

v1(t) =
[
(θ − 1)2b − (θ − 1)c − (θ − 1)d − (θ − 1)e

]
tγ

�(γ + 1)
,

v1(t) =
[
(1 − θ)2b − (1 − θ)c − (1 − θ)d − (1 − θ)e

]
tγ

�(γ + 1)
,

u2(t) =
[
au11 + ev11

]
t2γ

�(2γ + 1)
−

[
bu11v11

](
�(2γ + 1)

�2(γ + 1)

)
t3γ

�(3γ + 1)
,

u2(t) =
[
au11 + ev11

]
t2γ

�(2γ + 1)
−

[
bu11v11

](
�(2γ + 1)

�2(γ + 1)

)
t3γ

�(3γ + 1)
,

v2(t) =
[
bu11v11

](
�(2γ + 1)

�2(γ + 1)

)
t3γ

�(3γ + 1)
+

[
(c − d − e)v11

]
t2γ

�(2γ + 1)
,
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v2(t) =
[
bu11v11

](
�(2γ + 1)

�2(γ + 1)

)
t3γ

�(3γ + 1)
+

[
(c − d − e)v11

]
t2γ

�(2γ + 1)
,

u3(t) = au111
t3γ

�(3γ + 1)
− av111

�(2γ + 1)

�2(γ + 1)

t4γ

�(4γ 1)

− bu111v111
�(5γ + 1)

�2(γ + 1)�(3γ + 1)�(6γ + 1)
t6γ

− bu111v22
�(4γ + 1)

�2(2γ + 1)�(5γ + 1)
t5γ

+ b(v111)
2 �2(2γ + 1)

�4(γ + 1)�2(3γ + 1)
t6γ + bv111v22

1
�2(γ + 1)�(3γ + 1)

t5γ

+ ev111
�(2γ + 1)

(�(γ + 1))2(�(4γ + 1))
t4γ + ev22

t3γ

�(3γ + 1)
,

u3(t) = au111
t3γ

�(3γ + 1)
− av111

�(2γ + 1)

�2(γ + 1)

t4γ

�(4γ + 1)

− bu111v111
�(5γ + 1)

�2(γ + 1)�(3γ + 1)�(6γ + 1)
t6γ

− bu111v22
�(4γ + 1)

�2(2γ + 1)�(5γ + 1)
t5γ

+ b(v111)
2 �2(2γ + 1)

�4(γ + 1)�2(3γ + 1)
t6γ + bv111v22

1
�2(γ + 1)�(3γ + 1)

t5γ

+ ev111
�(2γ + 1)

(�(γ + 1))2(�(4γ + 1))
t4γ + ev22

t3γ

�(3γ + 1)
,

v3(t) = bu111v111
�(5γ + 1)

�2(γ + 1)�(3γ + 1)�(6γ + 1)
t6γ

+ bu111v22
�(4γ + 1)

�2(2γ + 1)�(5γ + 1)
t5γ

− b(v111)
2 �2(2γ + 1)

�4(γ + 1)�2(3γ + 1)
t6γ − bv111v22

1
�2(γ + 1)�(3γ + 1)

t5γ

+ (c − d − e)v111
�(2γ + 1)

�2(γ + 1)(�(4γ + 1))
t4γ

+ (c − d − e)v22
t3γ

�(3γ + 1)
,

v3(t) = bu111v111
�(5γ + 1)

�2(γ + 1)�(3γ + 1)�(6γ + 1)
t6γ

+ bu111v22
�(4γ + 1)

�2(2γ + 1)�(5γ + 1)
t5γ

− b(v111)
2 �2(2γ + 1)

�4(γ + 1)�2(3γ + 1)
t6γ − bv111v22

1
�2(γ + 1)�(3γ + 1)

t5γ
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Figure 2.6 Graphical presentation of fuzzy approximate solutions for fractional order
0.75 in the space of uncertainty and time.

+ (c − d − e)v111
�(2γ + 1)

�2(γ + 1)(�(4γ + 1))
t4γ

+ (c − d − e)v22
t3γ

�(3γ + 1)
.

Further terms can be computed in a similar fashion. The unknown values
in the above expressions are given in (2.35) as

u11 = (θ − 1)a − (θ − 1)2b + (θ − 1)e,

u11 = (1 − θ)a − (1 − θ)2b + (1 − θ)e,

v11 = (θ − 1)2b − (θ − 1)c − (θ − 1)d − (θ − 1)e,

v11 = (1 − θ)2b − (1 − θ)c − (1 − θ)d − (1 − θ)e,

u111 = au11 + ev11, u111 = au11 + ev11,

v111 = bv11v11, v111 = bv11v11,

v22 = (c − d − e)v11, v22 = (c − d − e)v11. (2.35)

We can now simulate the results above for taking the values a = 0.5, b =
0.5, c = 0.5, d = 0.5, e = 0.5 to discuss the dynamics of the healthy and
infected populations under fuzzy concept. Let the populations be u(0) =
0.5, v(0) = 0.5. We take given values of parameters included in the model
and graphically present the fuzzy solutions in Figs. 2.6–2.9 in the space of
uncertainty and time.

In Figs. 2.6–2.9, we have presented approximate fuzzy solutions for ini-
tial few terms corresponding to different fractional order in tθ-space. From
the figures one can observe that the fuzzy concept can be combined with
fractional derivatives for more useful results.
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Figure 2.7 Graphical presentation of fuzzy approximate solutions for fractional order
0.85 in the space of uncertainty and time.

Figure 2.8 Graphical presentation of fuzzy approximate solutions for fractional order
0.95 in the space of uncertainty and time.

Figure 2.9 Graphical presentation of fuzzy approximate solutions for order 1 in the
space of uncertainty and time.

2.5.2 Conclusion
In this chapter a population dynamical model addressing the current
COVID-19 pandemic has been investigated from two different scenarios. In
the first scenario we have studied the considered model under usual Caputo
derivatives. We have proved its existence and the required results about at
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least one approximate solution. Furthermore, by assigning different values
taken from [14] to a, b, c, d, and e, we have presented its series type solution
by graphs. For the required series solution, we have utilized Laplace trans-
form and the decomposition method. It can be observed that by increasing
the rates of protection and cure and decreasing the rate of migration, we
can eventually decrease the number of infected individuals to minimum or
towards stability. By studying such dynamical systems one can know easily
how to protect the healthy population from being infected and discourage
migration of infected individuals. This model can be applied to populations
where social gathering s occur locally or globally. Furthermore, such model
exists in the real world, as proved by using fixed point theory. The rates of
decay and growth have been shown thorough fractional differentiation in
global ways. Hence fractional calculus can be used to comprehensively ex-
plain the model. If the recovered class is also included, then we can further
extend this model to see the effects of migration on the recovered popula-
tion also.

When uncertainty exists in data, fuzzy concepts are usually used. Under
fuzziness the existence of the considered model and its approximate solu-
tions have been investigated by using the aforementioned tools under fuzzy
concepts. Nearly the same behavior has been observed. Hence fractional
calculus combined with the fuzzy concept can be used to comprehensively
explain many epidemiological models. If the recovered class is also included,
then we can further extend this model to see the effects of migration on
the recovered population also under a fuzzy concept. Keep in mind that
the model we consider here just provides indications about COVID-19
and how migration and protection influence the transmission dynamics of
COVID-19.
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Spatial-fractional derivatives for
fluid flow and transport
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3.1. Introduction

In recent years the fractional derivative models have been utilized
successfully in many engineering and science applications. The fractional
calculus idea originated around 300 years ago, similar to traditional calcu-
lus. The idea of fractional derivatives was discussed by Leibniz and l’Hopital
in 1695 [1]. Fractional calculus was then developed by notable names in
mathematics such as Wey, Liouville, Fourier, Riemann, Abel, Letnikov,
and Grunwald. Recently, fractional modeling has been considered in many
science and engineering problems, particularly in fluid dynamics and trans-
port phenomena [2,3]. The two basic types of fractional derivatives, namely,
time- and space-fractional derivatives, have been used; however, the time-
fractional one was intensively studied. The spatial-fractional development
was a bit slower than the temporal one and still requires comprehensive in-
vestigation. In this chapter, the emphasis will be on the spatial-fractional
modeling or the mixed time-space one. The advection-dispersion phe-
nomenon is a clear example of potential application of spatial fractional
modeling [4–6]. On the other hand, Yang [7,8] and Yang et al. [9] have de-
veloped a time-space fractional version for Navier–Stokes (NS) equations
for incompressible flow on fractal medium. Mohammadein et al. [10] in-
troduced fractional transformation and advanced similarity solutions for the
spatial-fractional boundary layer flow model. Yang and Baleanu [11] have
proposed a spatial-fractional version of the heat conduction equation in
fractal media. The flow in porous media is another example that one may
consider spatial-fractional modeling because of its complexity. Thus, solute
transport in an underground reservoir does not obey Fick’s law [12]. Ca-
puto [13] proposed a fractional Darcy’s law with time memory, while the
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authors of [14] developed it with space memory. Based on the fractional
Taylor series, Wheatcraft and Meerschaerton [15] developed a fractional
mass conservation equation of flow in porous media. An analytical solu-
tion of the fractional gas flow equation in porous media using fractional
power series has been introduced by El-Amin et al. [16], which go back to
its traditional original case [17]. Also, Chang et al. [18] presented a spatial
fractional Darcy law. Moreover, Chang and Sun [19] developed the time-
space fractional carbon dioxide model in porous media. In general, several
motivations for using spatial-fractional models to explain fluid flows can be
found in the literature. The most appropriate spatial-fractional models are
highlighted in this chapter.

The rest of the chapter is organized as follows. In Section 3.2, some
concepts of fractional calculus are presented. Section 3.3 introduces a mo-
tivation for utilizing spatial-fractional derivatives in fluid flow modeling and
derivation of the fractional mass conservation law. The spatial-fractional NS
equations are discussed in Section 3.4. Section 3.5 presents two special cases
of space-fractional fluid flows, including Poiseuille flow and boundary layer
flow. Section 3.6 presents the fractional models of flow in porous media,
while Section 3.7 discusses the analytical solution of the space-fractional
gas equation. The diffusion/conduction advection/convection equation has
been presented in Section 3.8 with two special cases of the fractional heat
conduction equation and the solute transport equation.

3.2. Preliminary concepts

In fractional calculus, there exist some basic definitions for fractional
derivatives. The current section presents the most important basic defini-
tions applicable and related to the theme of this chapter [2,3]. One of the
important basic definitions is the Riemann–Liouville fractional integral.
The fractional integral of order α > 0 for the integrable function f (·) such
that t ∈ [a, b] may be given as

aIα
t f (t) =

{
1

�(α)

∫ t
a (t − τ)α−1f (τ )dτ, a ≥ 0, t > a, α > 0,

f (t), α = 0,
(3.1)

such that the Gamma function is given by

�(z) =
∫ ∞

0
e−ttz−1dt (Re(z) > 0). (3.2)
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Moreover, since f (·) is a continuous function with n − 1 < α ≤ n, n ∈ N ,
the Riemann–Liouville fractional derivative can be defined as

Dα
t f (t) =

{
1

�(α−n)
dn

dtn
∫ t

a
f (τ )

(t−τ)α+1−n dτ, n − 1 < α < n, n ∈ N,

dnf (t)
dtn , α = n ∈ N.

(3.3)

The Caputo fractional derivative is defined by

C
a Dα

t f (t) =
{

1
�(α−n)

∫ t
a

f (n)(τ )

(t−τ)α+1−n dτ, n − 1 < α < n, n ∈ N,

dnf (t)
dtn , α = n ∈ N.

(3.4)

For n = 1 and lower terminal a = 0, the fractional derivative becomes

C
0 Dα

t f (t) = 1
�(α − 1)

∫ t

0

f ′(τ )

(t − τ)α
dτ, 0 < α < 1. (3.5)

On the other hand, one of the most common identities is the fractional
derivative of order α of the power function which is defined by

Dα
ηηβ = �(1 + β)

�(1 + β − α)
ηβ−α. (3.6)

Furthermore, we assume f (·) is a differentiable function in the interval [a, b]
and α > 0. Therefore, one may prove the following:

C
a Dα

taI
α
t f (t) = f (t),

aIαC
ta Dα

t f (t) = f (t) −
n−1∑
k=0

f (k)(a)
(t − a)k

k! .
(3.7)

The integer-order derivative may be generalized to generate a fractional
derivative under circumstances that should be collapsed to the integer-order
derivative. For example, the Grunwald–Letnikov definition is a generaliza-
tion of the nth integer derivative to a fractional one. We consider the nth
derivative of the continuous function f ∈ R as

f (n)(t) = dnf
dtn

= lim
h→0

1
hn

n∑
i=0

(−1)i
(

n
i

)
f (t − ih). (3.8)

If one replaces the integer n with a real number α ∈ R, the definition of the
Grunwald–Letnikov fractional derivative will be obtained in the following
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form:

aDα
t f (t) = lim

h→0
h−α

[
t−a
h

]∑
i=0

(−1)i
(

α

i

)
f (t − ih), a < t,

tDα
b f (t) = lim

h→0
h−α

[
b−t
h

]∑
i=0

(−1)i
(

α

i

)
f (t + ih), b > t,

(3.9)

where (
α

i

)
= �(α + 1)

�(α − i + 1)�(i + 1)
(3.10)

and [x] denotes the integer part of x. In fact, this formula is unstable; there-
fore, the shifted Grunwald–Letnikov definition can alternatively be used
[32]:

Dα
x f (x, t) = h−α

[
x
h

]∑
k=0

�(k − α)

�(−α)�(k + 1)
f (x − (k − 1)h, t). (3.11)

3.3. Spatial-fractional mass conservation equation

One of the strongest motivations for using the fractional derivative
in modeling fluid flow and transport phenomena is the derivation of the
mass conservation equation. So, this section presents the derivation of both
integer and fractional derivatives of the mass conservation equation. Con-
sider a control volume of a rectangular cube with volume �V = �x�y�z
(Fig. 3.1). Every two opposite faces of the control volume represent the
inflow and outflow of the mass flux across them. The quantity of mass
across the inflow surface should equal the mass outflow across the opposite
surface. From Fig. 3.1, the mass inflow across the first face of the x-axis is
given by

F(x) = �y�z (ρux) , (3.12)

and the mass outflow across at x + �x (the opposite side of x) is

F(x + �x) = �y�z (ρux) + �y�z
∂ (ρux)

∂x
�x. (3.13)

Traditionally, the equation of mass conservation of the fluid flow in
porous media is derived using the first-order Taylor series to represent the
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Figure 3.1 Sketch of rectangular control volume.

linear mass flux through a control volume. Alternatively, the fractional Tay-
lor series of order α has been employed to represent the mass flux [15]. The
fractional mass flux component in the x-direction can be described using
the two-term fractional Taylor series expanding around x; thus,

F(x + �x) = �y�z (ρux) + �y�z
∂a (ρux)

∂xa

(�x)a

�(α + 1)
, (3.14)

where the fractional derivative can be defined by the Caputo fractional
derivative of order 0 < α < 1 as

∂α f (x)

∂xα
= 1

�(1 − α)

∫ x

xi

(x − ξ)−a ∂ f (x, ξ)

∂ξ
dξ, (3.15)

where �(x) is the Gamma function. Here, the medium is assumed to be
heterogeneous and isotropic. Also, α has been assumed to have the same
value in all directions. The net mass flux in the x-direction can be obtained
by

F(x) − F(x + �x) = −�y�z
∂α (ρux)

∂xα

(�x)α

�(α + 1)
. (3.16)

Similarly, the net mass fluxes in the y- and z-directions are given by

F(y) − F(y + �y) = −�x�z
∂α

(
ρuy

)
∂yq

(�y)α

�(α + 1)
(3.17)

and

F(z) − F(z + �z) = −�x�y
∂α (ρuz)

∂zα

(�z)α

�(α + 1)
. (3.18)
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Therefore, the net mass flux through the control volume is obtained by
summing (3.16)–(3.18):

�F = − �V
�(α + 1)

[
(�x)α−1 ∂α (ρux)

∂xα
+ (�y)α−1 ∂α

(
ρuy

)
∂ya

+ (�z)x−1 ∂α (ρuz)

∂zα

]
. (3.19)

Based on the mass conservation concept, the net mass flux, Eq. (3.19),
should equal the accumulation term, ∂

∂t (�Vρ). Then, the mass conserva-
tion of the fluid flow can be written as

∂

∂t
(�Vρ) = − �V

�(α + 1)

[
(�x)α−1 ∂α (ρux)

∂xα
+ (�y)α−1 ∂α

(
ρuy

)
∂yα

+ (�z)α−1 ∂α (ρuz)

∂zα

]
+ q, (3.20)

where ϕ is porosity and q is the source/sink term. In other notations, as-
suming (x,y,z) ≡ (x1,x2,x3) and

(
ux,uy,uz

) ≡ (u1,u2,u3), one can write
this equation as

∂

∂t
(�Vρ) + �V

�(α + 1)

3∑
i=1

(�xi)
α−1 ∂α (ρui)

∂xα
i

= q. (3.21)

In the above equation, (�xi)
α−1 is a scaling variable which has to be pro-

vided. On the other hand, if α = 1 this variable will disappear from the
equation, i.e.,

∂

∂t
(�Vρ) + �V

3∑
i=1

∂ (ρui)

∂xi
= q, (3.22)

which is the traditional mass conservation equation.
Considering an anisotropic fractional derivative, i.e., the fractional or-

ders are different in the x-, y-, and z-directions, and for simplicity assuming
that (�xi)

α−1 /�(α + 1) = 1, the space-fractional mass conservation equa-
tion can be written as

∂ρ

∂t
+ ∂α1 (ρux)

∂xα1
+ ∂α2

(
ρuy

)
∂yα2

+ ∂α3 (ρuz)

∂zα3
= q, (3.23)

where α1, α2, and α3 are, respectively, the space-fractional orders in x-, y-,
and z-directions.
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3.4. Fractional Navier–Stokes equation

The NS equations are widely used and play a crucial role in fluid me-
chanics to model fluid flow phenomena. Recently, the fractional calculus
generalizations of NS equations have gained comprehensive attention. The
utilization of fractional modeling to describe various transport phenomena
has been of great interest [23]. For example, Xu and Tan [24] found out
that it is more convincing to use fractional differential equations to rep-
resent the turbulent wind flow rather than the traditional ones. In early
times, the space-fractional NS equations were developed by replacing the
Laplace operator in the NS equations with a fractional one (see Chen and
Holm [26]). Also, Chen [27] introduced a statistical-mechanical model of
the chaos-induced turbulence diffusion based on a fractional formulation.
In addition, Pozrikids [25] proposed a space-fractional implicit constitutive
equation to study fractional Stokes flow. On the other hand, Li and Zhai
[22] studied the solution properties of space-fractional NS equations. In
[20,21], different sorts of numerical techniques for solving fractional differ-
ential equations have been presented.

Using a similar fashion of deriving the fractional mass conservation
equation (Section 3.3), the fractional time/space momentum (NS) equa-
tions can be provided in their general form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(

∂αux
∂tα + ux

∂α1 ux
∂xα1 + uy

∂α2 ux
∂yα2 + uz

∂α3 ux
∂zα3

)
= − ∂βp

∂xβ + μ
(

∂γ1 ux
∂xγ1 + ∂γ2 ux

∂yγ2 + ∂γ3 ux
∂zγ3

)
+ ρbx,

ρ
(

∂αuy
∂tα + ux

∂α1 uy
∂xα1 + uy

∂α2 uy
∂yα2 + uz

∂α3 uy
∂zα3

)
= − ∂βp

∂yβ + μ
(

∂γ1 uy
∂xγ1 + ∂γ2 uy

∂yγ2 + ∂γ3 uy
∂zγ3

)
+ ρby,

ρ
(

∂αuz
∂tα + ux

∂α1 uz
∂xα1 + uy

∂α2 uz
∂yα2 + uz

∂α3 uz
∂zα3

)
= − ∂βp

∂zβ + μ
(

∂γ1 uz
∂xγ1 + ∂γ2 uz

∂yγ2 + ∂γ3 uz
∂zγ3

)
+ ρbz,

(3.24)

where u = (ux,uy,uz) is the velocity vector, b = (bx, by, bx) represents the
acceleration given by the external force, 0 > α > 1 is the time-fractional
order, 0 > α1 > 1, 0 > α2 > 1, and 0 > α3 > 1 are, respectively, the space-
fractional orders of the advection terms in the x-, y-, and z-directions,
0 > β > 1 is the space-fractional order, and 1 > γ1 > 2, 1 > γ2 > 2, and
1 > γ3 > 2 are, respectively, the space-fractional orders of the diffusion terms
in the x-, y-, and z-directions.

The above general formula of NS equations may be difficult to im-
plement. For example, if one assumes integer time derivatives (α = 1) and
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isotropic space-fractional derivatives in both advection and viscous terms,
namely, 0 > α1 = α2 = α3 = α > 1 and 1 > γ1 = γ2 = γ3 = γ > 2, the space-
fractional NS equations can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ux
∂t + ux

∂αux
∂xα + uy

∂αux
∂yα + uz

∂αux
∂zα = − 1

ρ

∂βp
∂xβ + ν

(
∂γ ux
∂xγ + ∂γ ux

∂yγ + ∂γ ux
∂zγ

)
+ bx,

∂uy
∂t + ux

∂αuy
∂xα + uy

∂αuy
∂yα + uz

∂αuy
∂zα = − 1

ρ

∂βp
∂yβ + ν

(
∂γ uy
∂xγ + ∂γ uy

∂yγ + ∂γ uy
∂zγ

)
+ by,

∂uz
∂t + ux

∂αuz
∂xα + uy

∂αuz
∂yα + uz

∂αuz
∂zα = − 1

ρ

∂βp
∂zβ + ν

(
∂γ uz
∂xγ + ∂γ uz

∂yγ + ∂γ uz
∂zγ

)
+ bz,

(3.25)
where μ = ν/ρ. We may model many special cases by considering different
fractional derivatives. In the following section, we present selected special
cases. Also, the above formulas are collapsed to the traditional formula of
NS equations for incompressible flow as α = 1, β = 1, γ = 2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ux
∂t + ux

∂ux
∂x + uy

∂ux
∂y + uz

∂ux
∂z = − 1

ρ

∂p
∂x + ν

(
∂2ux
∂x2 + ∂2ux

∂y2 + ∂2ux
∂z2

)
+ bx,

∂uy
∂t + ux

∂uy
∂x + uy

∂uy
∂y + uz

∂uy
∂z = − 1

ρ

∂p
∂y + ν

(
∂2uy
∂x2 + ∂2uy

∂y2 + ∂2uy
∂z2

)
+ by,

∂uz
∂t + ux

∂uz
∂x + uy

∂uz
∂y + uz

∂uz
∂z = − 1

ρ

∂p
∂z + ν

(
∂2uz
∂x2 + ∂2uz

∂y2 + ∂2uz
∂z2

)
+ bz.

(3.26)

3.5. Special cases

3.5.1 Poiseuille flow
Poiseuille flow is fluid flow between two stationary parallel plates at the
points y = 0 and y = h. (See Fig. 3.2.) Initially, the fluid is at rest, and
it starts its motion suddenly under a pressure gradient. This problem can
be modeled using a 1D simplified NS equation, and here three fractional
models will be considered [37]:

∂u
∂t

= −1
ρ

∂p
∂x

+ ν
∂αu
∂yα

. (3.27)

Along with the initial and boundary conditions,

u(y,0) = 0, 0 < y < h,

u(0, t) = u(h, t) = 0, t ≥ 0.
(3.28)

If one assumes a uniform effective pressure gradient in the x-direction, i.e.,
−∂p/∂x = kH(t), k is a constant, and H(·) is the Heaviside step function,
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Figure 3.2 Sketch of Poiseuille flow.

the above system can be nondimensionalized to the form

∂

∂t
u(y, t) = 1 + 1

Re
∂α

∂yα
u(y, t),

u(y,0) = 0, 0 < y < 1,

u(0, t) = u(1, t) = 0, t ≥ 0,

(3.29)

where Re = √
k/hρ · hα/ν is the generalized Reynolds number.

The fractional derivative ∂α/∂yα is called Riesz operator with 1 < α ≤ 2,
which can be defined on the finite intervals y ∈ [0,h], t ∈ [0,T ] as [1,38]

∂α

∂yα
= −cα

(
0Dα

y + yDα
h

)
, (3.30)

where cα = 1
2 cos(πα/2)

. The left-hand side and right-hand side Riemann–
Liouville fractional derivatives can be, respectively, written as

0Dα
y u(y, t) = 1

�(2 − α)

∂2

∂y2

∫ y

0

u(ξ, t)dξ

(y − ξ)α−1 ,

yDα
h u(y, t) = 1

�(2 − α)

∂2

∂y2

∫ h

y

u(ξ, t)dξ

(ξ − y)α−1 .

(3.31)

The discrete approximation version can be written as [1,38]

0Dα
y u

(
yj, tk

) ≈ 1
hα

j+1∑
l=0

gluk
j−l+1 and yDα

1u
(
yj, tk

) ≈ 1
hα

M−j+1∑
l=0

gluk
j+l−1, (3.32)
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where g0 = 1, gl = (−1)lα(α − 1) · · · (α − l + 1)/l!, l ≥ 1, with the uniform
discretizations

(
yj, tk

)
: yj = jh, tk = kτ , j = 0,1, . . . ,M , k = 0,1, . . . ,N , such

that M,N ∈N
+, h = 1/M , and τ = T/N .

Therefore, the implicit difference scheme can be written as

uk
j − uk−1

j

τ
= 1 − 1

Re
· 1
2hα cos πα

2

·
⎛
⎝ j+1∑

l=0

gluk
j−l+1 +

M−j+1∑
l=0

gluk
j+l−1

⎞
⎠ . (3.33)

Along with the numerical initial and boundary conditions,

u0
j = 0, uk

0 = uk
M = 0, j = 0,1,2, . . . ,M, k = 0,1,2, . . . ,N , (3.34)

which must be comparable with the exact solution of the traditional case,
α = 2,

u(y, t) = y(1 − y)
2

Re − 2 Re
∞∑

n=1

1 − (−1)n

(nπ)3 exp

(
−n2π2

Re
t
)

sin nπy. (3.35)

3.5.2 Boundary layer flow
In this section, we consider the fractional-derivative model and solution of
the boundary layer flow on an infinite vertical plate embedded in a vis-
cous fluid [10]. The boundary layer theory has been developed and used
in many applications in different industrial areas and fundamental fluid dy-
namics analyses (see Schlichting [28] and El-Amin and Kanayama [29,30]).
Considering the x-axis to be parallel to the plate and the y-axis to be
perpendicular to it, applying a fractional operator of order 0 < α < 1, the
governing equations may be given as

∂u
∂x

+ ∂v
∂y

= 0,

u
∂u
∂x

+ v
∂u
∂y

= ν
∂α+1u
∂yα+1 ,

(3.36)

subject to the boundary conditions

u(x,0) = 0, v(x,0) = 0, and u(x,∞) = u∞, (3.37)

where u and v are the velocity components in the x- and y-directions,
respectively, ν is the kinematic viscosity, and u∞ is a constant representing
the outer free-stream velocity. (See Fig. 3.3.)
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Figure 3.3 Sketch of the boundary layer flow.

Mohammadein et al. [10] have introduced the following generalized
similarity variable:

η
(
x,y

) = b(x)yα

�(α + 1)
, ψ(x,y) = νc(x)f (η),

u = ∂ψ

∂y
, v = −∂ψ

∂x
.

(3.38)

Using Eqs. (3.38), we can write Eq. (3.36) as

αηf (α+2) + (α − 1)f (α+1) = (3α − 1)ηf ′2 − 3αηf f ′′ − 3(α − 1)f f ′, (3.39)

with boundary conditions

f (0) = f ′(0) = 0, f ′(∞) = 1. (3.40)

Both fractional dimensionless transformations and fractional differential
equations are collapsed into their traditional forms as α = 1 [31]. Eq. (3.39)
along with the boundary conditions (3.40) can be solved using the power-
series technique. Let the function f (η) be continuous and assume it can be
represented by the fractional power series [10]

f (η) =
∞∑

n=0

anη
αn. (3.41)
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Then apply the Caputo fractional derivative definition to find

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f (α) =
∞∑

n=1
an

�(1+αn)

�(1+αn−α)
ηαn−α,

f (α+1) =
∞∑

n=2
(αn − α)an

�(1+αn)

�(1+αn−α)
ηαn−α−1,

f (α+2) =
∞∑

n=2
(αn − α)(αn − α − 1)an

�(1+αn)

�(1+αn−α)
ηαn−α−2.

(3.42)

Similarly, the integer first- and second-order derivatives of the function
f (η) can be calculated as

f ′ =
∞∑

n=1

αnanη
αn−1, f ′′ =

∞∑
n=2

αn(αn − 1)anη
αn−2, (3.43)

holding the rule of series product, one obtains,

∞∑
n=0

anη
n ·

∞∑
n=0

bnη
n =

∞∑
n=0

cnηn, cn =
n∑

k=0

akbn−k. (3.44)

Therefore, one can estimate the following nonlinear terms of Eq. (3.39):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ′2 =
∞∑

n=2

n∑
k=0

αkak.α(n − k)an−kη
αn−2,

f f ′ =
∞∑

n=1

n∑
k=0

ak.α(n − k)an−kη
αn−1,

f f ′′ =
∞∑

n=1

n∑
k=0

ak.α(n − k)(α(n − k) − 1)an−kη
αn−2.

(3.45)

Substituting all the above terms into Eq. (3.39) and then comparing the
coefficients on both sides of the resulting equation for ηαn−1, we get the
following recurrence relation:

αn
(
α2n − 1

) � (α(n + 1) + 1)

� (αn + 1)
an+1

=
n∑

k=0

α
(
n − k

) (
3 − kα + 3

(
2k − n

)
α2)akan−k, ∀n ≥ 2. (3.46)

In order to determine the series coefficients, the boundary conditions will
be utilized. From f (0) = 0, we find that a0 = 0, and from f ′(0) = 0, we
get a1 = 0. From f ′(∞) = 1 and for large values of L (approaching infinity),
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f ′(L) =
∞∑

n=0
αnanLαn−1 = 1. On the other hand, the coefficients a3k and a3k+1,

k ≥ 0, vanish, while the coefficients a3k+2, k ≥ 1, may have the form

γ3n+2a3n+2 =
n−1∑
i=0

g3i+2,(3n+1)−(3i+2)a3i+2a(3n+1)−(3i+2), ∀n ≥ 1, (3.47)

where γr+1 = r(rα2−1)�((r+1)α+1)

�(rα+1)
and gk,n−k = (n − k)

(
3 − kα + 3(2k − n)α2

)
.

The solution convergence has been proved, and for results and discus-
sions, refer to [10].

3.6. Fractional models of flow in porous media

A solid material containing pores (voids) is called a porous medium
or a porous material. The solid skeletal portion is called the “matrix” or
“frame” of the material (see Fig. 3.4). A porous medium is distinguished
most of all by its porosity and permeability. In multiphase flows, some other
properties are dependent on the respective properties of their solid matrix
and fluid, such as relative permeability and phase mobility.

One of the crucial areas where fractional models are applied is fluid
flow in porous media [19,36]. Fluid flow in porous media such as carbonate
rocks is mainly driven by the pressure gradient and governed traditionally

Figure 3.4 Sketch of the flow in porous media.
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by Darcy’s law as

qm = −ρ
K
μ

∇p, (3.48)

where qm is the fluid mass flow rate per unit area, which is proportional to
the gradient of the pore pressure p. The proportional coefficient is η = K/μ,
such that K is the permeability of the medium and μ is the fluid viscosity.
Alternatively, Eq. (3.48) can be written as

u = −η∇p, (3.49)

where u = (
ux,uy,uz

)
is the fluid velocity vector.

3.6.1 Fractional Darcy’s law with time memory
Assuming that the permeability decreases with time, the fluid pressure effect
is then delayed and the flow happens as though the medium had a memory.
Caputo [13] has proposed a generalized Darcy law with time memory to
accommodate the effect of decreasing permeability. The proportional co-
efficient η is assumed to be a function of time and the pressure gradient is
under a time-fractional operator, i.e.,

u = −η(t)
(

∂α

∂tα
∇p

)
, (3.50)

where 0 ≤ α ≤ 1. We have

∂α

∂tα
{f (x, t)} = 1

�(1 − α)

∫ t

0
(t − τ)−α ∂ f (x, τ )

∂τ
dτ.

Moreover, Obembe et al. [33] suggested a variable order α(t) time-
fractional model as

u = −ξ0η

(
∂α(t)

∂tα(t) ∇p
)

, (3.51)

where ξ0 is the transmissibility conversion factor.

3.6.2 Fractional Darcy law with space memory
He [14] proposed a space memory based on the fractional derivative as

u = −η∇αp, 0 ≤ α ≤ 1, (3.52)
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where

∇α =
(

∂α

∂xα
,

∂α

∂yα
,

∂α

∂zα

)
.

The Caputo fractional derivative is given by

∂α

∂xα
{f (x)} = 1

�(1 − α)

∫ x

0
(x − ξ)−α ∂ f (x, ξ)

∂ξ
dξ.

Chang et al. [18] have shown comparisons between experimental results
and the best-fit curve produced by the spatial fractional Darcy law for two
different permeabilities. The fractional order α = 0.45 results fit well with
the permeability value of 2.36 × 10−15 m1.45, while the fractional order
α = 0.76 results fit well with the permeability value of 1.58 × 10−16 m1.76.

3.7. Fractional natural gas equation

This section introduces a fractional derivative gas transport equation
for model gas transport around a production well. Consider natural gas
transport in a porous medium withholding the ideal gas law with a de-
viation factor. The flow has been assumed to be isothermal, and no gas
sorption and desorption take place. Therefore, the radial governing equa-
tion can be expressed as [16]

γ ϕ
∂p
∂t

= 1
r

∂

∂r

(
rkρ0

μ

∂αp
∂rα

)
, (3.53)

where r is the radial coordinate variable. The Dirichlet–Dirichlet boundary
conditions are

p = pw for η = 0, p = p0 for η = ∞, (3.54)

and the Dirichlet–Neumann boundary conditions are

p = pw for η = 0,
∂p
∂η

= Qμ

2πkH
for η = ∞. (3.55)

Eq. (3.53) can be rewritten as

1
χ

∂p
∂t

= ∂α+1p
∂rα+1 + 1

r
∂αp
∂rα

, (3.56)
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where 1
χ

= kp0
ϕμ

. The generalized fractional Boltzmann change of variable
was presented by El-Amin et al. [16]:

η = rα+1

2�(α + 2)tχ
, t > 0. (3.57)

Applying this transformation with some mathematical manipulation, we
obtain

η
∂p
∂η

+ ∂αp
∂ηα

+ α + 1
2

η
∂α+1p
∂ηα+1 = 0. (3.58)

We have the following fractional power series:

p(η) =
∞∑

anη
αn. (3.59)

Then applying the Caputo fractional-order space derivative, the governing
equation can be given as

∞∑
m=1

αmamηαm +
∞∑

n=1

(
an�(αn + 1)

�(α(n − 1))

(
1

α(n − 1)
− α + 1

2

))
ηα(n−1) = 0.

(3.60)
The powers of the first term of the above equation are {α,2α,3α, . . .}, while
the powers of the second term are {0, α,2α,3α, . . .}. So, there is one step
between n and m, i.e., a1 = 0, and

αmam +
(

�(α(m + 1) + 1)

�(αm)

(
1

αm
− α + 1

2

))
am+1 = 0. (3.61)

Consequently, we obtain the recurrence relation

am+1 = − αm(
�(α(m+1)+1)

�(αm)

( 1
αm − α+1

2

))am, m > 1, (3.62)

while a0 and a2 have to be found. Using the boundary conditions, we can
find

pw = a0, p0 = pw + a2L2α + a3L3α + a4L4α + a5L5α + . . . . (3.63)

Then,

p0 − pw = a2L2α

⎛
⎝1 +

∞∑
j=1

βjLjα

⎞
⎠ . (3.64)
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Thus,

a2 = p0 − pw

L2α

(
1 + ∑∞

j=1 βjjjα
) ,

βj = − (j + 1)α(
�(j+2)α+1)

�(j+1)α)

(
1

θ+1)α
− α+1

2

))βj−1, β0 = 1. (3.65)

On the other hand, the Neumann boundary condition results in

dp
dη

= α

∞∑
n=2

nanη
αn−1. (3.66)

We have a1 = 0 and

a2 =
Qμ

2πkH

αL2α−1
(
2 + ∑∞

j=1(j + 2)βjLjα
) . (3.67)

Moreover, the solution convergence has been provided in [16] and it
was found that solutions are unconditionally converged.

3.8. Fractional multiphase flows in porous media

Multiphase flows in porous media have many applications, such as
oil/gas reservoir simulation, enhanced oil recovery, carbon dioxide seques-
tration, and water soil infiltration. In this section, the fractional mass and
momentum conservation laws of multiphase flow in porous media are de-
rived using the fractional Taylor series approximation. Multiphase flows in
porous media are described by very complicated nonlinear models. The tra-
ditional models were developed based on the continuum approach utilizing
the concept of linear flux to derive the conservation equations [39–44].

In the following, we introduce the fractional mass equation of the mul-
tiphase flow. Eq. (3.21) represents the mass equation of the single-phase
flow which can be extended to a multiphase immiscible flow. Referring to
each fluid phase by β, one can write [45]

∂

∂t
(
Sβ�Vϕρβ

) + �V
�(α + 1)

3∑
i=1

(�xi)
α−1 ∂α

(
ρβuβi

)
∂xα

i
= qβ, (3.68)

such that Sβ is the saturation of phase β, which is defined as the ratio
between volume of pore spaces occupied by fluid phase and the total pore
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volume. Therefore, if one considers multiphase flow, the summation of
saturation of all phases should equal one, i.e.,

∑
β

Sβ = 1. (3.69)

Assuming that the control volume, phase density, and porosity vary with
pressure and time, the phase saturation varies with time as [45]

∂

∂t
(
Sβ�Vϕρβ

)
= �Vϕρβ

∂Sβ

∂t
+

(
Sβϕρβ

∂�V
∂p

+ �VSβρβ

∂ϕ

∂p
+ �VSβϕ

∂ρβ

∂p

)
∂p
∂t

.

(3.70)

The bulk volume equals the pore volume plus the rock volume; thus,

�V = �Vp + �Vs. (3.71)

In terms of porosity, the pore volume plus the rock volume are defined,
respectively, as

�Vs = (1 − ϕ)�V (3.72)

and

�Vp = ϕ�V . (3.73)

Now, let us provide the following terms.
The bulk compressibility coefficient, cb, is given by

cb = − 1
�V

∂�V
∂p

, (3.74)

the solid matrix compressibility, cs, is written as

cs = − 1
�Vs

∂�Vs

∂p
, (3.75)

which can be expressed in terms of porosity as

cs = − 1
(�Vs/�V )

∂ (�Vs/�V )

∂p
= 1

1 − ϕ

∂ϕ

∂p
, (3.76)



Spatial-fractional derivatives for fluid flow 87

and the pore compressibility, cp, is

cp = − 1
�Vp

∂�Vp

∂p
. (3.77)

Therefore, the bulk compressibility can be given with respect to a unit
change in the pressure p as

cb = (1 − ϕ)cs + ϕcp. (3.78)

The fluid phase compressibility cf β is defined in terms of the fluid den-
sity as

cf β = 1
ρβ

∂ρβ

∂p
. (3.79)

Using the above equations, the fractional derivative mass conservation
equation of multiphase flow is given by

ϕρβ

∂Sβ

∂t
+ Sβρβ

[
(1 − ϕ)2cs − ϕ2cp + ϕcf β

] ∂p
∂t

+ 1
�(α + 1)

3∑
i=1

(�xi)
α−1 ∂α

(
ρβuβi

)
∂xα

i
= qβ. (3.80)

As a special case, the fractional single-phase mass conservation equation
becomes

ρ
[
(1 − ϕ)2cs − ϕ2cp + ϕcf β

] ∂p
∂t

+ 1
�(α + 1)

3∑
i=1

(�xi)
α−1 ∂α (ρui)

∂xα
i

= q.

(3.81)
The integer-derivative version of Eq. (3.81) is

ρ
[
(1 − ϕ)2cs − ϕ2cp + ϕcf β

] ∂p
∂t

+
3∑

i=1

∂ (ρui)

∂xi
= q. (3.82)

Considering another special case for incompressible fluid flow, for
which cf β = 0, neglecting the rock compressibility, i.e., cs = cp = 0,
Eq. (3.81) collapses to

ϕρβ

∂Sβ

∂t
+ 1

�(α + 1)

3∑
i=1

(�xi)
α−1 ∂α

(
ρβuβi

)
∂xα

i
= qβ. (3.83)
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If we select α = 1, the traditional mass conservation equation for immiscible
multiphase flow is

ϕ
∂Sβ

∂t
+

3∑
i=1

∂uβi

∂xi
= Qβ, (3.84)

where Qβ = qβ/ρβ . So, we can have several special cases based on the phys-
ical and modeling aspects.

3.9. Special cases of two-phase flow

3.9.1 Imbibition flow
Hydrocarbon reservoirs are naturally fractured and consist of two essential
parts, fractures and matrix blocks (Fig. 3.5). The fraction’s permeability is
much greater than that of the matrix. However, the amount of hydrocar-
bons in the matrix blocks is much more significant than that of the fractions.
In oil recovery, water is injected, and oil is extracted into fractures from the
matrix blocks and then into production wells. Imbibition is regarded as a
typical oil extraction process, whereas water moves oil from the matrix into
the adjacent fracture.

The schematic diagram of the two-phase countercurrent imbibition in
porous media provided is shown in Fig. 3.6. The immiscible two-phase
flow in porous media is governed by Darcy’s law and the equations of mass
conservation [46,47],

uw = −ζw
∂Pw

∂x
, (3.85)

unw = −ζnw
∂Pnw

∂x
, (3.86)

where ζw = Kkrw/μw and ζnw = Kkraw /μnw,

φ
∂Sw

∂t
+ ∂uw

∂x
= 0, (3.87)

φ
∂Snw

∂t
+ ∂unw

∂x
= 0. (3.88)

The saturations of the phases are constrained by

Sw + Snw = 1, (3.89)

where the subscripts w and nw designate the wetting phase and nonwetting
phase, respectively, P is the pressure, S is the saturation, kr is the relative
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Figure 3.5 Sketch of the fractured porous media.

Figure 3.6 Schematic diagram of the two-phase countercurrent imbibition in porous
media.

permeability, which is generally a function of saturation defined below, and
μ is the viscosity.

3.9.2 Fractional momentum with time memory
Considering the memory formalism explained above, one can write

uw = −ζw(t)
∂α

∂tα

(
∂Pw

∂x

)
, (3.90)

unw = −ζnw(t)
∂α

∂ta

(
∂Pnw

∂x

)
. (3.91)
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It is clear that memory implies the use of more than one parameter,
namely α.

For the countercurrent imbibition, the sum of the velocities of the wet-
ting and nonwetting phases vanishes. Thus,

ζw(t)
∂a

∂tα
∂Pw

∂x
+ ζuw(t)

∂α

∂ta
∂Pnw

∂x
= 0. (3.92)

The capillary pressure Pc is defined as a difference between the nonwet-
ting and wetting phase pressures:

Pc = Pnw − Pw. (3.93)

Therefore,

∂α

∂tα
∂Pw

∂x
= − ζnw(t)

ζw(t) + ζnw(t)
∂α

∂tα
∂Pc

∂x
. (3.94)

One may write

uw = ζw(t)ζww(t)
ζw(t) + ζmv(t)

∂α

∂tα
∂Pc

∂x
. (3.95)

Then,

ϕ
∂Sw

∂t
+ ∂

∂x

[
ζw(t)ζww(t)

ζw(t) + ζmv(t)
∂a

∂tα
∂Pc

∂x

]
= 0. (3.96)

3.9.3 Fractional mass equation with time memory
The fractional mass equation with traditional momentum equation (Darcy’s
law) for the above imbibition model can be written as [45]

∂S
∂t

+ γ

ϕ1/2K1/2 (1 − Sα − Swi)

(�x)α+1

�(α + 1)

∂a+1

∂xα+1

[
ξwξnw

ξw + ξnw

1
S

∂S
∂x

]
= 0 (3.97)

and

∂α+1

∂xα+1

{
ξwξNw

ξw + ξnw

1
S

∂S
∂x

}
= 1

�(−α)

∫ x

xb

(x − ς)−α−1 ∂

∂ς

(
ξwξnw

ξw + ξnv

1
S

∂S
∂x

)
dς.

(3.98)
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3.9.4 Fractional mass and momentum with time memory
The fractional mass conservation equation and fractional momentum con-
servation equation (Darcy’s law) with time memory can be written as [45]

ϕ
∂Sw

∂t
− 1

� (α1 + 1)

[
(�x)x1−1 ∂σ1

∂xα1

]
· ζw(t)

∂α1

∂tα2

(
∂Pw

∂x

)
= 0 (3.99)

and

ϕ
∂Snw

∂t
− 1

� (α1 + 1)

[
(�x)α1−1 ∂α1

∂xα1

]
· ζnw(t)

∂a2

∂tα2

(
∂Pnw

∂x

)
= 0. (3.100)

3.9.5 Fractional mass and momentum with space memory
The following equations represent the fractional mass conservation equa-
tion and the fractional momentum conservation equation (Darcy’s law)
with space memory [45]:

ϕ
∂Sw

∂t
− 1

� (α1 + 1)

[
(�x)α1−1 ∂α1

∂xα1

]
· ζw

∂a2

∂xαt
Pw = 0 (3.101)

and

ϕ
∂Sκw

∂t
− 1

� (α1 + 1)

[
(�x)α1−1 ∂α1

∂xα1

]
· ζnw

∂a2

∂xα2
Pnw = 0. (3.102)

3.10. Fractional convection-diffusion equation

3.10.1 Fractional heat conduction model
The heat flux in the 1D domain given by Fourier’s law can be written as

q = −k
dT
dx

, (3.103)

such that k is the heat transfer coefficient. The definition of Fourier’s law
leads to the heat governing equation in the form

ρcp
∂T
∂t

= k
(

∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2

)
. (3.104)

In some nonhomogeneous domains, it would be more convenient to
use a fractional model rather than the traditional one. The generalized frac-
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tional Fourier law can be written as

q(x) = −kx
dβ1T(x)

dxβ1
, (3.105)

where kx denotes the thermal conductivity in the fractional mode and 0 <

β1 < 1 is the order of the fractional derivative. Therefore, the time/space
generalized fractional heat conduction equation can be expressed as

ρcp
∂αT
∂tα

= kx
∂β1T
∂xβ1

+ ky
∂β1T
∂yβ1

+ kz
∂β1T
∂zβ1

, (3.106)

where kx, ky, and kz are, respectively, thermal conductivity coefficients in
the x-, y-, and z-directions, 0 < α < 1 is the order of the time-fractional
derivative, and 1 < β1, β2, β3 < 2 are, respectively, the orders of space-
fractional derivatives in the x-, y-, and z-directions. In order to solve the
fractional-order model numerically, the Grunwald–Letnikov definition may
be used:

∂αT(x, t)
∂tα

=
∑Nf

j=0 cjT(x, t − j�t)

�tα
, (3.107)

such that

Nf = min

{[
t

�t

]
,

[
L
�t

]}
, c0 = 1, cj =

(
1 − 1 + α

j

)
cj−1, j ≥ 1,

(3.108)
where L is the length memory.

3.10.2 Fractional transport equation
The bulk mass flux is defined as a summation of convective and diffusive
fluxes, i.e.,

J = uC(x, t) − D∇C(x, t). (3.109)

The convection-diffusion gas transport equation can be written as

∂C(x, t)
∂t

= −∇(uC(x, t) − D∇C(x, t)). (3.110)

In heterogeneous media, the general mass flux [32] may be developed
to take the general form

J = ∂1−α

∂t1−α
(uC(x, t) − D∇C(x, t)). (3.111)
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Consequently, the fractional generalized convection-diffusion gas trans-
port equation becomes

∂C(x, t)
∂t

= ∇ ·
[

∂1−α

∂t1−α
(D∇C(x, t) − uC(x, t))

]
. (3.112)

On the other hand, the rapid movement of gas molecules can be de-
scribed by a nonlocal space-fractional derivative term such as

∂αC(x, t)
∂tα

= −u
∂C(x, t)

∂x
+ K

∂βC(x, t)
∂xβ

, 0 < α ≤ 1, 1 < β ≤ 2, (3.113)

where α is the order of the time-fractional derivative while β is the order
of the space-fractional derivative.

3.10.3 Applications in cooling and heating systems
Newton’s law of cooling predicts that the instantaneous rate of temperature
change of any warm body for time is proportional to the body’s temperature
difference with the ambient, measured in integer units of time. Modol
et al. [34] conducted experiments of cooling different liquids and found
that the results did not fit the theoretical predictions of Newton’s law of
cooling. They tried the fractional model of both Caputo and Riemann–
Liouville types. They found that liquid cooling has an identical value of
the fractional derivative of time, increasing with the liquid’s viscosity. The
fractional derivative generalized Newton law of cooling has been used in
mathematical modeling of the heating and cooling processes of a common
type of luminaires, consisting of a single light-emitting diode source in
thermal contact with an aluminum passive heat sink [35].

3.11. Conclusion

This chapter presented the spatial-fractional modeling of some essen-
tial fluid flow problems. Both fundamentals and computational aspects are
discussed, and some applications are highlighted. The chapter contains a
number of new formulations of different models researchers still may need
to work on to find solutions and study their features. This chapter also
could be the starting point of a book that can be written under a similar
title.
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4.1. Introduction

The study of chaotic systems began with systems represented by a
set of first-order differential equations. However, real-life systems are best
described by other mathematical expressions than first-order differential
equations. The methods of chaos analysis were soon extended to the study
of discrete chaotic equations, where the present state is dependent on pre-
vious states of the systems. The chaotic behavior exists in many natural
systems, such as climate, weather, and fluid flow. These behaviors have a
serious effect on everyday life (for example, [15], [21], [30]). The classical
Bloch equation is used for modeling of nuclear magnetization as a function
of time [6], [16], [17].

Fractional differential equations (FDEs) can describe the dynamics of
several complex and nonlocal systems with memory. It is a hot topic of re-
search in many scientific fields, especially in mathematics and engineering.
Fractional derivatives can be described with long-range memory (for more
details, see [3], [7], [11], [14]). To understand the physical meaning of the
fractional models, we refer to some articles explaining fractional calculus
geometrically; see for examples [9], [10] and the references cited therein.

There are several definitions for derivatives of fractional order. The most
common one is Caputo’s derivative, which has several applications [5], [3],
[19], [28]. The advantage of using the Caputo fractional derivative in mod-
eling physical processes is that the fractional derivative of constant functions
is zero. This shows that time-independent solutions are also solutions of
the time-dependent problem, but this is not the case for the Riemann–
Liouville fractional time derivative [29].

The solution of such fractional-order differential equations is difficult
to find analytically. Hence, it is very important to develop numerical tech-
niques to approximate the solutions of these models. The nonstandard
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finite difference method (NSFDM) is becoming increasingly common.
This method was developed by Mickens in 1980. It is universally known
to maintain positivity, boundedness, fixed points, and stability of nonlinear
systems. Some applications for this method in different fields can be found
in [1], [18], [23–27].

In this chapter, we consider a new operator which combines the ideas
of the Caputo derivative and the proportional derivative in a new way
to create a hybrid fractional operator calculus [2]. This operator is defined
based on the Caputo derivative and the Riemann–Liouville integral. An ef-
ficient NSFDM with the constant proportional Caputo operator derivative
(CPC-NSFDM) is applied to study the behavior of two hybrid fractional-
order chaotic systems: a hyperchaotic finance system and a Bloch system
with time delay. Also, another numerical method using Caputo’s definition
with NSFDM (C-NSFDM) is given. Comparative studies between these
methods are given. Stability analysis of the CPC-NSFDM was also con-
ducted.

This chapter is organized as follows. The basic mathematical formu-
las are introduced in Section 4.2. In Section 4.3 a class of new models
of hybrid fractional-order derivatives and some properties of the proposed
models such as the existence, uniqueness, equilibrium point, and stability
are presented. Two nonstandard numerical methods and their stability anal-
ysis are presented in Section 4.4. Numerical simulations are discussed in
Section 4.5. Finally, the conclusions are presented in Section 4.6.

4.2. Preliminaries and notations

In the following, we give some important definitions of fractional
calculus.

Definition 4.2.1. The Caputo fractional-order derivative can be defined
as follows [19]:

C
0 Dα

t y(t) = 1
�(1 − α)

∫ t

0
y′(s)(t − s)−αds, 0 < α < 1, (4.1)

where � is the Euler Gamma function.
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Definition 4.2.2. The Riemann–Liouville integral can be defined as fol-
lows [19]:

RL
0 Iα

t y(t) =
[∫ t

0
y(s)(t − s)α−1ds

]
1

�(α)
, (4.2)

where 0 < α < 1 and y(t) is an integrable function.

Definition 4.2.3. The proportional Caputo hybrid operator is defined
either in a general way [2],

PC
0 Dα

t y(t) =
(∫ t

0
(K1(α, s)y(s) + K0(α, s)y′(s))(t − s)−αds

)
1

�(1 − α)

=
(

tα

�(1 − α)

)
(y(t)K1(α, t) + y′(t)K0(α, t)), (4.3)

where K0(α, t) = αt(1−α), K1(α, t) = (1 − α)tα, or as [2]

CPC
0 Dα

t y(t) =
(∫ t

0
(t − s)−α(K1(α)y(s) + K0(α)y′(s))ds

)
1

�(1 − α)

= K1(α) RL
0 I1−α

t y(t) + K0(α) C
0 Dα

t y(t), (4.4)

where K1(α) and K0(α) are constants. Here we consider K0(α) = αQ(1−α),
K1(α) = (1 − α)Qα, where Q is a constant.

In (4.3) the operator PC stands for proportional Caputo and in (4.4) the
operator CPC stands for constant proportional Caputo. In both of these
formulas, the function space domain is given by requiring that y is differ-
entiable and both y and y′ are locally L1 functions on the positive reals.

Definition 4.2.4. The inverse operators to the fractional CPC derivatives
are given by [2]

CPC
0 Iα

t y(t) =
(∫ t

0
exp

[
K1(α)

K0(α)
(t − s)

]
RL
0 D1−α

t y(s)ds

)
1

K0(α)
. (4.5)

4.3. Hybrid fractional chaotic models

In this section, two new models of hybrid fractional-order derivatives
are presented.
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4.3.1 A hybrid fractional hyperchaotic finance system
Finance models are developed to reveal the characteristics of the economy
(for more details, see [15], [21], [30]). The fractional-order derivatives for
the finance system are studied in [13]. Here we present the hybrid fractional
hyperchaotic finance system. This system is more general than the system
given in [13]. It is given as follows:

CPC
0 Dα1

t X = Z + (Y − a)X + W ,

CPC
0 Dα2

t Y = 1 − bY − X2,

CPC
0 Dα3

t Z = −X − cZ,

CPC
0 Dα4

t W = −0.05XZ − dW , (4.6)

where a is the saving parameter, b is the per investment cost parameter, c is
the elasticity of demands of commercial parameter, and all these parameters
are positive constants; W = W0, Z = Z0, Y = Y0, and X = X0 are given
data. The definitions of all variables of system (4.6) are given in Table 4.1.

Table 4.1 System (4.6) variables [13].
Variable Definition
X Interest rate
Y Finance demand
Z The index of price
W The mean of profit margin

4.3.2 Existence and uniqueness of the solution
In the following, we will use the fixed point theory [31]. For this we
rewrite (4.6) as follows [32]:

CPC
0 Dα

t y(t) = q(y(t), t), y(0) = y0 ≥ 0. (4.7)

The vector y(t) = (
X,Y ,Z,W

)T represents the state variables and q is a
continuous vector function such that⎛

⎜⎜⎜⎝
q1

q2

q3

q4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Z + (Y − a)X + W
1 − bY − X2

−X − cZ
−0.05XZ − dW

⎞
⎟⎟⎟⎠ ,
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with initial condition y0. Moreover, the Lipschitz condition is satisfied by q,
where q is a quadratic vector function, i.e., there exists M0 ∈ R such that
[32]

‖q(y1(t), t) − q(y2(t), t)‖ = M0‖y1(t) − y2(t)‖. (4.8)

Theorem 4.3.1. The fractional proposed model (4.6) has a unique solution if
the following condition holds:

M0Υ α
maxX

α
max

�(α − 1)K0(α)
≤ 1. (4.9)

Proof. Using (4.4) and (4.7), we get

y(t) = y(t0) + 1
K0(α)

∫ t

0
exp(−K1(α)

K0(α)
(t − s))RL

0 D1−α
t q(y(s), s)ds. (4.10)

Let K = (0,T) and let the operator B :C(K,R4) −→C(K,R4) such that

B[y(t)] = y(t0) + 1
K0(α)

∫ t

0
exp(−K1(α)

K0(α)
(t − s))RL

0 D1−α
t q(y(s), s)ds. (4.11)

It gives

B[y(t)] = y(t).

Let ‖.‖K denote the supremum norm on K . Thus

‖y(t)‖K = sup
t∈K

‖y(t)‖, y(t) ∈ C(K,R4).

So, C(K,R4) with ‖.‖K is a Banach space. Moreover, the following relation
holds:

‖
∫ t

0
ϕ(s, t)y(s)ds‖≤ �‖ϕ(s, t)‖K‖y(s)‖K ,

with y(t) ∈ C(K,R4), ϕ(s, t) ∈ C(K2,R4) such that

‖ϕ(s, t)‖K= sup
t,s∈K

|ϕ(s, t)|.
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Thus (4.11) can be written as

‖B[y1(t)] − B[y2(t)]‖K ≤ ‖ 1
K0(α)

∫ t

0
exp(−K1(α)

K0(α)
(t − s))(RL

0 D1−α
t q(y1(s), s)

− RL
0 D1−α

t q(y2(s), s))ds‖K . (4.12)

Since

RL
0 D1−α

t (q(y1(t), t) − q(y2(t), t))

= 1
�(α − 1)

∫ t

0
(t − s)α−2(q(y1(s), s) − q(y2(s), s))ds,

we have

‖B[y1(t)] − B[y2(t)]‖K

≤ Υ α
max

�(α − 1)K0(α)
‖
∫ t

0
(t − s)α−2(q(y1(s), s) − q(y2(s), s))ds‖K

≤ Υ α
maxX

α
max

�(α − 1)K0(α)
‖q(y1(t), t) − q(y2(t), t)‖K

≤ M0Υ α
maxX

α
max

�(α − 1)K0(α)
‖y1(t) − y2(t)‖K . (4.13)

Finally, we obtain

‖B[y1(t)] − B[y2(t)]‖K≤ L‖y1(t) − y2(t)‖K , (4.14)

where

L = M0Υ α
maxX

α
max

�(α − 1)K0(α)
.

If L ≤ 1, then the operator B is called a contraction. Hence, the fractional
system (4.6) has a unique solution.

4.3.3 Equilibrium points and stability
The equilibrium points of system (4.6) can be evaluated by setting [33]

CPC
0 Dα1

t X = CPC
0 Dα2

t Y = CPC
0 Dα3

t Z = CPC
0 Dα4

t W = 0.

Then we can claim that system (4.6) has the following three equilibrium
points: E1,2 = (λ, 1−λ2

b ,− λ
c ,− λ2

20cd ), (0, 1
b ,0,0), where λ = −b∓√

�
40cd and � =

b2 − 4 × 20cd × 20d × (abc + b − c). The Jacobian matrix at the equilibrium
point Eκ(X∗

κ ,Y ∗
κ ,Z∗

κ ,W ∗
κ ), κ = 1,2,3, is
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J(Eκ)

⎛
⎜⎜⎜⎝

Y ∗
κ − a X∗

κ 1 1
−2X∗

κ −b 0 0
−1 0 −c 0

−0.05Z∗
κ 0 −0.05X∗

κ −d

⎞
⎟⎟⎟⎠,

where d = 0.6, c = 1, b = 0.1, and a = 0.9. The characteristic polynomial of
system (4.6) at E3 can be written as follows:

�η = η4 − 7.4η3 − 13.71η2 − 6.5η − 0.486 = 0.

Then the eigenvalues of the Jacobian matrix are

η1 = −0.9, η2 = −0.6, η3 = −0.1, η4 = 9.

The stability condition is not satisfied for η4 = 9. Hence, the necessary
condition to exhibit a chaotic attractor for the fractional-order system (4.6)
is satisfied at α ∈ (0,1]. For the equilibrium point at E1, the eigenvalues are
given as follows:

η1,2 = 0.409 ∓ 1.471i, η3 = −1.0181, η4 = −0.425.

This implies that the point E1 is stable if α < 0.8274, because minκ |arg(ηι)| =
1.3, ι = 1,2,3,4. Similarly, for the equilibrium point at E2, the fractional
order chaotic system is locally asymptotically stable in the Lyapunov sense
if the following condition is satisfied [8]:

π

σ
− min

η
|argηι| < 0,

where σ is the least common multiple of the denominators � , �(η) =
det(J −diag(ησα1, ησα2 , ...ησαk)), αj = P

�
, (P,�) = 1, P,� ∈ Z

+, j = 1,2, ...,k.

4.3.4 A hybrid fractional Bloch model with time delay
The Bloch system is one of the known chaotic system. This system de-
scribes the dynamics of nuclear magnetization in the presence of static and
time-varying magnetic fields (for more details, see [16], [17]). In the fol-
lowing we present a new delay model of the hybrid fractional. This model
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is more general than the fractional-order delay model given in [4]. We have

CPC
0 Dα1

t X = δY + aZ(t − τc)
(
X sin(θ) − Y cos(θ)

) − bX,

CPC
0 Dα2

t Y = −δX − Z + aZ(t − τc)
(
Y sin(θ) + X cos(θ)

) − bY ,

CPC
0 Dα3

t Z = Y − a sin(θ)
(
X2 + Y 2) − c

(
Z − 1

)
, (4.15)

where θ is the phase of the feedback magnetic field and δ is the longitudinal
time (for more details, see [20]). The variables X , Y , and Z represent the
system magnetization in the x, y, and z-directions, τc > 0 is the time delay,
and X(0) = X0, Y (0) = Y0, Z(0) = Z0.

4.3.5 Existence and uniqueness of the time-delayed fractional
solution

Let us consider the following time-delayed fractional system:

CPC
0 Dα

t y(t) = g(y(t),y(t − τc), t), y(0) = y0 ≥ 0, 0 < α < 1, 0 ≤ t ≤ T ,

y(t) = f (t), τc ≤ t ≤ 0, (4.16)

where T ∈ R
3, f (t) and the coefficients of y(t) and y(t−τc) represent smooth

functions, and τc ∈ R
3 denotes the delay. If g is continuous, the solution of

Eq. (4.16) can be rewritten as follows:

y(t) = y(t0) +
(∫ t

0
exp

[
K1(α)

K0(α)
(t − s)

]
RL
0 D1−α

t y(s − τc)ds

)
1

K0(α)
. (4.17)

Consider the following space:

V(Tmax,ymax) = �Tmax × Mymax . (4.18)

We define

�Tmax = [t0 − tmax, t0 + tmax],
Mymax = [y0 − ymax,y0 + ymax],

and V(Tmax,ymax) is a compact cylinder of function g defined in Eqs. (4.16) and
(4.17). Let K = sup‖g‖∞. The Banach fixed point theorem will be applied
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using the metric on V(Tmax,ymax) which induces the uniform norm:

‖�‖∞ = sup
t∈�max

|�|.

Consider the Picard operator

� : V(Tmax,ymax) −→ V(Tmax,ymax),

defined by

�β(t) = y(t0) +
(∫ t

0
exp

[
K1(α)

K0(α)
(t − s)

]
RL
0 D1−α

t g(β(s), β(s − τc), s)ds

)
1

K0(α)
.

(4.19)

We construct the condition for well-posedness as follows.
Let us consider two different functions β1 and β2 in C[�Tmax(t0),

Mymax(y0)]. Then let us evaluate the following:

‖�β1(t) − �β2(t)‖∞ ≤ Υ α
max

�(α − 1)K0(α)
‖
∫ t

0
(t − s)α−2(g(β1(s), β1(s − τc), s)

− (g(β2(s), β2(s − τc), s))ds‖∞

≤ Υ α
maxX

α
max

�(α − 1)K0(α)
‖(g(β1(t), β1(t − τc), t)

− (g(β2(t), β2(t − τc), t)‖∞

≤ M0Υ α
maxX

α
max

�(α − 1)K0(α)
‖β1(t) − β2(t)‖∞. (4.20)

Finally, we obtain

‖�β1(t) − �β2(t)‖∞≤ L‖β1(t) − β2(t)‖∞, (4.21)

where

L = M0Υ α
maxX

α
max

�(α − 1)K0(α)
.

Under the above condition the constructed Picard operation is a contrac-
tion on a Banach space with the metric induced by uniform norm; thus,
β has the property that there exists a unique function β such that �β = β,
which is the unique solution of Eq. (4.16). This completes the proof of
existence and uniqueness.
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4.4. Numerical methods for solving hybrid fractional
models

4.4.1 CPC-NSFDM
In this section, we construct a nonstandard method with a new hybrid
fractional operator. The new method is called CPC-NSFDM. This method
has advantages compared with the standard method [1], [8], [12], [23] such
as better accuracy and higher stability. In addition, this method can be
easily formulated as follows. Consider the general form of the fractional
differential equation with CPC operator:

CPC
0 Dαν

t y(t) = ξ(t,y(t)), 0 < αν ≤ 1, y(0) = y0, ν = 1,2, ...,n. (4.22)

Now, we can discretize (4.22) using the Grunwald–Letnikov (GL) defini-
tion and (4.3). Then we have

1
φ(τ)αν−1�(2 − αν)

n∑
i=0

(
(1 − αν)tαi yn−i+1 + αν t

(1−αν)
i

yn−i+1 − yn−i

φ(τ)

)
[
(i + 1)(1−αν) − (i)(1−αν)

]
= ξ(ti,y(ti)), (4.23)

where

φ(τ) = τ + O(τ 2), 0 < φ(τ) < 1, τ −→ 0.

Or, using the definition (4.4) and GL approximation to approximate the
Caputo fractional derivatives,

Qαν (1 − αν)

φ(τ)αν−1�(2 − αν)

n+1∑
i=0

yn−i+1

[
(i + 1)(1−αν) − (i)(1−αν)

]

+ αQ(1−αν)

φ(τ )αν

(
yn+1 −

n+1∑
i=1

μiyn+1−i − qn+1y0

)
= ξ(ti,y(ti)), (4.24)

where K0(αν) = ανQ(1−αν), K1(αν) = (1 − αν)Qαν , ν = 1, ...,4. tn = nτ , τ =
Tf
Nn

, Nn ∈ N, μi = (−1)i−1
(

αν

i

)
, μ1 = αν , qi = iαν

�(1−αν)
, and i = 1,2, ...,n + 1.
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Additionally, consider the following [22], [23]:

0 < μi+1 < μi < ... < μ1 = αν < 1,

0 < qi+1 < qi < ... < q1 = 1
�(1 − αν)

.

We can claim the following Caputo discrete form if we put in (4.24)
K0(αν) = 1, K1(αν) = 0:

1
φ(τ)αν

(
yn+1 −

n+1∑
i=1

μiyn+1−i − qn+1y0

)
= ξ(ti,y(ti)). (4.25)

Let

r1 = Qαν (1 − αν)

φ(τ)(1−αν )
, r2 = ανQ(1−αν)

φ(τ )αν
.

The discretization of system (4.6) using CPC-NSFDM can be formulated
as follows:

Xn+1 = 1
r1 + r2 + a

(
r2

n+1∑
i=1

μiXn+1−i + r2qn+1X0

− r1
n+1∑
i=1

Xn+1−i
[
(i + 1)1−α1 − iα1

]

+
(
Zn + YnXn + W n

))
,

Yn+1 = 1
r1 + r2 + b

(
r2

n+1∑
i=1

μiY n+1−i + r2qn+1Y 0

− r1
n+1∑
i=1

Yn+1−i
[
(i + 1)1−α2 − iα2

]
+

(
1 − (X2)n+1

))
,

Zn+1 = 1
r1 + r2 + c

(
r2

n+1∑
i=1

μiZn+1−i + r2qn+1Z0

− r1
n+1∑
i=1

Zn+1−i
[
(i + 1)1−α3 − iα3

]
−

(
Xn+1

))
,
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W n+1 = 1
r1 + r2 + d

(
r2

n+1∑
i=1

μiW n+1−i + r2qn+1W 0

− r1
n+1∑
i=1

W n+1−i
[
(i + 1)1−α4 − iα4

]

+
(
−0.05Xn+1Zn+1 − dW n+1

))
. (4.26)

Also, the discretization of system (4.15) using CPC-NSFDM is given as
follows:

Xn+1 = 1
r1 + r2 + a

(
r2

n+1∑
i=1

μiXn+1−i + r2qn+1X0

− r1
n+1∑
i=1

Xn+1−i
[
(i + 1)1−α1 − jα1

]

+
(
δYn + aZκ

(
Xn sin(θ) − Yn cos(θ)

)))
,

Y 1+n = 1
r1 + r2 + b

(
r2

1+n∑
i=1

μiY 1+n−i + r2qn+1Y 0

− r1
1+n∑
i=1

Y 1+n−i
[
(i + 1)1−α2 − iα2

]

+
(
δXn+1 + Zn − aZκ

(
Yn sin(θ) + Xn cos(θ)

)))
,

Zn+1 = 1
r1 + r2 + c

(
r2

n+1∑
i=1

μiZn+1−i + r2qn+1Z0

− r1
n+1∑
i=1

Zn+1−i
[
(i + 1)1−α3 − iα3

]

+
(
Yn+1 − a sin(θ)

(
(X2)n+1 + (Y 2)n+1

)
+ c

))
. (4.27)

4.4.2 Stability of CPC-NSFDM
Let us consider the following hybrid fractional-order chaotic system in gen-
eral form [8]:
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CPC
0 Dα

t yl(t) = ξl(y1,y2, ...,yk) − ylfl(y1,y2, ...,yk),

yl(t0) = yl,0, l = 1, ...,k, (4.28)

where ξl and gl are continuous functions on R
k.

Theorem 4.4.1. The CPC-NSFDM is a stable method.

Proof. By (4.24) and (4.28), we have

g1yl,n+1 + g1

n+1∑
i=1

yl,n+1−iB1−α + g2yl,n+1 − g2

n+1∑
i=1

μiyl,n+1−i − g2ql,n+1yl,0

= ξl(y1,n,y2,n, ...,yk,n) − yl,n+1fl(y1,n+1,y2,n+1, ...,yk,n+1), (4.29)

where

g1 = Qα(1 − α)

(φ(τ))α−1 , g2 = Q1−αα

(φ(τ))α
, B1−α =

[
(i + 1)1−α − i1−α

]
.

Then from the boundedness theorem [1] we have∣∣∣yl,n+1

∣∣∣ =∣∣∣∣∣−g1
∑n+1

i=1 yl,n+1−iB1−α + g2
∑n+1

i=1 μiyl,n+1−i + g2ql,n+1yl,0 + ξl(y1,n,y2,n, ...,yk,n)

g1 + g2 + fl(y1,n+1,y2,n+1, ...,yk,n+1)

∣∣∣∣∣,
(4.30)

and since

g1 + g2 + fl(y1,n+1,y2,n+1, ...,yk,n+1) > 1,

we have |yl,1| ≤ |yl,0| and |yl,n+1| ≤ |yl,n < |yl,n−1|.... ≤ |yl,1| ≤ |yl,0|. So the
proposed scheme is stable.

4.5. Numerical simulations

In the following, we consider the numerical simulations for sys-
tem (4.6). The parameter values are given as follows: d = 0.6, c = 1, b = 0.1,
and a = 0.9. The initial conditions are given as follows [8]: W (0) = 0.7,
Z(0) = 0.2, Y (0) = 0.5, and X(0) = 0.1. Also, for the numerical simula-
tions of system (4.15), we consider the values of the parameters as follows
[8]: a = 10, b = 2, c = 4, and δ = 1.26. The initial conditions are given as
follows: X(0) = 0, Y (0) = 0.01, Z(0) = 0. The numerical simulation of the
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Figure 4.1 Phase portraits of the model (4.6) using CPC-NSFDM at α1 = α2 = α3 = α4,
Q= 0.25.

chaotic models using two efficient numerical methods are peresnted. These
methods are CPC-NSFDM and C-NSFDM.

The approximate solutions of the proposed hybrid fractional-order sys-
tems (4.6) and (4.15) are given in Figs. 4.1–4.7 for different values of
0 < αν ≤ 1. The discretization of CPC-NSFDM for the hybrid fractional
order systems (4.6) and (4.15) are given in (4.26) and (4.27), respectively.
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Figure 4.2 Phase portraits of the model (4.6) using CPC-NSFDM at different α1, α2, α3.

We can obtain the discretization of the Caputo operator with NSFDM as
a special case of this discretization when we put K1(αν) = 0. This means
the new operator CPC is more general than the Caputo operator. Fig. 4.1
shows the relationship between the variables X and Y in model (4.6) us-
ing CPC-NSFDM at α1 = α2 = α3 = α4, Q = 0.25. Also, the approximate
solutions at different values of α1, α2, α3, α4 are given in Fig. 4.2. The
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Figure 4.3 Phase portraits of the model (4.6) using CPC-NSFDM at different α1, α2, α3,
Q= 0.25.

Figure 4.4 Phase portraits of the model (4.6) using CPC-NSFDM at different α1, α2, α3,
Q= 0.00025.

relationship between the variables W and Z in model (4.6) using CPC-
NSFDM at different values of α1, α2, α3, α4 is given in Fig. 4.3. We
observe that the behavior of the chaotic system changes when α takes dif-
ferent values. Fig. 4.4 shows the behavior of solution at 0 < α1, α2, α3 ≤ 0.5,
Q = 0.25.

The simulation results of (4.15) are given in Figs. 4.5–4.8. These figures
explain how the behavior of chaotic systems is different when we use differ-
ent values of α. Table 4.2 shows the CPU time for the proposed model (4.6)
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Figure 4.5 Phase portraits of the model (4.15) using CPC-NSFDM at α1 = α2 = α3 and
time delay τc = 0.001, Q= 0.25.

using CPC-NSFDM and C-NSFDM with different values of α. We con-
clude that CPC-NSFDM is more efficient than C-NSFDM. The results
obtained with this new operators and CPC-NSFDM are interesting, and
our analysis will open new doors for investigations by researchers in the
future.
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Figure 4.6 Phase portraits of the model (4.15) using C-NSFDM at α1 = α2 = α3 and
time delay τc = 0.001.

4.6. Conclusions

In this chapter, we considered two novel hybrid fractional-order
chaotic systems. The new operator which is given in [2] is successfully
used to construct these chaotic systems. The NSFDM is constructed with
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Figure 4.7 Phase portraits of the model (4.15) using CPC-NSFDM at different α1, α2, α3
and time delay τc = 0.001, Q= 0.25.

the new operator to simulate the proposed models. The stability analy-
sis for the proposed method is conducted. Numerical simulations in this
chapter are implemented for different values of α. We conclude that the
behavior of the chaotic system changes when α takes different values. Also,
the CPC-NSFDM is efficient and more general than the C-NSFDM. The
combination of chaotic systems and the hybrid fractional-order derivative



116 N.H. Sweilam and S.M. AL-Mekhlafi

Figure 4.8 Phase portraits of the model (4.15) using CPC-NSFDM at different α1, α2, α3
and time delay τc = 0.001, Q= 0.00025.

Table 4.2 CPU time in seconds for the solution of hybrid fractional-order system (4.6)
using CPC-NSFDM and C-NSFDM at different values of α at Tf = 2000.

αν CPU time of
CPC-NSFDM

CPU time of
C-NSFDM

α1 = α2 = α3 = α4 = 1 19.085150 30.277742
α1 = α2 = α3 = α4 = 0.90 172.668507 178.452882
α1 = 0.87, α2 = 0.88, α3 = 0.91, α4 = 0.94 150.146368 153.114388

in the model improves the models and increases complexity. The fractional
derivative in the sense of CPC is a novel topic and has very useful applica-
tions in different fields.

Declaration of competing interest

The authors have declared no conflict of interest.

References
[1] A.J. Arenas, G. Gonzàlez-Parra, B.M. Chen-Charpentierc, Construction of nonstan-

dard finite difference schemes for the SI and SIR epidemic models of fractional order,
Mathematics and Computers in Simulation 121 (2016) 48–63.

[2] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining propor-
tional and classical differintegrals, Mathematics 8 (2020), https://doi.org/10.3390/
math8030360.

[3] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Nu-
merical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, USA, 2012.

[4] D. Baleanu, R. Magin, S. Bhalekar, V. Daftardar-Gejji, Chaos in the fractional or-
der nonlinear Bloch equation with delay, Communications in Nonlinear Science and
Numerical Simulation 25 (1–3) (2015) 41–49.

[5] D. Baleanu, A.M. Lopes, Handbook of Fractional Calculus with Applications: Vol-
ume 8, Applications in Engineering, Life and Social Sciences, Part B, De Gruyter,
Berlin, Germany, 2019, ISBN 9783110571929, 3110571927.

https://doi.org/10.3390/math8030360
https://doi.org/10.3390/math8030360


On the hybrid fractional chaotic systems: a numerical approach 117

[6] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R.L. Magin, Transient chaos in fractional
Bloch equations, Computers & Mathematics with Applications 64 (2012) 3367–3376.

[7] J.F. Gómez-Aguilar, Chaos and multiple attractors in a fractal-fractional Shinriki’s oscil-
lator model, Physica A: Statistical Mechanics and its Applications 539 (2020) 122918.

[8] M. Hajipour, A. Jajarmi, D. Baleanu, An efficient nonstandard finite difference scheme
for a class of fractional chaotic systems, Journal of Computational and Nonlinear Dy-
namics 13 (2018) 1–9, https://doi.org/10.1115/1.4038444.

[9] J.H. He, A tutorial review on fractal space time and fractional calculus, International
Journal of Theoretical Physics 53 (11) (2014).

[10] J.H. He, S.K. Elagan, Z.B. Li, Geometrical explanation of the fractional complex
transform and derivative chain rule for fractional calculus, Physics Letters A 376 (4)
(2012) 257–259.

[11] A.S. Hendy, M.A. Zaky, Global consistency analysis of L1-Galerkin spectral schemes
for coupled nonlinear space-time fractional Schrödinger equations, Applied Numerical
Mathematics 156 (2020) 276–302.

[12] Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, M.A. Rehman, A.S. Alshom-
rani, Positivity and boundedness preserving numerical algorithm for the solution of
fractional nonlinear epidemic model of HIV/AIDS transmission, Chaos, Solitons and
Fractals 134 (2020) 109706.

[13] A. Jajarmi, M. Hajipour, D. Baleanu, New aspects of the adaptive synchronization and
hyperchaos suppression of a financial model, Chaos, Solitons and Fractals 99 (2017)
285–296.

[14] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Dif-
ferential Equations, Elsevier, San Diego, 2006.

[15] Y. Lin, Y. Chen, Q. Cao, Nonlinear and chaotic analysis of a financial complex system,
Applied Mathematics and Mechanics 31 (2010) 1305–1316.

[16] R.L. Magin, O. Abdullah, D. Baleanu, X.H.J. Zhou, Anomalous diffusion expressed
through fractional order differential operators in the Bloch-Torrey equation, Journal
of Magnetic Resonance 190 (2) (2008) 255–270.

[17] R.L. Magin, X. Feng, D. Baleanu, Solving the fractional order Bloch equation, Con-
cepts in Magnetic Resonance. Part A 34A (1) (2009) 16–23.

[18] R. Mickens, Nonstandard Finite Difference Models of Differential Equations, World
Scientific, Singapore, 1994.

[19] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[20] B. Rakshit, P. Saha, A.R. Chowdhury, Chaos and control in nonlinear Bloch system,

arXiv:nlin/0501004, 2005.
[21] A. Serletis, Is there chaos in economic time series, Canadian Journal of Economics 29

(1996) 210–212.
[22] R. Scherer, S. Kalla, Y. Tang, J. Huang, The Grünwald-Letnikov method for frac-

tional differential equations, Computers & Mathematics with Applications 62 (2011)
902–917.

[23] N.H. Sweilam, M.M. Abou Hasan, D. Baleanu, New studies for general fractional fi-
nancial models of awareness and trial advertising decisions, Chaos, Solitons and Fractals
104 (2017) 772–784.

[24] N.H. Sweilam, S.M. AL-Mekhlafi, D. Baleanu, Optimal control for a fractional tuber-
culosis infection model including the impact of diabetes and resistant strains, Journal
of Advanced Research 17 (2019) 125–137.

[25] N.H. Sweilam, S.M. AL-Mekhlafi, D. Baleanu, Nonstandard finite difference method
for solving complex-order fractional Burgers equations, Journal of Advanced Research
25 (2020) 19–29.

[26] N.H. Sweilam, S.M. AL-Mekhlafi, A novel numerical method for solving 2-D time
fractional Cable equation, The European Physical Journal Plus 134 (2019) 1–11.

https://doi.org/10.1115/1.4038444


118 N.H. Sweilam and S.M. AL-Mekhlafi

[27] N.H. Sweilam, S.M. AL-Mekhlafi, Optimal control for a nonlinear mathematical
model of tumor under immune suppression: a numerical approach, Optimal Control
Applications & Methods 39 (2018) 1581–1596.

[28] M.A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods
for fractional terminal value problems with non-smooth solutions, Journal of Compu-
tational and Applied Mathematics 357 (2019) 103–122.

[29] M.A. Zaky, A.S. Hendy, Convergence analysis of an L1-continuous Galerkin method
for nonlinear time-space fractional Schrödinger equations, https://doi.org/10.1080/
00207160.2020.1822994, 2020.

[30] L.L. Zhang, G.L. Cai, X.L. Fang, Stability for a novel time-delay financial hyperchaotic
system by adaptive periodically intermittent linear control, Journal of Applied Analysis
and Computation 7 (2017) 79–91.

[31] H. Afshari, D. Baleanu, Applications of some fixed point theorems for fractional differ-
ential equations with Mittag-Leffler kernel, Advances in Difference Equations (2020)
140, https://doi.org/10.1186/s13662-020-02592-2.

[32] E. Bonyah, A.K. Sagoe, D. Kumar, S. Deniz, Fractional optimal control dynamics of
coronavirus model with Mittag-Leffler law, Ecological Complexity 45 (2020) 100880,
https://doi.org/10.1016/j.ecocom.2020.100880.

[33] M. Awais, F.S. Alshammari, S. Ullah, M.A. Khand, S. Islam, Modeling and simulation
of the novel coronavirus in Caputo derivative, Results in Physics 19 (2020) 103588,
https://doi.org/10.1016/j.rinp.2020.103588.

https://doi.org/10.1080/00207160.2020.1822994
https://doi.org/10.1080/00207160.2020.1822994
https://doi.org/10.1186/s13662-020-02592-2
https://doi.org/10.1016/j.ecocom.2020.100880
https://doi.org/10.1016/j.rinp.2020.103588


CHAPTER FIVE

Iterative processes with fractional
derivatives
Giro Candelarioa, Alicia Corderob, Juan R. Torregrosab, and
María P. Vassilevaa

aInstituto Tecnológico de Santo Domingo (INTEC), Área de Ciencia Básica, Santo Domingo,
Dominican Republic
bUniversitat Politécnica de Valencia, Instituto de Matemática Multidisciplinar, Valencia, Spain

Chapter points
• It is possible to define iterative methods for solving nonlinear equations by using

fractional derivatives, whose order of convergence depends of the index of the
fractional derivative.

• There are several advantages in the numerical performance of the designed
fractional procedures: the same initial guess is useful for detecting all the roots of
an equation, changing the index of the derivatives involved. Moreover, complex
roots can be found even with real initial estimations.

• This is a recent area of research, which can yield substantial advances in the next
years.

5.1. Introduction

Around 1695, Leibniz and l’Hopital devised the concept of the
semiderivative, which marked the beginning of the development of frac-
tional calculus simultaneously with classical calculus. Other researchers
from this time, such as Riemann, Liouville, and Euler, were also in-
terested in this idea. From then to the present, fractional calculus has
evolved both in theoretical aspects and in its applications in medicine,
economics, and mechanical engineering, among others, where problems
arise that are modeled by differential equations with derivatives of frac-
tional order (see [3,4,11–13,15,18,20,21,25,27] and references therein for
examples).

The reason why fractional calculus has many applications in science
and engineering is the higher degree of freedom of fractional calculus
tools compared to classical ones. The use of fractional derivatives is often
necessary in the modeling of problems whose hereditary properties must
be preserved (see, for instance, [19]). Frequently the differential equation
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that represents the problem is nonlinear; this can yield, via discretization,
a system of nonlinear equations to be solved. Hence, the idea of adopt-
ing iterative techniques for their resolution using fractional derivatives is
novel and interesting. This area of research is very recent, and it starts with
the introduction of iterative methods that use fractional derivatives in their
iterative expressions, in the scalar case.

Let us consider the problem of computing a zero of a nonlinear func-
tion f : I ⊆ R → R. This can be made by means of an iterative method
(see, for example, [24,28]). The aim of this research is the design of new
iterative methods with high order of convergence, by introducing fractional
derivatives of Riemann–Liouville and Caputo type, and also employing pa-
rameters depending on the index of the derivative. Therefore, it is needed
to study the convergence and stability of these schemes.

In the recent literature, some fractional one-point Newton type meth-
ods have been proposed in order to find roots of nonlinear equations using
fractional derivatives. For example, the adaptation of Newton’s method for
fractional derivatives was the objective of the recent work by Brambila et al.
[5], in which the order of convergence was left without proof. However, in
[2] the authors proved the need of adding a damping parameter related with
the fractional order of the fractional derivative used, in order to reach the
2αth order of convergence. This result was improved in [6], where a new
iterative expression was derived from the fractional Taylor development and
order 1 + α was obtained.

On the other hand, it is known that increasing the order of convergence
of point-to-point iterative methods is achieved by using integer derivatives
of second or higher order or developing multipoint methods. This was the
following step in the development of this area of research: in [9], several
Chebyshev type point-to-point schemes were derived by using fractional
derivatives in their iterative expressions. Moreover, in [6] this idea was ex-
tended to multipoint Traub type procedures.

The structure of this work is as follows. In Section 5.2, the fundamen-
tal concepts related to fractional derivatives are exposed and in Section 5.3
we develop the fractional iterative methods, stating their respective order
of convergence. In Section 5.4, numerical tests are performed and the de-
pendence on initial estimations of these methods is studied with the use of
planes of convergence. Finally, we derive some conclusions and raise open
questions.
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5.2. Preliminary concepts

In this section, we introduce some general concepts that we will use
in the development of this work such as some special functions used, the
Caputo and Riemann–Liouville fractional derivatives [23], [26], the frac-
tional Taylor series [10], [22], and the fractional binomial coefficient [1].

Firstly, we define the Gamma function as

�(x) =
∫ +∞

0
ux−1e−udu,

whenever x > 0. This function is a generalization of the factorial function
to the complex plane, taking into account that �(1) = 1 and �(n + 1) = n!,
when n ∈ N.

Let us now remember the notion of fractional Caputo and Riemann–
Liouville derivatives.

Definition 5.1 (Caputo fractional derivative of order α). Let f : I ⊆R → R

be an element of C+∞([a,x]) (−∞ < a < x < +∞), with α ≥ 0 and n =
[α] + 1, with [α] being the integer part of α. Then, the Caputo fractional
derivative of order α of f (x) is defined as follows:

(cDα
a )f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
�(n − a)

∫ x

a

dnf (t)
dtn

dt
(x − t)α−n+1 , α /∈ N,

dn−1f (x)

dxn−1 , α = n − 1 ∈ N∪ {0}.
(5.1)

Definition 5.2 (Riemann–Liouville fractional derivative of order α). Let
f : I ⊆ R → R be an element of L1([a,x]) (−∞ < a < x < +∞), with α ≥ 0
and n = [α] + 1, with [α] being the integer part of α. Then, the Riemann–
Liouville fractional derivative of order α of f (x) is defined as

(Dα
a+)f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
�(n − a)

dn

dxn

∫ x

a

f (t)
(x − t)α−n+1 dt, α /∈N,

dn−1f (x)

dxn−1 , α = n − 1 ∈ N∪ {0}.
(5.2)

Moreover, to prove the order of convergence of the iterative fractional
methods we need a generalization of the classical Taylor series expansion
of f (x) around the zero of the nonlinear function, x̄, using both the Ca-
puto and the Riemann–Liouville fractional derivatives [10,22,29]. These
generalizations are given in the following two results.
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Theorem 5.1 (Taylor series expansion using Caputo fractional derivatives
[22]). Let us suppose that cDjα

a f (x) ∈ C([a, b]), for j = 1,2, . . . ,n + 1, where
α ∈ (0,1]. Then we have

f (x) =
n∑

i=0

cDiα
a f (a)

(x − a)iα

�(iα + 1)
+ cD(n+1)α f (ξ)

(x − a)(n+1)α

�((n + 1)α + 1)
, (5.3)

with a ≤ ξ ≤ x, for all x ∈ (a, b], where cDnα
a = cDα

a · cDα
a · · · cDα

a (n times compo-
sition).

Theorem 5.2 (Taylor series expansion using Riemann–Liouville fractional
derivatives [10]). Let us assume the continuous function f : R → R has fractional
derivatives of order kα, for any positive integer k and any α, 0 < α ≤ 1. Then the
following equality holds:

f (x + h) =
+∞∑
k=0

hαk

�(αk + 1)
Dαk

a+ f (x), (5.4)

where Dαk
a+ f (x) is the Riemann–Liouville derivative of order αk of f (x).

Also duality theory for left and right fractional derivatives is needed;
it is called symmetric duality and was developed by Caputo and Torres
in [7]. They used it to relate left and right fractional integrals with left
and right Riemann–Liouville and Caputo fractional derivatives. We need
the following results for the analysis of the convergence of the fractional
iterative methods.

Theorem 5.3 (Lombardero [16]). Let α ≥ 0, n = [α] + 1, and β ∈ R. Thus,
the following identity holds:

Dα
a+(x − a)β = �(β + 1)

�(β + 1 − α)
(x − a)β−α. (5.5)

In addition, the relationship between Caputo and Riemann–Liouville
fractional derivatives is explored in the next result from Lombardero.

Theorem 5.4 ([16]). Let α /∈ N such that α ≥ 0, n = [α] + 1, and let f ∈
L1([a, b]) be a function whose Caputo and Riemann–Liouville fractional derivatives
exist. Thus, the following identity holds:

cDα
a f (x) = Dα

a+ f (x) −
n−1∑
k=0

f (k)(a)
�(k + 1 − α)

(x − a)k−α, x > a. (5.6)
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As a consequence of Theorems 5.3 and 5.4, we have

cDα
x0

(x − x0)
k = Dα

x0
(x − x0)

k, k = 1,2, . . . .

This result allows us to work with the Caputo fractional derivative and
conclude that the derived results are also valid for the Riemann–Liouville
fractional derivative.

Finally, to prove the order of convergence of some of the designed
methods, Newton’s generalized binomial theorem (see [1]) is needed. We
have

(x + y)r =
+∞∑
k=0

(
r
k

)
xr−kyk, k ∈ {0} ∪N, r ∈ R, (5.7)

where the generalized binomial coefficient is(
r
k

)
= �(r + 1)

k!�(r − k + 1)
.

5.3. Design and analysis of iterative methods using
fractional derivatives

In this section, we show the main aspects of the design of high-order
fractional iterative methods for solving nonlinear equations. Moreover, we
state how their order of convergence is proven. They are based on the
classical Newton, Chebyshev, and Traub schemes.

Let f : I ⊆ R → R be a continuous function whose fractional derivative
of Caputo type is defined for any order of index α, 0 < α ≤ 1. By using
Theorem 5.3, the Taylor development of a function f (x) around its zero
a = x̄, in terms of fractional derivatives of Caputo type, is

f (x) = cDα
x̄ f (x̄)

�(α + 1)

[
(x − x̄)α + C2(x − x̄)2α + C3(x − x̄)3α

] + O[(x − x̄)4α],
(5.8)

where Cj = �(α + 1) cDjα
x̄ f (x̄)

�(jα + 1) cDα
x̄ f (x̄)

for j ≥ 2, and the corresponding expansion

of the fractional derivative of f (x) around x̄ is

cDα
a f (x) = cDα

x̄ f (x̄)

�(α + 1)

[
�(α + 1) + �(2α + 1)

�(α + 1)
C2(x − x̄)α

+ �(3α + 1)

�(2α + 1)
C3(x − x̄)2α

]
+ O[(x − x̄)3α]. (5.9)
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Next, the results corresponding to the same iterative schemes but with
the fractional derivative Riemann–Liouville are stated without proof.

Newton type methods with fractional derivative

First, we present two types of iterative schemes based on the adaptation of
Newton’s method

xk+1 = xk − f (xk)

f ′(xk)
, k = 0,1,2, . . . ,

with order of convergence 2, to the fractional derivatives of Caputo and
Riemann–Liouville. In [2], two fractional variants of Newton’s method
with convergence order 2α were proposed. They were designed by using,
among other elements, fractional derivatives of Caputo and Riemann–
Liouville type. In the following results, we present the iterative expres-
sions of the Riemann–Liouville fractional Newton’s method and of the
Caputo-fractional Newton’s method, where �(α + 1) appears as a damping
parameter.

Theorem 5.5. Let f : I ⊂ R → R be a continuous function whose fractional
derivatives of order kα are defined for any positive integer k and any α, 0 < α ≤ 1,
on the interval I containing the zero x̄ of f (x) and let the fractional derivatives of
the function f (x) Riemann–Liouville type, Dkα

a+ f (x), and Caputo type, cDα
x̄ f (x),

be continuous and non-zero at x̄. Also, suppose that x0 is an initial approxima-
tion close enough to x̄. Then the order of local convergence of Newton’s fractional
methods

xk+1 = xk − �(α + 1)
f (xk)

Dα
a+ f (xk)

, k = 0,1, . . . , (5.10)

of the Riemann–Liouville type and

xk+1 = xk − �(α + 1)
f (xk)

cDα
a f (xk)

, k = 0,1, . . . , (5.11)

of Caputo type is at least 2α, where 0 < α ≤ 1, with the error equation

ek+1 = �(2α + 1) − (�(α + 1))2

(�(α + 1))3 C2e2α
k + O[e3α

k ],

in both cases, where Cj = �(α + 1) cDjα
x̄ f (x̄)

�(jα + 1) cDα
x̄ f (x̄)

, for j ≥ 2.
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Proof. Let {xk}k≥0 be a sequence of iterations obtained by (5.10), which ap-
proximates the zero x̄ of the nonlinear function f (x). Using (5.8) and (5.9)
from the Taylor expansion of the nonlinear function and its Caputo deriva-
tive at xk, around x̄, and introducing ek = x − x̄, we obtain

f (xk)

cDα
a f (xk)

= 1
�(α + 1)

eα
k + �(2α + 1) − (�(α + 1))2

(�(α + 1))3 C2e2α
k + O[e3α

k ],

expressed in terms of the error in the kth iteration ek = xk − x̄. Then the
error equation turns out to be

ek+1 = xk+1 − x̄ = eα
k − �(α + 1)

f (xk)

cDα
a f (xk)

= �(2α + 1) − (�(α + 1))2

(�(α + 1))3 C2e2α
k + O[e3α

k ].

This concludes the proof.

We denote the iterative methods (5.10) and (5.11) as R-LFN1 and
CFN1, respectively. Next, we define the following pair of designed Newton
type methods with fractional derivative, proving their order of convergence.

Theorem 5.6. We consider that f : I ⊂ R → R is a continuous function with
fractional derivatives of order kα defined for any positive integer k and α ∈ (0,1]
defined on the open interval I containing the zero x̄ of f (x). Additionally, let us
suppose that Dαk

a+f (x) and cDα
a f (x) are continuous and non-zero at x̄. The order of

convergence of the Riemann–Liouville fractional Newton type method (denoted by
R-LFN2) with iterative expression

xk+1 = xk −
(

�(α + 1)
f (xk)

Dα
a+ f (xk)

)1/α

, k = 0,1,2, . . . , (5.12)

and the Caputo fractional Newton type method (denoted by CFN2),

xk+1 = xk −
(

�(α + 1)
f (xk)

cDα
a f (xk)

)1/α

, k = 0,1,2, . . . , (5.13)

is at least α + 1, and their error equation is

ek+1 = �(2α + 1) − (�(α + 1))2

α(�(α + 1))2 C2eα+1
k + O[e2α+1

k ],

in both cases.
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Proof. In the same way as in Theorem 5.5, using (5.8) and (5.9), we obtain
again

f (xk)

cDα
a f (xk)

= 1
�(α + 1)

eα
k + (�(α + 1))2 − �(2α + 1)

(�(α + 1))3 C2e2α
k + O[e3α

k ],

where Cj = �(α + 1) cDjα
x̄ f (x̄)

�(jα + 1) cDα
x̄ f (x̄)

, for j ≥ 2.

Multiplying the last expression by the parameter �(α + 1), we obtain

�(α + 1)
f (xk)

cDα
a f (xk)

= eα
k + (�(α + 1))2 − �(2α + 1)

(�(α + 1))2 C2e2α
k + O[e3α

k ],

and applying expression (5.7) we obtain

(
�(α + 1)

f (xk)

cDα
a f (xk)

)1/α

=
(

eα
k + (�(α + 1))2 − �(2α + 1)

(�(α + 1))2 C2e2α
k + O[e3α

k ]
)1/α

= ek + �(α + 1)

�(α)
e1−α
k + (�(α + 1))2 − �(2α + 1)

(�(α + 1))2 C2e2k
k + O[e2α+1

k ].

As �(1/α + 1) = 1
α

�(1/α), we can simplify:

(
�(α + 1)

f (xk)

cDα
a f (xk)

)1/α

= ek + (�(α + 1))2 − �(2α + 1)

α(�(α + 1))2 C2eα+1
k + O[e2α+1

k ].

Substituting this result in the iterative expression of the method taking into
account that xk+1 = ek+1 + x̄ and xk = ek + x̄, we obtain

ek+1 + x̄ = ek + x̄ − ek − �(2α + 1) − (�(α + 1))2

α(�(α + 1))2 C2eα+1
k + O[e2α+1

k ].

Then,

ek+1 = �(2α + 1) − (�(α + 1))2

α(�(α + 1))2 C2eα+1
k + O[e2α+1

k ].
This concludes the proof.

Chebyshev type methods with fractional derivative

Now, we are going to present the adaptation of the Chebyshev method for
fractional derivatives of Caputo and Riemann–Liouville. The scheme of
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the classical Chebyshev method for approximating a root of the nonlinear
equation f (x) = 0 is

xk+1 = xk −
(

1 + 1
2

Lf (xk)

)
f (xk)

f ′(xk)
,

where Lf = f (xk)f ′′(xk)

f ′(xk)2 and has order of convergence three. With the pur-

pose of adapting this method to fractional calculus, we define

cLα
f = f (x)cD2α

a f (x)

(cDα
a f (x))2

and we call this expression the fractional degree of logarithmic convexity
of Caputo type. Next we present several variants of the iterative Cheby-
shev method using the Caputo derivative and we show that its order of
convergence is 2α.

Theorem 5.7. We consider a continuous function f : I ⊂ R → R with kα frac-
tional derivatives defined on the interval I for k ∈ N and any α, 0 < α ≤ 1. Let x0

be an initial approximation close enough to the zero x̄ of f (x). Furthermore, we con-
sider that cDα

x̄ f (x) is continuous and non-zero in x̄. Then, the iterative Chebyshev
fractional method using Caputo type derivatives denoted by:
1. CFC1

xk+1 = xk − �(α + 1)

(
1 + 1

2
cLα

f (xk)

)
f (xk)

cDα
a f (xk)

(5.14)

has local convergence order at least 2α with an error equation

eα
k+1 = 2(�(α + 1))2 − �(2α + 1)

2(�(α + 1))2 C2e2α
k + O[e3α

k ];

2. CFC2

xk+1 = xk − �(α + 1)

(
1 + 1

2
cDα+1

a f (xk)f (xk)

(cDα
a f (xk))2

)
f (xk)

cDα
a f (xk)

(5.15)

has order of convergence at least 2α, where 0 < α < 1; on the one hand, if
0 < α ≤ 2

3 , the error equation is

eα
k+1 =

(
(�(α + 1))2 − �(2α + 1)

(�(α + 1))3 C2 + 1
2

1
(�(α + 1))2

cDα+1
x̄ f (x̄)

cDα f (x̄)

)
e2α
k

+ O[e3α
k ],



128 Giro Candelario et al.

and on the other hand, if 2
3 ≤ α < 1, then

eα
k+1 =

(
(�(α + 1))2 − �(2α + 1)

(�(α + 1))3 C2 + 1
2

1
(�(α + 1))2

cDα+1
x̄ f (x̄)

cDα f (x̄)

)
e2α
k

+ O[e3α
k ];

3. CFC3

xk+1 = xk − �(α + 1)
(
A + BcLα

f (xk)
) f (xk)

cDα
a f (xk)

(5.16)

has order of convergence at least 3α only if A = 1 and B = �(2α+1)−(�(α+1))2

�(2α+1)
,

where 0 < α < 1, and the error equation has the form

ek+1 =
[
−�(2α + 1)

(
1 − �(2α + 1)

(�(α + 1))4

)
C2

+ B�(2α + 1)

(�(α + 1))3

(
2 − 3

�(2α + 1)

(�(α + 1))2

)
C2

2

+ 1
�(α + 1)

(
B�(3α + 1)

(�(α + 1))3 − �(3α + 1)

�(2α + 1)�(α + 1)

)
C3

]
e3α
k

+ O[e4α
k ],

where ek = x − x̄.

Proof. By using Taylor expansion of cDα
a f (xk) given with expression (5.9),

we obtain

cD2α
x̄ f (xk)) = cDα

x̄ f (x̄)

�(α + 1)

[
�(2α + 1)C2 + �(3α + 1)

�(α + 1)
C3eα

k

]
+ O[e2α

k ].
(5.17)

Expressions (5.8) and (5.17) allow us to calculate the product f (xk)cD2α
x̄ and

using (5.9) we calculate (cDα
a f (xk))

2. This allows us to obtain the Taylor
expansion of cLα

f (xk) around x̄:

cLα
f = �(2α + 1)

(�(α + 1))2 C2eα
k + 1

(�(α + 1))2

[
�(2α + 1)C2

2 + �(3α + 1)

�(α + 1)
C3

− 2(�(2α + 1))2

(�(α + 1))2 C2
2

]
e2α
k + O[e3α

k ].
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Thus

1 + 1
2

cLα
f = 1 + �(2α + 1)

2(�(α + 1))2 C2eα
k +

(
�(2α + 1)

2(�(α + 1))2 C2
2 + �(3α + 1)

2(�(α + 1))3 C3

− 2(�(2α + 1))2

2(�(α + 1))4 C2
2

)
e2α
k + O[e3α

k ]

and (
1 + 1

2
cLα

f

)
f (xk)

cDα
a f (xk)

= 1
�(α + 1)

eα
k + 2(�(α + 1))2 − �(2α + 1)

2(�(α + 1))3 C2e2α
k + O[e3α

k ].

Then, the error equation is

ek+1 = �(2α + 1) − 2(�(α + 1))2

2(�(α + 1))2 C2e2α
k + O[e3α

k ].

The proof of the order of convergence of the CFC2 and CFC3 methods
are omitted, as they are similar to that of CFC1.

Traub type methods with fractional derivative

Our starting point is Traub’s multipoint iterative method (see [28]) with
order of convergence three:

xk+1 = yk − f (yk)

f ′(xk)
,

where yk is a Newton step. When we apply the technique employed in
the construction of the CFN2 and R-LFN2 methods, we get respective
procedures that use fractional derivatives. We call the resulting schemes
fractional Traub type methods and denote them by CFT when the Ca-
puto fractional derivative is used and R-LFT when the Riemann–Liouville
fractional derivative is employed.

Theorem 5.8. Let f : I ⊆R →R be a continuous function with fractional deriva-
tives of order kα, for any positive integer k and α ∈ (0,1], in the open interval I
holding the zero of f (x), denoted by x̄. Let us suppose cDα

a f (x) and Dkα
a+ f (x) are

continuous and non-zero at x̄. Additionally, let us consider an initial estimation x0,
close enough to x̄. Therefore, the local convergence order of CFT

xk+1 = yk −
(

�(α + 1)
f (yk)

cDα
a f (xk)

)1/α

, k = 0,1,2, . . . , (5.18)
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with

yk = xk −
(

�(α + 1)
f (xk)

cDα
a f (xk)

)1/α

, k = 0,1,2, . . . ,

for α2 + 2α + 1 < 3α + 1, and that of R-LFT

xk+1 = yk −
(

�(α + 1)
f (yk)

Dαk
a+ f (xk)

)1/α

, k = 0,1,2, . . . , (5.19)

with

yk = xk −
(

�(α + 1)
f (xk)

Dαk
a+ f (xk)

)1/α

, k = 0,1,2, . . . ,

are at least 2α + 1, and the error equation is

ek+1 = − �(2α + 1)

α2�2(α + 1)
AC2

2e2α+1
k + O

(
eα2+2α+1
k

)
,

where

A = �2(α + 1) − �(2α + 1)

�2(α + 1)
,

in both cases.

Proof. Let us remark that the first step yk of scheme CFT is CFN2. As its
order of convergence has already been proven, we omit the calculations and
give the error equation with terms enough to be used in this proof:

yk − x̄ = −1
α

AC2eα+1
k + 1

α

[(
�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)
AC2

2 − BC3

]
e2α+1
k

+ O
(
e3α+1
k

)
,

where A has been already defined and

B = �(α + 1)�(2α + 1) − �(3α + 1)

�(α + 1)�(2α + 1)
.

We firstly develop f (yk):

f (yk) = cDα
x̄ f (x̄)

�(α + 1)

[(
yk − x̄

)α + C2
(
yk − x̄

)2α
]
+ O

(
e3α+1
k

)
.
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Now, in order to obtain the expansion of powers such as
(
yk − x̄

)α, we use
Newton’s generalized binomial theorem,

(
yk − x̄

)α

=
(

−1
α

)α

AαCα
2 eα2+α

k

+
(

−1
α

)α−1

Aα−1Cα−1
2

[(
�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)
AC2

2 − BC3

]
eα2+2α
k

+ α2 − α

2

(
−1

α

)α

Aα−2Cα−2
2

×
[(

�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)
AC2

2 − BC3

]2

eα2+3α
k + O

(
e3α+1
k

)

and

(
yk − x̄

)2α =
(

−1
α

)2α

A2αC2α
2 e2α2+2α

k + O
(
e3α+1
k

)
.

Also, let us note that α2 + 3α < 3α + 1 for all α ∈ (0,1] and also
2α2 + 2α < 3α + 1 but α2 + 4α > 3α + 1 and 2α2 + 3α > 3α + 1.

Then,

f (yk) = cDα
x̄ f (x̄)

�(α + 1)

[(−1
α

)α

AαCα
2 eα2+α

k +
(−1

α

)α−1

Deα2+2α
k

+
(−1

α

)2α

A2αC2α+1
2 e2α2+2α

k + α − 1
2

(
−1

α

)α−2

Eeα2+3α
k

]

+ O
(
e3α+1
k

)
,

where

D =
(

�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)
AαCα+1

2 − Aα−1BC3Cα−1
2

and

E = 1
α

(
�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)2

AαCα+2
2 + 1

α
Aα−2B2Cα−2

2 C2
3

− 2
α

(
�(2α + 1)

�2(α + 1)
+ α − 1

2α
A

)
Aα−1BCα

2 C3.
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Then, the Taylor development of
f (yk)

cDα
a f (xk)

is

f (yk)

cDα
a f (xk)

= 1
�(α + 1)

[(−1
α

)α

AαCα
2 eα2+α

k

+
(−1

α

)α−1 (
D + �(2α + 1)

�(α + 1)

1
α

AαCα+1
2

)
eα2+2α
k

+
(−1

α

)2α

A2αC2α+1
2 e2α2+2α

k
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Moreover, by using again the generalized binomial theorem,
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Finally, after some algebraic manipulations, the resulting error equation
is

ek+1 = − �(2α + 1)

α2�2(α + 1)
AC2

2e2α+1
k + O

(
eα2+2α+1
k

)
.

5.4. Numerical analysis of the proposed methods

To get the results shown in this section, we have used MATLAB®

R2018b with double precision arithmetics, |xk+1 −xk| < 10−8 or |f (xk+1)| <
10−8 as stopping criteria, and a maximum of 500 iterations. For the calcula-
tion of the Gamma function, �(x), we have used the program made in [14].
For the Mittag-Leffler function, Eα,β(x), we use the program provided by
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Table 5.1 Fractional Caputo Newton type results for f1(x) and initial estimation
x0 = −1.5.
α CFN1 method CFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.29821 28.343 500 - 1.7603e-07 0.0035619 500
0.65 - 0.17488 11.329 500 - 4.1154e-08 6.7515e-04 500
0.7 - 0.058499 2.98929 500 x̄4 9.9926e-09 1.1322e-04 432
0.75 x̄4 9.6537e-09 4.1645e-07 151 x̄4 9.8524e-09 4.6756e-05 230
0.8 x̄4 8.5475e-09 3.0465e-07 50 x̄4 9.6579e-09 1.8943e-05 124
0.85 x̄4 9.468e-09 2.606e-07 28 x̄4 9.9396e-09 7.7541e-06 67
0.9 x̄4 3.9203e-09 7.3851e-08 19 x̄4 9.109e-09 2.6706e-06 37
0.95 x̄4 2.5822e-09 2.4894e-08 13 x̄4 7.3622e-09 6.4461e-07 20
1 x̄4 3.0876e-06 8.8694e-10 6 x̄4 3.0876e-06 8.8694e-10 6

Igor Podlubny in MathWorks. Regarding the precision of these functions,
the Gamma function is calculated with 15 digits of accuracy along the real
axis and 13 elsewhere in C; and mlf for computing the Mittag-Lefler func-
tion has nine significant digits of precision. Moreover, in all the numerical
tests, we used a = 0, as in Caputo and as in Riemann–Liouville derivatives.

We are going to test four nonlinear functions in order to make a com-
parison between the designed methods. It is important to point out that
in any case a comparison is being made with the classical methods (when
α = 1).

Our first test function is f1(x) = −12.84x6 − 25.6x5 + 16.55x4 −
2.21x3 + 26.71x2 − 4.29x − 15.21 with roots x̄1 = 0.82366 + 0.24769i,
x̄2 = 0.82366 − 0.24769i, x̄3 = −2.62297, x̄4 = −0.584, x̄5 = −0.21705 +
0.99911i, and x̄6 = −0.21705 − 0.99911i.

We can see that Chebyshev type methods (Table 5.2) require fewer
iterations to converge than Newton type methods (Table 5.1) with Caputo
derivative, for the same value of x0 and the same values of α. It also can be
observed that Newton and Chebyshev type methods require approximately
the same values of α to converge.

In Table 5.3, Chebyshev type methods require fewer iterations to con-
verge than the Traub type method with Caputo derivative, for the same
value of x0 and the same values of α, and the Chebyshev type method
requires a bit higher values of α to converge.

We also can see that Chebyshev type methods (Table 5.5) require
fewer iterations to converge than Newton type methods (Table 5.4) with
Riemann–Liouville derivative, for the same value of x0 and the same values
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Table 5.2 Fractional Caputo Chebyshev type results for f1(x) and initial estimation
x0 = −1.5.
α CFC1 method CFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.57573 70.827 500 - 1.5363 4.0362e+07 500
0.65 - 0.40423 30.825 500 - 0.77071 2.6863e+02 500
0.7 - 0.21083 12.033 500 - 0.41308 43.079 500
0.75 x̄4 9.3028e-09 4.0131e-07 163 x̄4 9.3699e-09 4.0421e-07 177
0.8 x̄4 9.7765e-09 3.4846e-07 51 x̄4 8.6947e-09 3.099e-07 54
0.85 x̄4 8.9761e-09 2.4707e-07 28 x̄4 9.2003e-09 2.5324e-07 29
0.9 x̄4 6.5715e-09 1.23796e-07 18 x̄4 3.5407e-09 6.6699e-08 19
0.95 x̄4 4.5471e-09 4.3837e-08 12 x̄4 5.6834e-09 5.4792e-08 12
1 x̄4 3.5714e-04 9.4953e-09 4 x̄4 3.5713e-04 9.4953e-09 4

Table 5.3 Fractional Caputo CFN3 and Traub type results for f1(x) and initial estimation
x0 = −1.5.
α CFN3 method CFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.44235 48.853 500 - 6.2898e-08 0.0012681 500
0.65 - 0.29878 21.468 500 - 1.1562e-08 1.8867e-04 500
0.7 - 0.13201 7.1676 500 x̄4 9.9588e-09 6.9453e-05 268
0.75 x̄4 9.8478e-09 4.2482e-07 158 x̄4 9.9889e-09 2.7995e-05 138
0.8 x̄4 8.7967e-09 3.1353e-07 51 x̄4 9.5606e-09 1.0693e-05 73
0.85 x̄4 9.0876e-09 2.5014e-07 28 x̄4 9.4657e-09 4.0225e-06 39
0.9 x̄4 6.9558e-09 1.3103e-07 18 x̄4 6.8084e-09 1.0286e-06 22
0.95 x̄4 4.8585e-09 4.6839e-08 12 x̄4 5.2078e-09 1.8928e-07 12
1 x̄4 3.5714e-04 9.49523e-09 4 x̄4 2.2023e-10 5.329e-15 5

Table 5.4 Fractional Riemann–Liouville Newton type results for f1(x) and initial estima-
tion x0 = −1.5.
α R-LFN1 method R-LFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.31207 24.999 500 - 8.2311e-08 0.001664 500
0.65 - 0.21206 12.298 500 - 2.0291e-08 3.3261e-04 500
0.7 - 0.11720 5.6486 500 x̄4 9.9746e-09 9.2638e-05 354
0.75 - 0.017984 0.76427 500 x̄4 9.9858e-09 4.0402e-05 196
0.8 x̄4 9.8676e-09 3.5368e-07 72 x̄4 9.6983e-09 1.6881e-05 110
0.85 x̄4 8.8611e-09 2.4785e-07 32 x̄4 9.4322e-09 6.8049e-06 62
0.9 x̄4 4.1273e-09 7.9749e-08 20 x̄4 8.923e-09 2.4689e-06 35
0.95 x̄4 3.9835e-09 3.9713e-08 13 x̄4 9.0322e-09 7.4692e-07 19
1 x̄4 3.0876e-06 8.8694e-10 6 x̄4 3.0876e-06 8.8694e-10 6
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Table 5.5 Fractional Riemann–Liouville Chebyshev type results for f1(x) and initial es-
timation x0 = −1.5.
α R-LFC1 method R-LFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.57333 54.51 500 - 1.5363 4.0365e+07 500
0.65 - 0.44214 28.188 500 - 0.77657 2.634e+02 500
0.7 - 0.30834 16.006 500 - 0.44709 42.958 500
0.75 - 0.10957 4.8923 500 - 0.19566 10.827 500
0.8 x̄4 9.8873e-09 3.5439e-07 76 x̄4 8.0733e-09 2.8937e-07 80
0.85 x̄4 5.7531e-09 1.60921e-07 33 x̄4 6.2439e-09 1.7465e-07 34
0.9 x̄4 7.00145e-09 1.3528e-07 19 x̄4 4.0498e-09 7.8251e-08 20
0.95 x̄4 7.2146e-09 7.1926e-08 12 x̄4 9.0182e-09 8.9907e-08 12
1 x̄4 3.5714e-04 9.4953e-09 4 x̄4 3.5714e-04 9.4953e-09 4

Table 5.6 Fractional Riemann–Liouville R-LFC3 and Traub type results for f1(x) and ini-
tial estimation x0 = −1.5.
α R-LFC3 method R-LFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - 0.45032 39.9 500 - 2.9398e-08 5.9231e-04 500
0.65 - 0.34255 21.246 500 x̄4 9.9696e-09 1.3359e-04 411
0.7 - 0.22795 11.603 500 x̄4 9.9316e-09 5.6773e-05 220
0.75 - 0.056339 2.4535 500 x̄4 9.7458e-09 2.35e-05 119
0.8 x̄4 9.9718e-09 3.5742e-07 75 x̄4 9.5628e-09 9.4891e-06 65
0.85 x̄4 5.7739e-09 1.615e-07 33 x̄4 9.3134e-09 3.6307e-06 36
0.9 x̄4 7.4112e-09 1.432e-07 19 x̄4 9.6151e-09 1.3022e-06 20
0.95 x̄4 7.725e-09 7.7015e-08 12 x̄4 3.6166e-09 1.3015e-07 12
1 x̄4 3.5714e-04 9.4953e-09 4 x̄4 2.2023e-10 5.329e-15 5

of α. Also, the Chebyshev type method requires a bit higher values of α to
converge.

In Table 5.6, Chebyshev type methods require fewer iterations to con-
verge than the Traub type method with Riemann–Liouville derivative, for
the same value of x0 and the same values of α, and Chebyshev type methods
require higher values of α to converge.

We can also note that, in general, methods with Caputo derivative (Ta-
bles 5.1–5.3) require fewer iterations and lower values of α to converge than
methods with Riemann–Liouville derivative (Tables 5.4–5.6).

Our second test function is f2(x) = ix1.8 − x0.9 − 16 with roots x̄1 =
2.90807 − 4.24908i and x̄2 = −3.85126 + 1.74602i.

We can see that Chebyshev type methods (Table 5.8) require fewer
iterations to converge than Newton type methods (Table 5.7) with Caputo
derivative, for the same value of x0 and the same values of α. It also can
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Table 5.7 Fractional Caputo Newton type results for f2(x) and initial estimation
x0 = −4.5.
α CFN1 method CFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 9.6447e-09 9.1533e-08 135 - 1.9397e-06 0.0040584 500
0.65 x̄2 8.7093e-09 7.1238e-08 83 - 4.5637e-07 7.7439e-04 500
0.7 x̄2 8.0195e-09 5.5214e-08 57 - 7.0051e-08 9.4467e-05 500
0.75 x̄2 7.7567e-09 4.3576e-08 41 x̄2 9.934e-09 8.9604e-06 430
0.8 x̄2 9.2798e-09 4.0719e-08 30 x̄2 9.9356e-09 3.2931e-06 207
0.85 x̄2 5.0655e-09 1.623e-08 23 x̄2 9.9551e-09 1.1831e-06 100
0.9 x̄2 4.2584e-09 8.8324e-09 17 x̄2 9.5415e-09 3.8313e-07 49
0.95 x̄2 2.6355e-09 2.6468e-09 12 x̄2 7.6885e-09 8.4483e-08 23
1 x̄2 5.3275e-06 1.5148e-11 4 x̄2 5.3275e-06 1.5148e-11 4

Table 5.8 Fractional Caputo Chebyshev type results for f2(x) and initial estimation
x0 = −4.5.
α CFC1 method CFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 9.6784e-09 9.1853e-08 136 - 0.99265 13.691 500
0.65 x̄2 8.0926e-09 6.6193e-08 83 x̄2 8.2737e-09 6.7675e-08 83
0.7 x̄2 8.9322e-09 6.1497e-08 56 x̄2 9.8633e-09 6.7909e-08 56
0.75 x̄2 9.8284e-09 5.5214e-08 40 x̄2 6.4268e-09 3.6104e-08 41
0.8 x̄2 7.1523e-09 3.1384e-08 30 x̄2 7.2881e-09 3.198e-08 30
0.85 x̄2 9.2029e-09 2.9488e-08 22 x̄2 9.5021e-09 3.0446e-08 22
0.9 x̄2 2.8734e-09 5.9598e-09 17 x̄2 3.0885e-09 6.4058e-09 17
0.95 x̄2 9.6575e-09 9.6987e-09 11 x̄2 1.6068e-09 1.6137e-09 12
1 x̄2 1.5968e-05 1.7764e-15 3 x̄2 1.5968e-05 1.7764e-15 3

be observed that Chebyshev type methods require lower values of α than
Newton type methods to converge.

In Table 5.9, Chebyshev type methods require fewer iterations to con-
verge than the Traub type method with Caputo derivative, for the same
value of x0 and the same values of α, and Chebyshev type methods require
lower values of α to converge.

We also can see that Chebyshev type methods (Table 5.11) require
fewer iterations to converge than Newton type methods (Table 5.10) with
Riemann–Liouville derivative, for the same value of x0 and the same values
of α. Also in this case, Chebyshev type methods require lower values of α

to converge.
In Table 5.12, Chebyshev type methods require fewer iterations to con-

verge than the Traub type method with Riemann–Liouville derivative, for
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Table 5.9 Fractional Caputo CFC3 and Traub type results for f2(x) and initial estimation
x0 = −4.5.
α CFC3 method CFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 8.8419e-09 8.3914e-08 147 - 6.9328e-07 0.0014451 500
0.65 x̄2 8.8258e-09 7.219e-08 83 - 1.2842e-07 2.1663e-04 500
0.7 x̄2 9.7327e-09 6.7009e-08 56 - 1.577e-08 2.0497e-05 500
0.75 x̄2 6.5177e-09 3.6615e-08 41 x̄1 9.859e-09 5.2033e-06 257
0.8 x̄2 7.5319e-09 3.3049e-08 30 x̄2 9.6449e-09 1.8367e-06 120
0.85 x̄2 9.6136e-09 3.0803e-08 22 x̄2 9.1797e-09 6.0224e-07 57
0.9 x̄2 2.9946e-09 6.2112e-09 17 x̄2 9.1356e-09 1.8638e-07 27
0.95 x̄2 1.4895e-09 1.4959e-09 12 x̄2 5.5216e-09 2.6074e-08 13
1 x̄2 1.5968e-05 1.7764e-15 3 x̄2 1.1681e-05 3.5527e-15 3

Table 5.10 Fractional Riemann–Liouville Newton type results for f2(x) and initial esti-
mation x0 = −4.5.
α R-LFN1 method R-LFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 9.8908e-09 7.0198e-08 321 - 7.6079e-07 0.001593 500
0.65 x̄2 9.5716e-09 6.0692e-08 105 - 1.8874e-07 3.2037e-04 500
0.7 x̄2 8.3392e-09 4.5994e-08 61 - 2.9902e-08 4.0532e-05 500
0.75 x̄2 6.5731e-09 3.048e-08 43 x̄1 9.9785e-09 7.4479e-06 367
0.8 x̄2 7.592e-09 2.8258e-08 30 x̄1 9.8775e-09 2.8264e-06 192
0.85 x̄2 8.3034e-09 2.3137e-08 22 x̄2 9.4686e-09 1.0137e-06 93
0.9 x̄2 9.4241e-09 1.7387e-08 16 x̄2 9.9072e-09 3.6628e-07 45
0.95 x̄2 1.649e-09 1.5036e-09 12 x̄2 7.7314e-09 8.0728e-08 22
1 x̄2 5.3275e-06 1.5148e-11 4 x̄2 5.3275e-06 1.5148e-11 4

the same value of x0 and the same values of α, and Chebyshev type methods
require lower values of α to converge.

We note that, in general, methods with Caputo derivative (Ta-
bles 5.7–5.9) require lower numbers of iterations and a bit higher values
of α to converge than methods with Riemann–Liouville derivative (Ta-
bles 5.10–5.12).

Our third test function is f3(x) = ex −1 with only real root x̄1 = 0. In this
case, it is necessary to use a value of α closer to 1 to ensure convergence.

We can see that Newton type methods (Table 5.13) require a bit fewer
iterations to converge than Chebyshev type methods (Table 5.14) with Ca-
puto derivative, for the same value of x0 and the same values of α. We
can also observe that Newton type methods require lower values of α to
converge.
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Table 5.11 Fractional Riemann–Liouville Chebyshev type results for f2(x) and initial
estimation x0 = −4.5.
α R-LFC1 method R-LFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 9.6314e-09 6.8357e-08 335 x̄2 9.683e-09 6.8723e-08 296
0.65 x̄2 9.2392e-09 5.8585e-08 109 x̄2 9.0118e-09 5.7143e-08 107
0.7 x̄2 9.4967e-09 5.2378e-08 64 x̄2 9.7264e-09 5.3645e-08 63
0.75 x̄2 7.50469e-09 3.48e-08 40 x̄2 8.26e-09 3.8303e-08 43
0.8 x̄2 8.3924e-09 3.1238e-08 29 x̄2 6.233e-09 2.32e-08 30
0.85 x̄2 5.8975e-09 1.6433e-08 22 x̄2 4.936e-09 1.3754e-08 22
0.9 x̄2 6.215e-09 1.1466e-08 16 x̄2 6.298e-09 1.162e-08 16
0.95 x̄2 6.3727e-09 5.8109e-09 11 x̄2 7.0039e-09 6.3864e-09 11
1 x̄2 1.5968e-05 1.7764e-15 3 x̄2 1.5968e-05 1.7764e-15 3

Table 5.12 Fractional Riemann–Liouville R-LFC3 and Traub type results for f2(x) and
initial estimation x0 = −4.5.
α R-LFC3 method R-LFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄2 9.8736e-09 7.0076e-08 336 - 2.7288e-07 5.6848e-04 500
0.65 x̄2 8.5834e-09 5.4427e-08 109 - 5.3251e-08 8.9778e-05 500
0.7 x̄2 8.7672e-09 4.8355e-08 62 x̄2 9.9711e-09 1.1573e-05 435
0.75 x̄2 8.2043e-09 3.8044e-08 41 x̄2 9.9117e-09 4.3496e-06 215
0.8 x̄2 8.8048e-09 3.2773e-08 29 x̄2 9.5765e-09 1.5662e-06 105
0.85 x̄2 5.8278e-09 1.6239e-08 22 x̄2 9.7086e-09 5.6297e-07 52
0.9 x̄2 6.3132e-09 1.1648e-08 16 x̄2 8.1865e-09 1.5588e-07 25
0.95 x̄2 6.5338e-09 5.9578e-09 11 x̄2 8.0857e-09 3.4712e-08 12
1 x̄2 1.5968e-05 1.7764e-15 3 x̄2 1.1681e-05 3.5527e-15 3

Table 5.13 Fractional Caputo Newton type results for f3(x) and initial estimation
x0 = 0.2.
α CFN1 method CFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 9.2247e-04 4.6835e-04 500 x̄1 2.5158e-08 2.6106e-09 8
0.91 - 4.1587e-04 2.1047e-04 500 x̄1 1.351e-08 1.2569e-09 8
0.92 - 1.5472e-04 7.8089e-05 500 x̄1 8.8464e-08 7.2879e-09 7
0.93 - 4.374e-05 2.2023e-05 500 x̄1 4.5591e-08 3.2741e-09 7
0.94 - 8.1878e-06 4.1145e-06 500 x̄1 2.1227e-08 1.3017e-09 7
0.95 - 7.9228e-07 3.975e-07 500 x̄1 1.7783e-07 9.0542e-09 6
0.96 - 2.4154e-08 1.2102e-08 500 x̄1 7.3682e-08 2.9901e-09 6
0.97 x̄1 2.1421e-08 8.6918e-09 17 x̄1 2.3997e-08 7.2773e-10 6
0.98 x̄1 2.2259e-08 6.4645e-09 11 x̄1 2.5831e-07 5.2033e-09 5
0.99 x̄1 6.6485e-08 9.7837e-09 7 x̄1 4.0319e-08 4.0463e-10 5
1 x̄1 1.5194e-08 0 4 x̄1 1.5194e-08 0 4
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Table 5.14 Fractional Caputo Chebyshev type results for f3(x) and initial estimation
x0 = 0.2.
α CFC1 method CFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 0.002361 0.0011986 500 - 0.0022881 0.001165 500
0.91 - 0.0010717 5.4235e-04 500 - 0.0010399 5.2739e-04 500
0.92 - 4.0137e-04 2.0257e-04 500 - 3.9006e-04 1.9715e-04 500
0.93 - 1.1420e-04 5.7503e-05 500 - 1.1119e-04 5.6043e-05 500
0.94 - 2.1513e-05 1.0811e-05 500 - 2.0995e-05 1.056e-05 500
0.95 - 2.0945e-06 1.0509e-06 500 - 2.0497e-06 1.0287e-06 500
0.96 - 6.4237e-08 3.2188e-08 500 - 6.3067e-08 3.1606e-08 500
0.97 x̄1 2.2373e-08 9.4323e-09 19 x̄1 1.7769e-08 7.521e-09 19
0.98 x̄1 2.9223e-08 8.7347e-09 11 x̄1 2.1022e-08 6.2973e-09 11
0.99 x̄1 2.3787e-08 3.8697e-09 7 x̄1 5.1375e-08 7.9327e-09 6
1 x̄1 0.0023015 4.0565e-09 2 x̄1 0.0023015 4.0565e-09 2

Table 5.15 Fractional Caputo CFC3 and Traub type results for f3(x) and initial estima-
tion x0 = 0.2.
α CFC3 method CFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 0.0021509 0.001092 500 x̄1 3.1633e-07 9.2854e-09 5
0.91 - 9.8481e-04 4.9839e-04 500 x̄1 1.7542e-07 4.3293e-09 5
0.92 - 3.7211e-04 1.878e-04 500 x̄1 9.0552e-08 1.8388e-09 5
0.93 - 1.0683e-04 5.3792e-05 500 x̄1 4.2699e-08 6.9418e-10 5
0.94 - 2.0309e-05 1.0206e-05 500 x̄1 1.79e-08 2.2469e-10 5
0.95 - 1.9957e-06 1.0013e-06 500 x̄1 7.0013e-07 6.4561e-09 4
0.96 - 6.1784e-08 3.0958e-08 500 x̄1 2.9042e-07 1.8294e-09 4
0.97 x̄1 2.1482e-08 9.0607e-09 19 x̄1 9.4541e-08 3.6228e-10 4
0.98 x̄1 2.7664e-08 8.2823e-09 11 x̄1 1.9964e-08 3.7599e-11 4
0.99 x̄1 1.9499e-08 3.203e-09 7 x̄1 2.7685e-06 1.5139e-09 3
1 x̄1 0.0023015 4.0565e-09 2 x̄1 1.7116e-08 0 3

In Table 5.15, the Traub type method requires fewer iterations to con-
verge than Chebyshev type methods with Caputo derivative, for the same
value of x0 and the same values of α, and also requires lower values of α to
converge.

We can see that Chebyshev type methods (Table 5.17) require fewer
iterations to converge than Newton type methods (Table 5.16) with
Riemann–Liouville derivative, for the same value of x0 and the same values
of α. In this case, Chebyshev type methods require the same values of α as
Newton type methods to converge.

In Table 5.18, Chebyshev type methods require fewer iterations to con-
verge than the Traub type method with Riemann–Liouville derivative, for
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Table 5.16 Fractional Riemann–Liouville Newton type results for f3(x) and initial esti-
mation x0 = 0.2.
α R-LFN1 method R-LFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 2.3837e-07 1.0176e-04 500 - 6.7672e-07 3.7289e-04 500
0.91 - 2.2269e-07 9.7116e-05 500 - 5.7799e-07 3.1534e-04 500
0.92 - 2.0596e-07 9.1637e-05 500 - 4.8744e-07 2.6335e-04 500
0.93 - 1.8797e-07 8.5216e-05 500 - 4.0451e-07 2.1646e-04 500
0.94 - 1.6846e-07 7.7728e-05 500 - 3.2865e-07 1.7423e-04 500
0.95 - 1.4717e-07 6.9027e-05 500 - 2.5931e-07 1.3628e-04 500
0.96 - 1.2373e-07 5.8939e-05 500 - 1.9576e-07 1.0215e-04 500
0.97 - 9.768e-08 4.7242e-05 500 - 1.33e-07 7.036e-05 500
0.98 - 6.3507e-08 3.2418e-05 500 - 9.0754e-08 4.5746e-05 500
0.99 - 3.7563e-08 1.8423e-05 500 - 4.2567e-08 2.1369e-05 500
1 x̄1 1.5194e-08 0 4 x̄1 1.5194e-08 0 4

Table 5.17 Fractional Riemann–Liouville Chebyshev type results for f3(x) and initial
estimation x0 = 0.2.
α R-LFC1 method R-LFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 2.4356e-07 1.0297e-04 500 - 2.4201e-07 1.0263e-04 500
0.91 - 2.2756e-07 9.8266e-05 500 - 2.2612e-07 9.7948e-05 500
0.92 - 2.1051e-07 9.2731e-05 500 - 2.0915e-07 9.2421e-05 500
0.93 - 1.922e-07 8.625e-05 500 - 1.9089e-07 8.5944e-05 500
0.94 - 1.7236e-07 7.8693e-05 500 - 1.711e-07 7.8392e-05 500
0.95 - 1.507e-07 6.9915e-05 500 - 1.4951e-07 6.9623e-05 500
0.96 - 1.269e-07 5.9744e-05 500 - 1.258e-07 5.9469e-05 500
0.97 - 1.0054e-07 4.7974e-05 500 - 9.9576e-08 4.7729e-05 500
0.98 - 7.1115e-08 3.4351e-05 500 - 7.0357e-08 3.4155e-05 500
0.99 - 3.7955e-08 1.8537e-05 500 - 3.7501e-08 1.8417e-05 500
1 x̄1 0.0023015 4.0565e-09 2 x̄1 0.0023015 4.0565e-09 2

the same value of x0 and the same values of α, and the same values of α to
converge.

We also note that, in general, methods with Caputo derivative (Ta-
bles 5.13–5.15) require lower values of α to converge than methods with
Riemann–Liouville derivative (Tables 5.16–5.18). In this case, iterations are
not compared because methods with Riemann–Liouville derivative only
converge for classical ones.

Our last test function is f4(x) = sin(10x)−0.5x+0.2 with real roots x̄1 =
−1.4523, x̄2 = −1.3647, x̄3 = −0.87345, x̄4 = −0.6857, x̄5 = −0.27949,
x̄6 = −0.021219, x̄7 = 0.31824, x̄8 = 0.64036, x̄9 = 0.91636, x̄10 = 1.3035,
x̄11 = 1.5118, x̄12 = 1.9756, and x̄13 = 2.0977.
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Table 5.18 Fractional Riemann–Liouville R-LFC3 and Traub type results for f3(x) and
initial estimation x0 = 0.2.
α R-LFC3 method R-LFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.9 - 2.4304e-07 1.0285e-04 500 - 3.6114e-07 1.993e-04 500
0.91 - 2.2711e-07 9.8161e-05 500 - 3.0667e-07 1.6748e-04 500
0.92 - 2.1014e-07 9.2642e-05 500 - 2.5688e-07 1.3892e-04 500
0.93 - 1.9189e-07 8.6175e-05 500 - 2.1135e-07 1.133e-04 500
0.94 - 1.7211e-07 7.8633e-05 500 - 1.6986e-07 9.0407e-05 500
0.95 - 1.5052e-07 6.9869e-05 500 - 1.3232e-07 7.0024e-05 500
0.96 - 1.2677e-07 5.9712e-05 500 - 9.8323e-08 5.1901e-05 500
0.97 - 1.0046e-07 4.7954e-05 500 - 6.319e-08 3.466e-05 500
0.98 - 7.1075e-08 3.4341e-05 500 - 4.8178e-08 2.3718e-05 500
0.99 - 3.7943e-08 1.8534e-05 500 - 2.2946e-08 1.1127e-05 500
1 x̄1 0.0023015 4.0565e-09 2 x̄1 1.7116e-08 0 3

Table 5.19 Fractional Caputo Newton type results for f4(x) and initial estimation
x0 = 3.
α CFN1 method CFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄12 8.408e-09 1.8613e-08 36 - 1.4339e-07 2.6898e-04 500
0.65 x̄12 9.1296e-09 1.6527e-08 24 x̄13 9.8912e-09 5.2792e-06 169
0.7 x̄10 8.4237e-09 3.0203e-08 63 x̄13 9.9073e-09 3.0502e-06 121
0.75 x̄12 4.0708e-09 4.2781e-09 10 x̄12 9.868e-09 4.5063e-06 235
0.8 x̄10 9.976e-09 2.3499e-08 22 x̄11 9.5351e-09 1.7694e-06 76
0.85 x̄10 4.7561e-09 8.2545e-09 18 x̄9 9.1437e-09 9.5832e-07 51
0.9 x̄4 4.3677e-09 1.0885e-08 18 x̄2 9.5876e-09 2.2755e-07 42
0.95 - 0.1703 0.83083 500 x̄15 9.9619e-09 1.3042e-06 81
1 - 0.22037 2.0846 500 - 0.22037 2.0846 500

In some cases, the methods can converge to the root x̄14 = 22.146 +
0.30774i or x̄15 = 20.89 + 0.30176i or x̄16 = 2.6655 + 0.051224i, which
may be far from the initial estimation used.

We can see that Chebyshev type methods (Table 5.20) do not work
for this function with Caputo derivative, while Newton type methods (Ta-
ble 5.19) work even for lower values of α.

In Table 5.21, we can observe the same behavior of the Chebyshev type
method compared with the Traub type method.

The same behavior seen in Tables 5.19–5.21 is observed in Ta-
bles 5.22–5.24, respectively.

We note that the number of iterations is not necessarily reduced when
α increases, and also that the methods converge to different roots. Let us
also remark that in Tables 5.19, 5.21, 5.22, and 5.24, the classical Newton
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Table 5.20 Fractional Caputo Chebyshev type results for f4(x) and initial estimation
x0 = 3.
α CFC1 method CFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - - - - - - - -
0.65 - - - - - - - -
0.7 - - - - - - - -
0.75 x̄2 9.3632e-09 2.9659e-08 67 - - - -
0.8 - - - - - - - -
0.85 - - - - - - - -
0.9 - - - - - - - -
0.95 - - - - - - - -
1 - - - - - - - -

Table 5.21 Fractional Caputo CFC3 and Traub type results for f4(x) and initial estima-
tion x0 = 3.
α CFC3 method CFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄12 8.0613e-09 1.7846e-08 43 - 5.3605e-08 9.8416e-05 500
0.65 - 1.9874e-05 8.3012e-05 500 - - - -
0.7 - - - - x̄4 9.9241e-09 7.4684e-06 224
0.75 - - - - x̄12 9.7623e-09 2.6495e-06 142
0.8 - - - - x̄9 9.7441e-09 1.3325e-06 52
0.85 - - - - x̄7 8.3509e-09 5.3216e-07 32
0.9 - - - - x̄9 8.5295e-09 1.7466e-07 23
0.95 - - - - - - - -
1 - - - - - 0.25782 1.8154 500

Table 5.22 Fractional Riemann–Liouville Newton type results for f4(x) and initial esti-
mation x0 = 3.
α R-LFN1 method R-LFN2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 x̄12 7.7242e-09 1.6581e-08 33 - 1.4235e-07 2.7305e-04 500
0.65 x̄12 7.3338e-09 1.2864e-08 23 x̄13 9.8532e-09 4.9292e-06 158
0.7 - 0.18129 6.9714e+07 500 x̄13 9.9595e-09 2.9517e-06 116
0.75 x̄12 3.7455e-09 3.8012e-09 12 x̄12 9.8631e-09 4.5403e-06 238
0.8 - 0.030964 0.15115 500 x̄11 9.9545e-09 1.817e-06 77
0.85 x̄11 6.0787e-09 1.913e-08 32 x̄9 9.2941e-09 9.6601e-07 51
0.9 x̄4 4.9751e-09 1.243e-08 15 x̄2 9.0915e-09 2.162e-07 42
0.95 - 0.28537 2.397 500 x̄14 6.5531e-09 9.4542e-07 51
1 - 0.22037 2.0846 500 - 0.22037 2.0846 500
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Table 5.23 Fractional Riemann–Liouville Chebyshev type results for f4(x) and initial
estimation x0 = 3.

α R-LFC1 method R-LFC2 method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - - - - - - - -
0.65 - 0.31169 37.257 500 - - - -
0.7 x̄2 9.8807e-09 3.6e-08 476 - - - -
0.75 - - - - - - - -
0.8 - - - - - - - -
0.85 - - - - - - - -
0.9 - - - - - - - -
0.95 - - - - - - - -
1 - - - - - - - -

Table 5.24 Fractional Riemann–Liouville R-LFC3 and Traub type results for f4(x) and
initial estimation x0 = 3.
α R-LFC3 method R-LFT method

x̄ |xk+1 − xk| |f (xk+1)| iter x̄ |xk+1 − xk| |f (xk+1)| iter
0.6 - - - - - - - -
0.65 - 0.26732 2.1206e+02 500 x̄16 9.9621e-09 1.2812e-05 450
0.7 - - - - x̄13 9.8235e-09 1.7922e-06 74
0.75 - - - - x̄12 9.8996e-09 2.6985e-06 143
0.8 x̄12 1.106e-08 7.6287e-09 13 x̄9 9.5075e-09 1.2959e-06 52
0.85 - - - - x̄3 8.282e-09 3.3276e-07 31
0.9 - - - - x̄6 6.3651e-09 9.7585e-08 18
0.95 - - - - - - - -
1 - - - - - 0.25782 1.8154 500

and Traub methods (α = 1) show the worst performance, as they do not
converge to any of the solutions in the maximum number of iterations.
On the contrary, proposed methods for α < 1 are able to reach different
solutions within a reasonable number of iterations.

5.4.1 Dependence on initial estimations
Now, we are going to analyze the dependence on the initial estimation of
the Newton, Chebyshev and Traub type methods by using convergence
planes defined in [17]. In them (see, for example, Fig. 5.1(a)) the abscissa
axis corresponds to the starting guess and the fractional index α appears
in the ordinate axis. A mesh of 400 × 400 points is used. Points that are
not painted in black color correspond to those pairs of initial estimations
and values of α that converge to one of the roots with a tolerance of 10−3.
Different colors mean convergence to different roots. Therefore, when a
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point is painted in black, this shows that no root is found in a maximum
of 500 iterations. Moreover, for all convergence planes, the percentage of
convergent pairs (x0, α) is calculated, in order to compare the performance
of the methods. The code used is a modification of that presented in [8].

In Fig. 5.1, we can see for f1(x) that Chebyshev type methods have a bit
higher percentage of convergence than Newton and Traub type methods,
not only with Caputo derivative, but also with Riemann–Liouville deriva-
tive. We can also see that methods with Caputo derivative have a slightly
higher percentage of convergence than methods with Riemann–Liouville
derivative.

In Fig. 5.2, we can see for f2(x) that Chebyshev type methods have a
higher percentage of convergence than Newton and Traub type methods,
not only with Caputo derivative, but also with Riemann–Liouville deriva-
tive. We also note that methods with Riemann–Liouville derivative have a
bit higher percentage of convergence than methods with Caputo derivative.

In Fig. 5.3, we can see for f3(x) that Chebyshev type methods have a
lower percentage of convergence than Newton and Traub type methods
with Caputo derivative. We can also see that methods with Riemann–
Liouville derivative have a much lower percentage of convergence than
methods with Caputo derivative because these do not work for this func-
tion with Riemann–Liouville derivative.

In Fig. 5.4, we can see for f4(x) that Chebyshev type methods have
a similar percentage of convergence to Newton and Traub type methods,
not only with Caputo derivative, but also with Riemann–Liouville deriva-
tive. We also note that methods with Riemann–Liouville derivative have a
similar percentage of convergence to methods with Caputo derivative.

5.5. Concluding remarks

Four fractional Newton type methods, six fractional Chebyshev type
methods and two fractional Traub type schemes have been designed by
using Caputo and Riemann–Liouville derivatives. The convergence prop-
erties of procedures CFN2, R-LFN2 and CFT, R-LFT imply always (at
least) linear convergence, reaching order 1 + α and 1 + 2α, respectively.
Although the interest in this kind of method is mainly theoretical, some
numerical tests have been done, and the dependence on the initial estima-
tion has been analyzed.

It can be concluded that Chebyshev type methods show a better be-
havior for polynomials, whereas Newton and Traub type methods show
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Figure 5.1 Convergence planes of proposed methods on f1(x) with −3 ≤ x0 ≤ 3.
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Figure 5.2 Convergence planes of proposed methods on f2(x) with −6 ≤ x0 ≤ 6.
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Figure 5.3 Convergence planes of proposed methods on f3(x) with −10 ≤ x0 ≤ 10.
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Figure 5.4 Convergence planes of proposed methods on f4(x) with −5 ≤ x0 ≤ 5.
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a better behavior for transcendent functions. Also, Traub type procedures
improve Newton type ones and Chebyshev type methods with order 3α

improve those with order 2α, not only because they require fewer iterations,
but also because they have higher percentages of convergence. Additionally,
a better performance of iterative methods based on Caputo derivatives, with
respect to Riemann–Liouville-based schemes, has been observed.

The test shows that, for some problems, the methods using fractional
derivatives reach different solutions with the same initial approximation. In
addition, in the case of example f4(x), the fractional iterative schemes work
better than the classical Newton and Traub methods (α = 1), which do not
converge within 500 iterations.
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6.1. Introduction

6.1.1 Motivation and background
Quadrotors are among the most widespread unmanned aerial vehicles
(UAVs) among flying robots thanks to the simple frame design, low-cost
development, and relatively simple usage and operation. They are mainly
composed from a rigid frame attached to four rotors, mostly chosen as
brushless DC motor due to their high torque characteristic. The quadrotor
generates lift using four propellers mounted on the motors (two clockwise
and two counterclockwise blades).

This system is energized by a lithium polymer battery, sized according
to the total weight-to-thrust ratio. The vehicle has enormous capabilities
in many areas and disciplines, such as military intervention, where it can
autonomously explore hostile areas and gather useful information for real-
time human intervention, or even for postanalysis. It can be used also in
civil areas such as agriculture, where swarms of drones cooperate to opti-
mize yield production by monitoring and differentiating between healthy
and unhealthy plants.

Applications of this platform are expanding continuously, which ex-
plains how today’s drone industry is worth billions of dollars and expected
to grow significantly in the coming years.

Fractional-Order Modeling of Dynamic Systems with
Applications in Optimization, Signal Processing, and
Control
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In the research area, quadrotors also serve as an essential platform to
test different control architectures since they are characterized by non-
linear dynamics [14,15], and they are easily affected by disturbances and
uncertainties [19,20]. Thus, a robust controller is strongly recommended to
achieve desirable performance [21].

This chapter addresses the problem of path following by introducing two
fractional-order sliding mode controllers (FOSMCs) to steer the vehicle
in a disturbed and uncertain environment [18], where the first controller,
FOSMC, uses a new reaching law to stabilize the drone, while the sec-
ond controller, fractional-order fast terminal SMC (FOFTSMC), targets a
robust control convergence and alleviates the chattering problem [22]. In
the next subsection we highlight some related work and discuss the control
strategy efficacy with respect to what has been cited.

6.1.2 Literature review
A group of researchers propose an architecture derived from adaptive neural
networks using a PID SMC and a robust integral signum of error method
to stabilize the quadrotor system in [24]. This technique guarantees faster
convergence for attitude variables to reach their desirable references, while
the RPD-SMC takes care of the problem of position tracking. Since its
architectures combine a simple PD with a robust SMC and use RBNNS to
approximate arbitrary functions, this technique can be easily implemented
in a real quadcopter system. The problem of trajectory tracking of a quad-
copter with measurement delay and time-varying disturbances has been
addressed in [36]. The work uses a nominal backstepping controller (NBC)
with a compensator. Estimated values of disturbances and time measure-
ment delays are used by the NBC to compensate their effects and alleviate
the undesirable impact on trajectory tracking performance. A double ac-
tive disturbance rejection architecture in [37] deals with the nonlinearity
problem, coupling, and sensitivity to disturbances. The state observer is
implemented to compensate for system uncertainties, which leads to a
significant improvement in system response. A control structure of a quad-
copter system in the discrete-time domain consists of a state observer and a
predictor is studied in [16]. It shows enhanced performance by alleviating
the effect of delays (in inputs and outputs) and actively rejecting distur-
bances by compensation. Using matrix inequalities, the maximum delay is
evaluated in order to guarantee system stability. Another controller struc-
ture (PPC) is used to stabilize the drone with disturbances coming from
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unknown sources such as payloads and wind gust [17]. The outer loop
is controlled by the PPC scheme, while the inner loop is stabilized using
an adaptive controller. A transformation of the underactuated quadcopter
system into a fully actuated one is shown in [25]. To steer the UAV back-
stepping SMCs are adopted in this case, while a feedforward compensator
based on ESO takes care of the rejection of disturbances. A new technique
addresses the trajectory tracking problem by applying hyperbolic functions
which leads to a better tracking performance [2]. Based on model predictive
control (MPC) theory a control scheme is developed to stabilize the UAV
[3]. System dynamics are obtained based on a linearized system dynamic for
each operating point. Two variants are considered: an integral MPC and a
regular MPC, respectively, for translational and attitude subsystems. The
clear advantage of this technique is the ability to steer the quadcopter in
an uncertain environment with physical constraints. Based on dynamic in-
version, a finite-time control structure is applied for the X-Y translational
subsystem, while the attitude subsystem is stabilized using a robust vari-
ant of the SMC technique [4]. This latter shows strong robustness against
model uncertainties and disturbances. A new adaptive controller structure
takes into account the presence of external disturbances in [5]. It assumes
generally that the geometric center is not aligned with the center of mass
(Cg) which suppresses its effect on the closed-loop system performance.
The controller takes also into account parameter uncertainties in the model
dynamics (for instance Cg). The problem of tracking the trajectory has been
validated experimentally using a state feedback adaptation law while the ve-
hicle is subjected to external disturbances [6]. This latter is estimated using
a smooth projector operator. Experimental design of a global controller for
a quadcopter path following problem in presence of constant wind gust
disturbances has been treated in [7]. An adaptive state feedback controller
stabilizes altitude and attitude subsystems, ensures global convergence in
closed-loop configuration, and guarantees a maximum bound constraint
on control input command. This technique leads to a significant control
action improvement. A new technique makes use of quantum technology
to stabilize a quadcopter UAV in [9]. The controller deals with unknown
actuator failures and external disturbances. A hardware validation using a
Quanser 3-DOF system is proposed to evaluate system performance. The
problem of trajectory tracking using a nonlinear resilient control scheme
has been developed using a backstepping approach with the help of a dis-
turbance observer [8]. The resilient controller deals with the problem of
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actuator performance degradation. Other researchers investigate the limits
of classical design techniques in practice, which can be affected by external
disturbances, measurement noise, and time delays [13]. The authors pro-
pose a controller based on a modified disturbance rejection in presence
of input delays and external disturbances. A dynamical model is identified
including input delays at first. A tracking differentiator provides smooth
profiles for the references, while an observer copes with state estimation
with input delays and a predictor estimates disturbances. The nonlinear PD
controller deals with the tracking problem. An integral backstepping (IB)
SMC (BS-SMC) has been implemented in order to steer a quadcopter sys-
tem. The work also claims to suppress the chattering phenomena using this
technique. The tracking is tested under constant and unknown stochastic
disturbances. An augmented SMC with fault-tolerant feature has been im-
plemented experimentally with faulty actuators and damaged propellers to
evaluate tracking performance [23]. Two passive and active variants of the
controller are implemented and compared in order to show their pros and
cons and application considerations and limitations. A hybrid controller is
adopted to stabilize the drone in [26]. The control scheme alleviates the
chattering phenomena and guarantees convergence with a prescribed tim-
ing. Two controllers coupled with each other are used to steer the attitude
subsystem, while an adaptive PID controller takes care of the translational
subsystem with major features like lack of chattering and robustness against
disturbances. The bound of the unknown disturbances is estimated with
an adaptive controller associated with a novel fuzzy adaptive range. A fault
detection and isolation technique for second-order integrators studies the
formation of a set of drones [29]. The disturbed observer is implemented
based on dynamical models. The drones communicate their states to each
other, which update the states of the disturbed observer. Based on this in-
formation two disturbed observers are designed (fault detection and fault
isolation). The controller of each drone is robust against self-faults and other
vehicles’ faults. An integral predictive controller coupled with a nonlin-
ear structure controls a quadcopter system in [30]. MPC takes care of the
position tracking problem, while an H∞ nonlinear controller controls the
attitude subsystem. An integral position error is taken into account in or-
der to ensure a null steady-state error when disturbances are present. The
controller guarantees convergence and deals with parametric uncertain-
ties and unmodeled dynamics. A feedback trajectory tracking controller
mixed with an extended state observer (ESO) with dynamic surface con-
trol (DSC) has been applied to a quadrotor system [31]. The ESO estimates
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state variables and disturbances in the inner loop path. The position and at-
titude controllers are synthesized by the DSC and the estimated signal from
the ESO. A robust backstepping trajectory tracking feedback control law is
adopted for a quadcopter in an uncertain and disturbed environment [31].
The ESO estimates disturbances and measurable state variables for the inner
loop. A sigmoid tracking differentiator (STD) takes care of the computation
of the virtual command derivative. The desired performance is achieved
using minimal information due to the use of the STD. An attitude subsys-
tem has been described using the modified Rodrigues parameters (MRPs)
technique [32]. It divides the system in two subsystems. A backstepping
technique with disturbance observer and SMC stabilizes the drone globally
k-exponentially/uniformly. A disturbance rejection control scheme for the
inner loop subsystem in presence of disturbances and uncertainties (DOB)
has been adopted in [33]. The authors use a disturbance observer and a
feedback control law. The DOB optimized by H∞ is used to compensate
attitude dynamics by the nominal plant; this latter is used for the feedback
controller. The trajectory tracking problem with input saturation is high-
lighted in [34]. Torque and thrust controllers are implemented to steer the
UAV in the desirable trajectory with input saturation constraint. To sta-
bilize the UAV under gust wind, researchers in [35] propose an ADRC
framework control for the attitude subsystem coupled with a PD struc-
ture for the outer subsystem. Disturbances are estimated by the ESO. An
adaptive law based on SMC techniques stabilizes the quadrotor with the
problem of thrust constraint and inertial parameter uncertainty [38]. An
auxiliary dynamic system is used for the outer loop in the control design
phase in order to choose controller parameters with respect to the thrust
constraint problem. The tracking trajectory problem using a hierarchical
control technique under uncertain inertial parameters has been studied in
[39]. The outer loop is designed in a way that the convergence rate of the
mass estimation goes to the actual value.

6.1.3 Contributions
Control problems of the UAV system subjected to time-varying distur-
bances and parametric uncertainties with stability analysis are addressed.
This chapter proposes two noninteger controllers using an SMC approach.
The proposed sliding mode surfaces for both attitude/position subsystems
are developed with the fractional-order operators. The stability of the
quadrotor system is ensured using Lyapunov theory. Moreover, new suf-
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ficient switching control laws are derived, which can easily compensate for
the upper bound of the disturbances affecting each degree of freedom. Two
numerical simulations for the quadrotor model using the proposed con-
trollers are studied to show the effectiveness of proposed fractional-order
controllers based on the SMC technique.

6.1.4 Chapter organization
The chapter is structured as follows. In Section 6.2, preliminaries on
fractional-order derivatives are provided. The UAV plant model is stud-
ied in Section 6.3. Section 6.4 is dedicated to the design of the controllers
in presence of time-varying disturbances using a Lyapunov function. Sec-
tion 6.5 demonstrates the effectiveness of the proposed methods. Finally,
concluding remarks on the proposed controllers are given in Section 6.6.

6.2. Preliminary results

Two definitions most used for fractional-order derivatives for a given
function �(t) are the Riemann–Liouville (RL) definition and the Caputo
(C) definition [12,27]. The Riemann–Liouville definition is defined as [12,
27]

RL
a Dβ

τ �(τ) = 1
�(n − β)

dn

dτ n

∫ τ

a

�(ρ)

(τ − ρ)β−n+1 dτ. (6.1)

The Caputo definition is given as [12,28]

C
a Dβ

τ �(τ) = 1
�(β − n)

∫ τ

a

�(n)(ρ)

(τ − ρ)β−n+1 dρ, (6.2)

where n ∈ N
∗, β is the order of the derivative with (n − 1) < β < n, and

�(.) represents the Gamma function, defined by

�(z) =
∫ ∞

0
e−τ τ z−1dτ. (6.3)

The Riemann–Liouville and Caputo operators are two definitions of the
fractional-order derivative. The notation RLDα and CDα for Riemann–
Liouville and Caputo operators, respectively, are replaced by Dα in the rest
of the chapter.
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Figure 6.1 Representation of a quadrotor in fixed and body frames.

6.3. Quadrotor system dynamics

Buildup of the UAV dynamical model is addressed using Newton–
Euler formalism. Two fixed frames are considered for this purpose: an
inertial referential frame � = [X�,Y�,Z�] and frame β = [Xβ,Yβ,Zβ]
(Fig. 6.1). The UAV center of mass is located in the � frame using the
vector ξ = [x,y,z]T , while for the body fixed frame the Euler angles are
considered ρ = [φ, θ,ψ]T . The range for the Euler angles is given by:

The roll angle corresponds to the rotation with respect to the x-axis, ±π/2.
The pitch angle corresponds to the rotation with respect to the y-axis,
±π/2.
The yaw angle corresponds to the rotation with respect to the z-axis, ±π .

Some assumptions should be considered before constructing the plant
model:
• The center of gravity is aligned with the center of the body mass.
• The quadcopter body axes are considered to be principal axes.
• The ground effect acting on the quadcopter is neglected.
• Drag and thrust are directly related to the velocity of the rotors using

square function.
• The quadcopter system is considered as a rigid body.
In order to represent rotational and translational dynamics, a rotation ma-
trix is constructed from three successive rotation matrices for Euler angles
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[1] [10]. The transformation is obtained from multiplication of these ma-
trices:

R1 =
⎡
⎢⎣ 1 0 0

0 c(φ) −s(φ)

0 s(φ) c(φ)

⎤
⎥⎦ ; R2 =

⎡
⎢⎣ c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)

⎤
⎥⎦ ;

R3 =
⎡
⎢⎣ c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0
0 0 1

⎤
⎥⎦ ,

where c(angle) and s(angle) refer respectively to cosine(angle) and sine(angle)
functions.

Initially, the body fixed frame is aligned with the referential frame. A ro-
tation around the x-axis followed by a second rotation around the y-axis and
a final rotation around z-axis constructs the overall rotation matrix R. Mul-
tiplication of elementary rotation in the order R3R2R1 results in a rotation
matrix describing the overall transformation [11].

Angular velocities are linked to Euler angles by the following equations:

ω =
⎡
⎢⎣ φ̇

0
0

⎤
⎥⎦ + RT

1

⎡
⎢⎣ 0

θ̇

0

⎤
⎥⎦ + (R2R1)

T

⎡
⎢⎣ 0

0
ψ̇

⎤
⎥⎦ ,

ω =
⎡
⎢⎣ 1 0 −s(θ)

0 c(φ) −s(φ)c(θ)

0 −s(φ) c(φ)c(θ)

⎤
⎥⎦

⎡
⎢⎣ φ̇

θ̇

ψ̇

⎤
⎥⎦ .

The net force considered in the book chapter is divided in the following
force elements:

fi = bω2
i represents the generated thrust due to the motor rotational speed,

where i represents the four motors and b represents an aerodynamic con-
stant;
Fp = dω2

i represents the drag force due to the rotation of the propellers,
where d is a constant related to the construction of the props;
Fk = Kf 1ν is the drag due to the drone movement in 3D space, where Kf 1

is a constant coefficient.

The net moment can be divided in the following elementary mo-
ments:
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Mroll = lb(ω2
4 − ω2

2) and Mpitch = lb(ω2
3 − ω2

1) moments come from the differ-
ence in forces f4, f2 for roll angle and forces f3, f1 for pitch angle, where the
subscript refers to an index, while the superscript refers to the power;
Myaw = d(ω2

1 + ω2
3 − ω2

2 − ω2
4) comes from the reaction torque for each pro-

peller;
Mfriction = Kf 2ω

2 comes from the aerodynamic friction proportional to the
vehicle angular velocity.

The gyroscopic effect can be formulated from two sources, one coming
from the props rotation and the other from the rotation of the entire drone.

The gyroscopic moment from propellers is given by the following equa-
tion:

Mprops =
4∑
1

ω ∧ Jr
[

0 0 (−1)i+1ωi

]T
,

where Jr represents the inertia of the rotors.
The gyroscopic effect from the drone movement is as follows: Mdrone =

ω ∧ Iω, where I represents the moment of inertia matrix.
Translational and rotational equations of motion can be obtained using

Newton–Euler formalism: mξ̈ = �Fj, Iω = −ω ∧ Iω + �Mj, where Fj and
Mj represent respectively the net forces and net moments.

The system dynamics are given as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẍ
ÿ
z̈
φ̈

θ̈

ψ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Kf 1x
m ẋ + 1

muxU1 +DX (t)

−Kf 1y
m ẏ + 1

muyU1 +DY(t)

−Kf 1z
m ż + c(φ)c(θ)

m U1 − g +DZ(t)
I2−I3

I1
θ̇ ψ̇ − Jr

I1
θ̇ωr − Kf 2x

I1
φ̇2 + l

I1
U2 +D�(t)

I3−I1
I2

ψ̇φ̇ − Jr
I2

φ̇ωr − Kf 2y
I2

θ̇2 + l
I2
U3 +D�(t)

I1−I2
I3

θ̇ φ̇ − Kf 2z
I3

ψ̇2 + 1
I3
U4 +D�(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where U1 = bω2
i , for i = 1,2,3,4, U2 = (ω2

4 − ω2
2)bl, U3 = (ω2

3 − ω2
1)bl, U4 =

(ω2
1 −ω2

2 +ω2
3 −ω2

4)d, ux = c(φ)c(ψ)s(θ)+ s(φ)s(ψ), and uy = c(φ)s(ψ)s(θ)−
s(φ)c(ψ), where Dj(t) is an external disturbance acting on the UAV system.

6.4. Fractional-order SMC controllers for quadrotors

Two fractional-order controllers based on SMC and fast SMC are
designed for outer and inner loops of a UAV system. The overall schema is
illustrated in Fig. 6.2.
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Figure 6.2 Closed-loop control structure for translational and rotational subsystems.

6.4.1 FOSMC-FOFTSMC design mechanism
6.4.1.1 Translational subsystem controller using FOSMC-FOFTSMC

In this part, three fractional-order controllers will be presented for transla-
tional subsystems subjected to external disturbances. Signals for the position
subsystem are created as follows:

⎧⎪⎪⎨
⎪⎪⎩

VX = U1
m (sθ cφcψ + sφsψ),

VY = U1
m (sθ cφsψ − sφcψ),

VZ = −g + U1
m (cθ cφ).

(6.4)

After a simple calculation from Eq. (6.4), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U1 = m
√
VX

2 + VY
2 + (VZ + g)2,

φd = arctan(cos θd(
VX sinψd−VY cosψd

VZ+g )),

θd = arctan(
VX cosψd+VY sinψd

VZ+g ).

(6.5)

The tracking errors are defined as

⎡
⎢⎣Ex(t)

Ey(t)
Ez(t)

⎤
⎥⎦ =

⎡
⎢⎣x − xd

y − yd

z − zd

⎤
⎥⎦ , (6.6)
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and the time derivatives of these tracking errors are defined as

⎡
⎢⎣Ėx(t)

Ėy(t)
Ėz(t)

⎤
⎥⎦ =

⎡
⎢⎣ẋ − ẋd

ẏ − ẏd

ż − żd

⎤
⎥⎦ . (6.7)

The sliding surfaces for the position are as follows:

⎡
⎢⎣ σ7(t)

σ9(t)
σ11(t)

⎤
⎥⎦ =

⎡
⎢⎣λxEx(t) + Ėx(t)

λyEy(t) + Ėy(t)
λzEz(t) + Ėz(t)

⎤
⎥⎦ , (6.8)

where λx, λy, and λz are positive constants. The derivatives of (6.8) are

⎡
⎢⎣ σ̇7(t)

σ̇9(t)
σ̇11(t)

⎤
⎥⎦ =

⎡
⎢⎣λxĖx(t) + (ẍ − ẍd)

λyĖy(t) + (ÿ − ÿd)

λzĖz(t) + (z̈ − z̈d)

⎤
⎥⎦ . (6.9)

Forcing σ̇j = 0 (where j = 7, 9, or 11), translational subsystem control sig-
nals are formulated as

VeqX = Kf 1x

m
ẋ − λxĖx(t) + ẍd,

VeqY = Kf 1y

m
ẏ − λyĖy(t) + ÿd,

VeqZ = Kf 1z

m
ż + g − λzĖz(t) + z̈d.

(6.10)

The switching control laws are added to the equivalent control laws to
enhance robustness in disturbed and uncertain environments:

VswX = −ε7D
γ7
t sgn(σ7(t)) − h7σ7(t),

VswX = −ε9D
γ9
t sgn(σ9(t)) − h9σ9(t),

VswX = −ε11D
γ11
t sgn(σ11(t)) − h11σ11(t),

(6.11)

where εj, hj are nonzero positive coefficients and γj is a fractional order
satisfying 0 � γj < 1. Consequently, the ultimate controllers for the position



162 Moussa Labbadi et al.

subsystem are

VX = Kf 1x

m
ẋ − λxĖx(t) + ẍd − ε7D

γ7
t sgn(σ7(t)) − h7σ7(t),

VY = Kf 1y

m
ẏ − λyĖy(t) + ÿd − ε9D

γ 9
t sgn(σ9(t)) − h9σ9(t),

VZ = Kf 1z

m
ż + g − λzĖz(t) + z̈d − ε11D

γ11
t sgn(σ11(t)) − h11σ11(t).

(6.12)

Theorem 6.1. The translational part with the proposed controllers VX , VY , and
VZ should be asymptotically stable.

Proof. We choosing a Lyapunov function as

Vp = 1
2
σ7(t)2 + 1

2
σ9(t)2 + 1

2
σ11(t)2. (6.13)

The derivative of (6.13) is

V̇p = σ̇9(t)σ9(t) + σ̇11(t)σ11(t) + σ̇7(t)σ7(t)

= (−ẍd − Kf 1x

m
ẋ +DX (t) + λxĖx(t) + VX )σ7(t)

+ σ9(t)(−ÿd − Kf 1y

m
ẏ +DY(t) + λyĖy(t) + VY)

+ (−Kf 1z
ż
m

− z̈d +DZ(t) + λzĖz(t) + VZ)σ11(t)

= σ7(t)[−ẍd − Kf 1x

m
ẋ + λxĖx(t) +DX (t)

+ (
Kf 1x

m
ẋ − λxĖx(t) + ẍd − h7σ7(t) − ε7D

γ7
t sgn(σ7(t)))]

+ σ9(t)[−ÿd − Kf 1y

m
ẏ + λyĖy(t) +DY(t)

+ (
Kf 1y

m
ẏ − λyĖy(t) + ÿd − ε9D

γ9
t sgn(σ9(t)) − h9σ9(t))]

+ σ11(t)[−z̈d − Kf 1z
ż
m

+DZ(t) + (Kf 1z
ż
m

+ g − λzė11

+ z̈d − h11σ11(t)) + Ėz(t)λz − ε11D
γ11
t sgn(σ11(t))]

= σ7(t)[−h7σ7(t) − ε7D
γ7
t sgn(σ7(t)) +DX (t)] + σ9(t)[−h9σ9(t)

− ε9D
γ9
t sgn(σ9(t)) +DY(t)] + σ11(t)[−h11σ11(t)

− ε11D
γ11
t sgn(σ11(t)) +DZ(t)],

(6.14)
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with

σi(t)εiD
γi
t sgn(σi(t)) − σi(t)DI(t) � 0. (6.15)

From (6.15), and (6.14) it can be simplified to

V̇p ≤ −h9σ9(t)2 − h11σ11(t)2 − h7σ7(t)2

≤ 0,
(6.16)

meaning that the translational path is stable according to the stability anal-
ysis.

6.4.1.2 Rotational subsystem controller using FOSMC-FOFTSMC

To enhance the response of the UAV attitude, fractional-order FT-SMC
surfaces are considered.

We define attitude errors as follows:⎡
⎢⎣Eψ(t)

Eθ (t)
Eφ(t)

⎤
⎥⎦ =

⎡
⎢⎣ψ − ψd

θ − θd

φ − φd

⎤
⎥⎦ . (6.17)

Using the fractional operators, the sliding mode surfaces of the attitude are

⎡
⎢⎣σ1(t)

σ3(t)
σ5(t)

⎤
⎥⎦ =

⎡
⎢⎣ Dα1+1

t Eφ(t) + m1Eφ(t) + n1Eφ(t)b1/a1

Dα3+1
t Eθ (t) + m3Eθ (t) + n3Eθ (t)b3/a3

Dα5+1
t Eψ(t) + m5Eψ(t) + n5Eψ(t)b5/a5

⎤
⎥⎦ , (6.18)

where m1, n1 are positive parameters. The term αj is included in the (0,1)

interval. The FOSM time derivative is represented as

⎡
⎢⎣σ̇1(t)

σ̇3(t)
σ̇5(t)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

Dα1
t Ëφ(t) + m1Ėφ(t) + n1b1

a1
Eφ(t)(1− b1

a1
)Ėφ(t)

Dα3
t Ëθ (t) + m3Ėθ (t) + n3b3

a3
Eθ (t)

(1− b3
a3

)Ėθ (t)

Dα5
t Ëψ(t) + m5Ėψ(t) + n5b5

a5
Eψ(t)(1− b5

a5
)Ėψ(t)

⎤
⎥⎥⎥⎦ . (6.19)

The control laws are written as follows:

U2 = I1[−{θ̇ ψ̇
(I2 − I3)

I1
− Ir

I1
�r θ̇ − Kf 2x

I1
φ̇2} − D1D

γ 1
t sgn(σ1(t)))

− D−α1
t (m1Ėφ(t) + n1b1

a1
Eφ(t)(1− b1

a1
)Ėφ(t) + h1σ1(t))],
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U3 = I2[−{φ̇ψ̇
(I3 − I1)

I2
+ Ir

I2
�r φ̇ − Kf 2y

I2
θ̇2} − D3D

γ 3
t sgn(σ3(t)))

− D−α3
t (m3Ėθ (t) + n3b3

a3
Eθ (t)

(1− b3
a3

)Ėθ (t) + h3σ3(t))],

U4 = I3[−{φ̇θ̇
(I1 − I2)

I3
− kf 2z

I3
ψ̇2} − D5D

γ 5
t sgn(σ5(t)))

− D−α5
t (m5Ėψ(t) + n5b5

a5
Eψ(t)(1− b5

a5
)Ėψ(t) + h5σ5(t))].

(6.20)

Theorem 6.2. The translational part with the proposed controllers U2, U3, and
U4 should be asymptotically stable.

Proof. The Lyapunov function for the attitude subsystem is

Vr = 1
2
σ3(t)2 + 1

2
σ5(t)2 + 1

2
σ1(t)2. (6.21)

Now, V̇r can be calculated as

V̇r = σ̇3(t)σ3(t) + σ̇5(t)σ5(t) + σ̇1(t)σ1(t)

= [Dα1
t (ψ̇ θ̇

(I2 − I3)

I1
− Ir

I1
�r θ̇ − Kf 2x

I1
φ̇2 + 1

I1
U2

+Dφ(t)) + m1Ėφ(t) + n1b1

a1
Eφ(t)(1− b1

a1
)Ėφ(t)]σ1(t)

+ σ9(t)[Dα3
t (φ̇ψ̇

(I3 − I1)

I2
+ Ir

I2
�r φ̇ − Kf 2y

I2
θ̇2 + 1

I2
U3

+Dθ (t)) + m3Ėθ (t) + n3b3

a3
Eθ (t)

(1− q3
p3 )Ėθ (t)]

+ σ11(t)[Dα5
t (θ̇

(I1 − I2)

I3
− Kf 2z

I3
ψ̇2 + 1

I3
U4 +Dψ(t))

+ m5Ėψ(t) + n5b5

a5
Eψ(t)(1− b5

a5
)Ėψ(t)].

(6.22)

Substituting the controllers [U2 U3 U4]T into (6.22) and using the condition
in (6.23),

σjDjD
γ j
t sgn(σj) − σjδj � 0. (6.23)

Now, V̇r is represented in an inequality as

V̇r ≤ −h3σ3(t)2 − h5σ5(t)2 − h1σ1(t)2 ≤ 0. (6.24)



Design of fractional-order finite-time sliding mode controllers for quadrotor UAVs 165

6.4.2 IFOSMC design structure for UAV systems
6.4.2.1 IFOSMC control for translational systems

In Section 6.4.1, a fractional-order hybrid control method has been studied
for the UAV system. Hence, to improve the trajectory tracking perfor-
mance of the UAV, an improved fractional-order SMC technique will be
presented.

Let us introduce the proportional derivative and its derivatives:

σ7(t) = kxEx(t) + Dβx+1Ex(t), (6.25a)

σ9(t) = kyEy(t) + Dβy+1Ey(t), (6.25b)

σ11(t) = kzEz(t) + Dβz+1Ez(t), (6.25c)

where kx, ky, and kz are positive parameters and 0 < βx, βy, βz < 1. We
define the time derivative of Eq. (6.25) as

σ̇7(t) = kxĖx(t) + Dβx Ëx(t), (6.26a)

σ̇9(t) = kyĖy(t) + Dβy Ëy(t), (6.26b)

σ̇11(t) = kzĖz(t) + Dβz Ëz(t). (6.26c)

Setting σ̇j(t) = 0, the control laws of the position without any disturbances
can be obtained:

kxĖx(t) + Dβx[Kf 1x

m
ẋ + VX − ẍd] = 0, (6.27a)

kyĖy(t) + Dβy[Kf 1y

m
ẏ + VY − ÿd] = 0, (6.27b)

kzĖz(t) + Dβz[Kf 1z

m
ż − g + VZ − z̈d] = 0. (6.27c)

Then, the equivalent controllers of the position are given by

VeqX = −kxD1−βxEx(t) − Kf 1x

m
ẋ + ẍd, (6.28a)

VeqY = −kyD1−βyEy(t) − Kf 1y

m
ẏ + ÿd, (6.28b)

VeqZ = −kzD1−βzEz(t) − Kf 1z

m
ż + g + z̈d. (6.28c)

Assumption 6.1. We assume that the disturbances are bounded, with∣∣Dj(t)
∣∣ ≤ δk = aj0 + aj1 |E|j + aj2 |E|j+1, where δk (k denotes translational and
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rotational variables) is the maximum bound of the disturbances and aj0, aj1,
and aj2 are strictly positive parameters.

Switching control laws are considered as follows:

VswX = −Kx1σ7(t) − (δx + ηx)sgn(σ7(t))), (6.29a)

VswY = −Ky1σ9(t) − (δy + ηy)sgn(σ9(t))), (6.29b)

VswZ = −Kz1σ11(t) − (δz + ηz)sgn(σ11(t))), (6.29c)

where for j = x,y,z, Kj1 and ηj are positive parameters. Then, the ultimate
control laws are formulated as

VX = −kxD1−βxEx(t) − Kf 1x

m
ẋ + ẍd − Kx1σ7(t) − (δx + ηx)sgn(σ7(t))),

(6.30a)

VY = −kyD1−βyEy(t) − Kf 1y

m
ẏ + ÿd − Ky1σ9(t) − (δy + ηy)sgn(σ9(t))),

(6.30b)

VZ = −kzD1−βzEz(t) − Kf 1z

m
ż + g + z̈d − Kz1σ11(t) − (δz + ηz)sgn(σ11(t))).

(6.30c)

Theorem 6.3. Using Assumption 6.1 and considering the x-subsystem with the
control command VX , the position is stable asymptotically.

Proof. Choosing a Lyapunov function as

Vϒ = 0.5σ7(t)2, (6.31)

V̇ϒ is calculated as

V̇ϒ = σ̇7(t)σ7(t) = σ7(t)[kxĖx(t) + Dβx(
Kf 1x

m
ẋ + VX +Dx(t) − ẍd)].

(6.32)

By inserting (6.30a), we have

V̇ϒ = σ7(t)[Dβx{Dx(t) − Kx1σ7(t) − (δx + ηx)sgn(σ7(t)))}]
≤ σ7(t)[Dβx{−Kx1σ7(t) − ηxsgn(σ7(t)))}]
≤ Dβx{−Kx1σ7(t)2 − ηx |σ7(t)|}
≤ −Kx1σ7(t)2 − ηx |σ7(t)| . (6.33)
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Now, Vϒ(ts) (with ∀t � t0, Vϒ(t0) � 0) tends to zero in prescribed time ts,
where t0 refers to the starting time. To get ts and finish the proof of Theo-
rem 6.3, inequality (6.33) can be reformulated as

V̇ϒ � −2Kx1Vϒ − √
2ηxV

1
2
ϒ . (6.34)

Dividing (6.34) by V
1
2
ϒ , we obtain

dt � − V− 1
2

ϒ

2Kx1V
1
2
ϒ + √

2ηx

dVϒ. (6.35)

By integrating (6.35) from t0 to ts and after a simple calculation, we get

ts − t0 � −
∫ 0

Vϒ(t0)

V− 1
2

ϒ

2Kx1V
1
2
ϒ + √

2ηx

dVϒ (6.36)

= 1
Kx1

ln
2Kx1V

1
2
ϒ (t0) + √

2ηx√
2ηx

. (6.37)

6.4.2.2 IFOSMC structure for attitude subsystem

An improved FOSMC will be designed for attitude under disturbances.
Using the same technique of the position part studied previously, we can
define the sliding surfaces and its derivatives:

σ1(t) = kφEφ(t) + Dβφ+1Eφ(t), (6.38a)

σ3(t) = kθEθ (t) + Dβθ+1Eθ (t), (6.38b)

σ5(t) = kψEψ(t) + Dβψ+1Eψ(t), (6.38c)

where kφ, kθ , and kψ are positive constants and 0 < βφ,βθ , βψ < 1.
We define sliding surface derivatives with respect to time as

σ̇3(t) = kθ Ėθ (t) + Dβθ Ëθ (t), (6.39a)

σ̇5(t) = kψ Ėψ(t) + Dβψ Ëψ(t), (6.39b)

σ̇1(t) = kφĖφ(t) + Dβφ Ëφ(t). (6.39c)

Similarly, the control laws U2, U3, and U4 are designed in the same manner
presented in the previous subsection.
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Control inputs for the translational part can be presented as follows:

U2 = 1
ε1

[−kφD1−βφ Eφ(t) − {θ̇ ψ̇
(I2 − I3)

I1
− Ir

I1
�r θ̇ − Kf 2x

I1
φ̇2}

+ φ̈d − Kφ1σ1(t) − (δφ + ηφ)sgn(σ1(t)))], (6.40a)

U3 = 1
ε2

[−kθD1−βθ Eθ (t) − {φ̇ψ̇
(I3 − I1)

I2
+ Ir

I2
�r φ̇ − Kf 2y

I2
θ̇2}

+ θ̈d − Kθ1σ3(t) − (δθ + ηθ )sgn(σ3(t)))], (6.40b)

U4 = 1
ε3

[−kψD1−βψ Eψ(t) − {φ̇θ̇
(I1 − I2)

I3
− kf 2z

I3
ψ̇2}σ5(t)

+ ψ̈d − Kψ1 − (δψ + ηψ)sgn(σ5(t)))], (6.40c)

where kφ, kθ , kψ , Kφ1, Kθ1, and Kψ1 are positive parameters and
0 < βφ,βθ , βψ < 1.

Theorem 6.4. The control laws obtained by the proposed FOSMC technique
guarantee UAV stability.

Proof. A Lyapunov function can be considered as

VT = 1
2
[Vx + Vy + Vz + Vφ + Vθ + Vψ ]

= 1
2
[σ1(t)2 + σ3(t)2 + σ5(t)2 + σ7(t)2 + σ9(t)2 + σ11(t)2]. (6.41)

Then V̇T is

V̇T = σ̇5(t)σ5(t) + σ̇9(t)σ9(t) + σ̇3(t)σ3(t) + σ̇11(t)σ11(t) + σ̇1(t)σ1(t). (6.42)

After a simple calculus and using (6.33), the previous inequality can be
rewritten as

V̇T ≤ −Kx1σ7(t)2 − ηx |σ7(t)| − Ky1σ9(t)2 − ηy |σ9(t)|
− Kz1σ11(t)2 − ηz |σ11(t)| − Kφ1σ1(t)2 − ηφ |σ1(t)|
− Kθ1σ3(t)2 − ηθ |σ3(t)| − Kψ1σ5(t)2 − ηψ |σ5(t)|

≤ 0. (6.43)

As a result V̇T is nonincreasing.
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Table 6.1 Quadrotor model parameters.
Parameter Value Parameter Value
g (m/s2) 9.81 Kf 1y (N/m/s) 5.5670e-4
m (kg) 0.486 Kf 1z (N/m/s) 5.5670e-4
I1 (kg.m2) 3.827e-3 Kf 2x (N/rad/s) 5.5670e-4
I2 (kg.m2) 3.827e-3 Kf 2y (N/rad/s) 5.5670e-4
I3 (kg.m2) 7.6566e-3 Kf 2z (N/rad/s) 5.5670e-4
Ir (kg.m2) 2.8385e-5 b (N .s2) 2.9842e-3
Kf 1x (N/m/s) 5.5670e-4 k (N .m.s2) 3.2320e-2

Table 6.2 Parameters of FOSMC-FOFTSMC controller.
Parameter Value Parameter Value
Dj (j = 1,3,5) 96.14 mj 6.8
nj 20.22 bj 3.85
aj 3.77 hj 12.55
γj 0.385 αj 8.86e-4
λn (n = x,y,z) 4 εj 4
hi (i = 7,9,11) 1 γi 0.02

Table 6.3 Parameters of the IFOSMC controller.
Parameter Value Parameter Value
aψ,θ,φ 0.4 az,y,x 0.42
βz,y,x 0.01 βψ,θ,φ 0.01
kz,y,x 15 kψ,θ,φ 22.7146
Kz1,y1,x1 4 Kφ1,θ1,ψ1 45.8990
η 0.5 - -

6.5. Simulation results and discussion

Two simulations are conducted in this section using MATLAB® soft-
ware. Robustness of the fractional-order control methods is checked under
disturbances and parametric uncertainties. The first simulation is conducted
to show the trajectory tracking of the FOFTSMC whereas the second
simulation is conducted to compare the performances of the FOFTSMC
and IFOSMC methods. Numerical simulations are conducted by using
the quadrotor parameters presented in Table 6.1. Controller parameters for
FOSMC-FOFTSMC and IFOSMC are presented respectively in Table 6.2
and Table 6.3.
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Remark 6.1. To alleviate the chattering, discontinuous term in the
fractional-order controllers is replaced by the hyperbolic tangent function.

6.5.1 Simulation 1
The desired yaw and position used in this simulation are given by

xd =
{

0.6 m if � 10 or t > 30,

0.3 m otherwise,
(6.44)

yd =
{

0.6 m if � 20 or t > 40,

0.3 m otherwise,
(6.45)

zd =
{

0.6 m if � 50,

0 m otherwise,
ψd = 0.1 rad. (6.46)

The disturbances used in this part are given by

Dη(t)|η=x,y,z) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 sin( 1

2 t) + 1
2 cos(0.7t) m

s2 ,

if � 10 and t ≤ 50,

0 m
s2 otherwise,

(6.47)

⎧⎪⎪⎨
⎪⎪⎩

Dφ(t) = 1
2 cos(0.4t) rad

s2 ,

Dθ (t) = 1
2 sin( 1

2 t) rad
s2 ,

Dψ(t) = 1
2 sin(0.7t) rad

s2 .

(6.48)

The efficiency of FOSMC-FOFTSMC is evaluated by introducing uncer-
tainties in the model. The UAV parameters can vary up to ±50% more
than their normal values.

The attitude and position results are shown in Figs. 6.3–6.5. We can ob-
serve that the fractional-order controller drives variables to follow desired
references under disturbances/uncertainties. From these results, we con-
clude that the steady-state errors converge to zero in finite time. Moreover,
in the case where the environment becomes more disturbed and uncertain,
the fractional-order controller steer pitch and yaw and roll angles follow
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Figure 6.3 Position (x, y, z).

Figure 6.4 Roll and pitch angles.

their angles with excellent tracking performance. The result in 3D space
of trajectory tracking is shown in Fig. 6.6. We observe that the fractional-
order controller steers the UAV system with high performance.



172 Moussa Labbadi et al.

Figure 6.5 Yaw angle.

Figure 6.6 3D trajectory plot.

6.5.2 Simulation 2
In this subsection, a second numerical simulation test will be conducted
to test the theoretical results obtained from the proposed fractional-order
controllers. In the first step, the desired trajectory is the following:

xd = cos(t)m, yd = sin(t)m, zd = 1
2

t + 1
2

m, ψd = 0 rad. (6.49)

Initial conditions of the UAV are given as [ 1
2 ,0,0] m and [0,0,0.1] rad.

In the third step, the obtained results will be discussed. The results of
the IFOSMC and FOSMC-FOFTSMC are shown in Figs. 6.7–6.11.
Fractional-order controllers have been successfully implemented in the sys-
tem, thus a better performance in term of trajectory tracking has been
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Figure 6.7 Position tracking.

Figure 6.8 Euler angles.
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Figure 6.9 Tracking errors.

achieved even in the presence of uncertain disturbances. The responses of
the position are plotted in Fig. 6.7. It can be seen that the drone efficiently
tracks the reference commands with high accuracy. Fig. 6.8 shows the roll,
pitch, and yaw tracking performances. It can be seen from the obtained re-
sults of IFOSMC and FOSMC-FOFTSMC presented in Fig. 6.8 that the
Euler angles follow their reference values. Fig. 6.9 shows the errors track-
ing of IFOSMC and FOSMC-FOFTSMC; actually these errors converge
to their nominal values despite the effects of disturbances. The signal inputs
are plotted in Fig. 6.10. These inputs are smooth and converge to their
values.

The result of the flight trajectory in 3D is plotted in Fig. 6.11.
We can capture from these results that the IFOSMC outperforms the

FOSMC-FOFTSMC at the startup of the simulation (more perturbations
occur during this phase).

6.6. Conclusion

Due to external disturbances/uncertainties being a problem found in
control system, in this chapter the design of two fractional-order control
laws is proposed for the stabilization of a quadrotor subjected to distur-
bances/uncertainties. The SMC combined with fractional controller shows
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Figure 6.10 Control signals.

Figure 6.11 Desired 3D trajectory tracking.



176 Moussa Labbadi et al.

a strong response in terms of compensating and rejecting external distur-
bances. Suitable sliding surfaces based on fractional operators were designed
to derive efficient control laws. The obtained results confirm the robustness
of the proposed fractional-order controllers, which show that the improved
FOSMC with a new switching control law is more robust compared to the
FOSMC-FOFTSMC proposed in this chapter.

As a future direction, the implementations of these fractional-order con-
trollers could be considered, to validate controllers in real-time.
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7.1. Introduction

Wind power is derived by capturing kinetic energy from moving air
masses and converting it into electric power, which is one of the alter-
native renewable energies to the conventional energy that relies on fossil
fuels. In accordance with the statistics provided by the Global Wind En-
ergy Council (GWEC) [13], the global cumulative installed capacity for
wind-powered electricity has increased exponentially in the recent years;
from around 539.7 GW at the end of 2017, this grew by 51.3 GW in 2018
and by 71.97 GW in 2019, which brings the total to 663 GW at the end
of 2019, and it will reach a capacity of around 925 GW in 2023.

The growth of the wind energy capacity installed worldwide is due to
the technological progress in wind power systems (WPSs) over the past
few years. Modern WPSs with a doubly fed induction generator (DFIG)
are the most dominant prototype technology in the present wind en-
ergy industry because of their many benefits, which include the ability
to operate in the variable-speed mode allowing to maximize the output
real power for different values of wind speed and consequently reach a
higher aerodynamic efficiency, as well as the flexibility concerning reactive
power control, including the reduced size of the back-to-back static con-
verters due to the fact that a size with a capacitance of only 30% of the
rated generator power is sufficient [1]. This achieves a smoother connec-
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tion to the network, allows minimizing the energy losses, and makes the
aero-generator cheaper, lighter, and more efficient, offering higher power
quality. Moreover, these modern technologies are more controllable where
the reactive and real powers can be controlled separately, which makes this
aero-generator equipped with DFIG a competitive option in terms of net-
work compatibility [1,4]. Moreover, with an appropriate control scheme,
the mechanical stress and aerodynamic noise can be reduced on these
variable-speed aero-generators through absorbing the natural fluctuations
of wind energy [18]. Therefore, it is very interesting to have a robust and
achievable control scheme to control the DFIG in wind power applications.

According to the research literature, vector control is an attractive
method gaining popularity for variable-speed aero-generators control be-
cause of its advantages such as easy implementation and guaranteed de-
coupled regulation of reactive and real powers [17,28]. Additionally, it is
possible to adopt and combine this control approach with different structure
of controllers, from the usual proportional integral (PI) to more advanced
modern controllers. Vector control based on PI controllers, also known as
classical vector control (CVC), is well known and very commonly applied
to control aero-generators equipped with DFIG because of its mere struc-
ture and acceptable performance [2,6,11,14]. However, this classical control
scheme suffers from performance deterioration and produces a response not
desirable in situations where the wind system experiences DFIG machine
parameter uncertainties as well as network voltage faults [3,7]. Aiming at
overcoming the performance limitations of the CVC scheme, several tech-
niques and methods have been reported in a number of research papers. As
discussed in [2], a multiobjective PSO algorithm is suggested for applica-
tion to the dynamic model of the DFIG WPS. Authors of Ref. [3] have
modified the vector control scheme by injecting additional voltage terms
to rotor voltage references in order to enhance the transient behavior of
the control system intended for a DFIG wind turbine. In [6], the root tree
optimization algorithm was used to adjust the gains of the PI controller
in order to avoid chattering phenomena in reactive and real powers pro-
duced by DFIG. In [15], a robust backstepping control strategy for power
flow control of DFIG-based wind turbines in network-connected mode
was designed. Maximum power point tracking (MPPT) based on a fuzzy
logic approach for the DFIG wind turbine system was reported in [5]. An
overall control scheme based on sliding mode for generator side converter
and network side converter control to operate a DFIG-based wind turbine
was presented in [7,22].
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In recent years, the fractional-order control approach has become an in-
teresting research field because it emerged as a very adequate and competent
control technique for the installations experiencing parametric uncertain-
ties and outside disturbances [23,26,29]. The main advantage of considering
fractional calculus in control system design is that it provides extra degrees
of freedom. Hence, fractional-character control systems can be formulated
to achieve an optimal dynamic response. Moreover, a higher grade of ro-
bustness can appear in the control scheme through considering a broad
range of parameter values of the system. In [26], the significant advantages
that characterize the application of fractional-order control are briefly il-
lustrated. In this context, the possibility of overcoming the performance
limitations of PID controllers through utilizing the theory of fractional cal-
culus has resulted in remarkable interest in fractional-order PID (FO-PID)
controllers, denoted with the form PIδDμ, in which δ and μ are the orders
of integration and derivative, which can take any value between 0 and 2.

The new controller family (FO-PID) introduced by Podlubny [25] as a
generalization to the integer-order PID controllers is characterized by five
dimensions, such as extending the orders of integration and derivative to in-
clude fractional numbers instead of being limited to integer ones, i.e., two
additional dimensions are created, which gives more flexibility in reach-
ing control goals. Indeed, due to considering the two extra dimensions
(δ and μ) in FOPI controller design in comparison with the integer PID
controllers, better regulation has been achieved [8–10]. One of the par-
ticular FO-PID controllers is fractional-order PI (FOPI), which has been
described by the irrational transfer function of kp + (

ki/sδ
)
, where kp, ki, δ,

and s denote proportional gain, integral gain, the fractional order, and the
Laplace variable, respectively.

Due to the flexibility in designing FOPI controllers, several authors
have been motivated to study the control of dynamic processes by using
these fractional controllers for different applications in industry and en-
gineering around the world [8,19,27]. Recently, FOPI control has been
considered in pitch angle regulation loops, which are used to manage the
wind speeds higher than that corresponding to the rated power, for en-
hancing the performance of WPSs at high wind speeds [21]. Most of the
previously mentioned researches, which are performed in various fields,
confirm that the FOPI controllers outperform the integer-order ones in
terms of disturbance rejection, system stabilization, and reference tracking
for a vast gamut of parameter values.
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In this direction, in this chapter we propose a fractional-character vector
control scheme to regulate a network-connected mode DFIG employed in
wind power generation. It is an improved vector control scheme based on
the use of FOPI controllers in the power and rotor current regulation loops.
It results in a more flexible control scheme, using PI controllers which have
a fractional character, which allows us to control the DFIG more accurately
than the integer-order PI controllers. Different functioning conditions are
considered to prove the efficacy and feasibility of the fractional vector con-
trol (FVC) scheme. The generator is controlled such that a DFIG wind
turbine is able to realize MPPT at each wind speed in order to extract the
optimum power from wind energy, even in the presence the uncertainties
in the network voltage or in the system parameters. The WPS performance
obtained by using FVC is compared to the one obtained using CVC, and
simulation results show that the functioning and the productivity of the
WPS are better under the proposed fractional-character vector control than
under standard vector control.

The chapter is composed from six sections organized as follows. A con-
cise introduction is provided in Section 7.1. Section 7.2 introduces the
mathematical modeling of studied variable-speed WPSs, the wind tur-
bine, and the DFIG. It also describes the MPPT scheme that allows the
blades to extract maximum power from the wind. Section 7.3 describes the
fractional-character vector control based on FOPI controllers. The design
of FOPI controllers applied in power and rotor current regulation loops is
presented in Section 7.4. In Section 7.5, numerical results will be presented
and analyzed to evaluate the performance and validate the efficacy of the
proposed scheme compared with the classical scheme. Section 7.6 includes
the conclusion.

7.2. Variable-speed wind power system modeling

The studied topology of the WPS equipped with a DFIG in network-
connected mode is illustrated in Fig. 7.1, where the rotor shaft of the DFIG
is connected to the shaft turbine via a gearbox for multiplying the turbine
speed and transmitting it to the generator shaft. Kinetic energy of the air
masses is extracted and converted into mechanical power across the turbine
blades, and then the DFIG converts it into electrical power. The gener-
ated power at the stator circuit level is directly transmitted to the network,
whereas the power exchange between the rotor circuit and network is car-
ried out through the electronic component-based static power converter
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Figure 7.1 Variable-speed wind power system based on DFIG.

block, which consists of a network-side converter and a generator-side con-
verter with a DC link capacitor between them [31].

7.2.1 Wind turbine modeling
The extracted aerodynamic power from the kinetic energy of moving air
masses by turbine blades is expressed as follows [4,16]:

Pextracted = 0.5ρairπR2Cp (λ,β) v3, (7.1)

where ρair [kg/m3], R [m], v
[m

s

]
, and Cp (λ,β) denote respectively air

density, blade length, wind speed, and the turbine aerodynamic efficiency,
which is a function of the blade pitch angle β [deg] and the tip-speed ratio
(TSR) λ. The expression used to describe the turbine efficiency is [16]:

{
Cp (λ,β) = 0.5176

(
116
λi

− 0.4β − 5
)

exp
(

21
λi

)
+ 0.0068λ,

1
λi

= 1
λ+0.08β

− 0.035
β3+1 .

(7.2)

The TSR is defined as the ratio of the blade’s extremity’s linear speed
to the wind speed. It is expressed as follows:

λ = �t.R
v

. (7.3)
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Figure 7.2 Aerodynamic efficiency (Cp) vs. tip-speed ratio (λ).

In (7.3) �t [rad/s] denotes the shaft turbine speed.
The aerodynamic torque exerted on the turbine shaft is expressed as

follows:

Caer = Pextracted

�t
= 0.5ρairπR3

�t
Cp(λ,β)v3. (7.4)

The turbine characteristic coefficient Cp as a function of the TSR for
different values of the pitch angle is illustrated in Fig. 7.2. It can be found
that maximum aerodynamic efficiency Cp-max = 0.48 is obtained at opti-
mal TSR λopt = 8.1 when the collective pitch angle equals zero degrees.
In subrated functioning conditions, TSR and pitch angle have to be set at
their optimal values λ = 8.1 and β = 0 degrees, respectively, to operate the
variable-speed WPS at maximum power, which corresponds to the maxi-
mum value of the aerodynamic efficiency Cp-max = 0.48. This is achieved by
changing the shaft rotor speed appropriately with the wind speed following
relationship (7.3).

7.2.2 Dynamic modeling of DFIGs
The machine used in the conversion of wind power is the DFIG. The
dynamic model of this generator in a (d, q) mobile reference frame may be
expressed by the following equations [1,6,28].
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The stator circuit voltages are given as follows:
{

Vsd = RsIsd + dϕsd
dt − ωsϕsq,

Vsq = RsIsq + dϕsq
dt + ωsϕsd.

(7.5)

The stator circuit fluxes are given as follows:{
ϕsd = LsIsd + LmIrd,

ϕsq = LsIsq + LmIrq.
(7.6)

The rotor circuit voltages are given as follows:
{

Vrd = RrIrd + dϕrd
dt − (ωs − ω)ϕrq,

Vrq = RrIrq + dϕrq
dt + (ωs − ω)ϕrd.

(7.7)

The rotor circuit fluxes are given as follows:{
ϕrd = LmIsd + LrIrd,

ϕrq = LmIsq + LrIrq.
(7.8)

The torque produced by the DFIG is defined by the following equation:

Cem = 3
2

pLm

Ls

(
Isqϕsd − Isdϕsq

)
. (7.9)

By applying the fundamental principle of dynamics to the rotor shaft, one
has

J
d�m

dt
= Cg − Cem − fv�m. (7.10)

The expressions of real and reactive power of the DFIG are written as
follows: {

Ps = 3
2 (VsdIsd + VsqIsq),

Qs = 3
2

(
VsqIsd − VsdIsq

)
.

(7.11)

7.2.3 Maximum power point tracking law
Due to the highly fluctuating and random nature of the wind speed, the
utmost power extraction is important in the case of a variable-speed WPS
since it increases its energy efficiency. For each wind speed value lower
than that corresponding to the nominal power, it is necessary to adjust the
shaft speed of the turbine in a linear way with the wind speed so as to
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Figure 7.3 Aerodynamic power vs. rotor speed at different wind speeds.

keep TSR at its optimum value. The MPPT control scheme aims to obtain
the maximum feasible power from the moving air masses. The idea of the
MPPT scheme is to maximize the output electrical power through tracking
the reference turbine speed that allows λ = λopt. As result, the WPS becomes
more productive with the MPPT control law that is achieved by adjusting
the rotational speed of the turbine for each concerned wind speed [5,18].

By exploiting Fig. 7.3, which shows the aerodynamic power as a func-
tion of rotor shaft speed for different given values of wind speed, it can
be observed that the maximal power point corresponds to a particular ro-
tor speed for each wind speed. It can be noted also that a small deviation
from the reference rotor speed causes a significant decrease in the extracted
power. Therefore, the turbine speed must continuously track its optimal
value, which corresponds to optimal TSR, λopt = 8.1, and maximal aerody-
namic efficiency, Cp-max = 0.48, for a pitch angle β = 0 degrees.

Wind speed is a significant input variable for WPSs. It is difficult to
accurately measure wind speed in the field, but it is possible to obtain it
from the estimated turbine speed.

By means of Eq. (7.3), the estimated value of wind speed is expressed as
follows:

vestimated = �t.R
λopt

. (7.12)

Then, the optimal aerodynamic torque can be expressed as

C∗
aer = ρπR2Cp-maxv3

estimated

2�t
. (7.13)
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Figure 7.4 MPPT scheme of a wind power system.

Replacing the wind speed v in Eq. (7.13) by its expression given in
Eq. (7.12), it is possible to estimate in real time the reference value of the
electromagnetic torque from expression (7.14) depending on the optimal
TSR (λopt) and the mechanic rotor speed (�m):

C∗
em = ρπR5

2
Cp-max(
Gλopt

)3 �2
m. (7.14)

Fig. 7.4 illustrates the aerodynamic model of the turbine with the MPPT
control scheme.

7.3. Vector control scheme of DFIG using
fractional-order PI controllers

This section aims to present a fractional-character vector control
scheme based on the use of the FOPI controllers in the d- and q-axis
regulation loops. This control structure is investigated as a simple and
powerful solution to deal with the DFIG parameter variations and the
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network voltage faults which cause bad operation of the system. In the
vector control technique-based control scheme proposed to regulate the
network-connected WPS, DFIG control includes two regulation loops for
each control axis. The inner regulation loop is used to regulate rotor cur-
rent and the outer regulation loop is employed to control the power.

7.3.1 A brief about fractional calculus
The theory of fractional-order calculus was introduced as an extension or
as a generalization of standard integer-order calculus, where the fractional-
order integral and derivative are extensions of the integer-order ones. The
basic fractional integro-differential operator is represented as follows [24]:

αDδ
t
∼= Dδ =

⎧⎪⎨
⎪⎩

dδ

dtδ , for δ > 0,

1, for δ = 0,∫ t
α

(
dτ

)δ
, for δ < 0.

(7.15)

In (7.15), δ denotes the fractional order of the integro-differential operator
while α and t denote the operation bounds.

Numerous different operators of fractional calculus have been presented.
The Riemann–Liouville derivative and integral are the most frequently
used of these operators, and they are expressed respectively as

αDδ
t f (t) = dδ

dtδ
f (t) = 1

�(m − δ)

dm

dtm

∫ t

α

f (τ )

(t − τ)δ−m+1 dτ, (7.16)

αD−δ
t f (t) = I δ f (t) = 1

�(δ)

∫ t

α

f (τ )

(t − τ)1−δ
dτ, (7.17)

where � denotes the Gamma function and m denotes the first integer value
larger than δ which satisfies m − 1 ≤ δ < m.

To execute the fractional-order operators in practical or simulation stud-
ies, the literature provides several approximations, in which the Oustaloup
approximation is one of the most commonly adopted approximations in
continuous time. The approximation method developed by Oustaloup was
applied in this chapter, and can be defined as in [12]. We have

sδ ∼= G
N∏

k=−N

[
s + ωz,n

s + ωp,n

]
, (7.18)
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where G is a gain, ωz,n are the zeros, and ωp,n denotes the poles such as

G = ωδ
h, ωz,n = ωb

(
ωh

ωb

) k+N+ 1−δ
2

2N+1

, ωp,n = ωb

(
ωh

ωb

) k+N+ 1+δ
2

2N+1

, (7.19)

where ωh and ωb are the upper and lower limits of the selected frequency
range. In this study, the chosen frequency range is

[
10−5,105

]
rad/s.

7.3.2 Concept of vector control of DFIG
The principle of the vector control is to achieve a control scheme that
allows decoupled control in the d- and q-axes, i.e., between the reactive and
real power exchanged with the network. The vector control technology is
chosen because of its efficiency and simplicity. The idea of this control
method is founded on synchronizing the (d, q) rotor reference frame with
the stator flux vector in a way that it has to be aligned with the direct axis.
Then, the flux direct component is equal to the total flux (ϕsd = ϕs), whereas
its quadrature component is null (ϕsq = 0). In addition, consider that the
resistance of stator winding is neglected (Rs ≈ 0) and that the network is
steady and powerful, with the voltage and synchronous angular frequency
(ωs) constant, which leads to ϕs ≈ cst [11,17]. Under such constraints, the
electromagnetic torque is expressed as follows:

Cem = 3
2

pLm

Ls
Isqϕs. (7.20)

Stator voltages given by (7.5) can be simplified as

{
Vsd ≈ 0,

Vsq = Vsq ≈ ωsϕs.
(7.21)

Also, rotor voltages given by (7.7) are expressed as follows:

{
Vrd = RrIrd + σLr

dIrd
dt − σLrgωsIrq,

Vrq = RrIrq + σLr
dIrq
dt + σLrgωsIrd + g LmVs

Ls
,

(7.22)

where σ = 1 − L2
m/LsLr and g = (ωs − ω)/ωs.
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As a function of the Laplace variable s, (7.22) can be written as the
following form:

⎧⎨
⎩

Ird =
[

1
Rr+σLr s

] (
Vrd + gσLrωsIrq

)
,

Irq =
[

1
Rr+σLr s

](
Vrq − gσLrωsIrd − g LmVs

Ls

)

⇔
{

Ird = [Gr(s)]
(
Vrd + Cq→d

)
,

Irq = [Gr(s)]
(
Vrq + Cd→q + D

)
.

(7.23)

From (7.23), it appears that the d- and q-axes are coupled. A decoupling
system must be established, by introducing feedforward terms Cq→d and
Cd→q in which Cq→d = gσLrωsIrq and Cd→q = −gσLrωsIrd.

Also, the disturbance term D = −gLmVs/Ls was compensated via intro-
ducing a feedforward term.

Fig. 7.5 depicts the proposed control scheme of DFIG using the FOPI
controllers, in the current and power regulation loops, for regulating the
reactive and real power exchanged between the WPS and the network.
The real axis control of DFIG allows the MPPT, which seeks to cap-
ture the maximum power from the available wind energy, while the re-
active axis is controlled to achieve the reactive power imposed by the
network.

The control signals that actually drives the DFIG are the reference volt-
ages V ∗

rd and V ∗
rq obtained from the rotor real and reactive current control

loops, respectively, as given by the following equations:

{
V ∗

rd = kpc
(
I∗
rd − Ird

) + kicD−δc
(
I∗
rd − Ird

)
,

V ∗
rq = kpc

(
I∗
rq − Irq

) + kicD−δc
(
I∗
rq − Irq

)
.

(7.24)

Also, we use a power regulator with FOPI control for each axis. So, the
reactive and real reference currents I∗

rd and I∗
rq can be expressed as follows:

{
I∗
rd = kpp

(
Q∗

s − Qs
) + kipD−δp

(
Q∗

s − Qs
)
,

I∗
rq = kpp

(
P∗

s − Ps
) + kipD−δp

(
P∗

s − Ps
)
.

(7.25)

In (7.24) and (7.25), kpc(p), kic(p), and δc(p) are the FOPI controller dimen-
sions.
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Figure 7.5 Proposed vector control scheme with FOPI controllers.

7.4. Design of FOPI controllers applied in the power
and current regulation loops

Design operation of such a fractional-order regulator consists of de-
termining its three dimensions, i.e., proportional and integral gains kp,ki ∈
R+ and the extra order of integration δ ∈ [0,2]. The design technique ap-
proved in the present work focuses on the extension of a simple practical
method proposed by the authors of [20], in which three interesting design
specifications to be met by the FOPI regulator are considered. These design
requirements are defined in the frequency domain such that depending on
the process characteristics G(s), the objective is to find a controller C(s)
that ensures the system robustness and stability. To achieve such an objec-
tive, the open-loop trigonometric transfer function H(s) = C(s)G(s) would
meet the following specifications.

Requirement 1. The gain margin condition at crossover frequency ωc

∣∣H(jω)
∣∣
ω=ωgc

= ∣∣C(jω)G(jω)
∣∣
ω=ωgc

= 1. (7.26)
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Requirement 2. The phase margin constraint at ωgc

Arg
[
H(jω)

]
ω=ωgc

= Arg
[
C(jω)G(jω)

]
ω=ωgc

= −π + ∅m. (7.27)

Requirement 3. So as to ensure the robustness to the gain variation,
the phase of the system’s open-loop transfer function around the crossover
frequency ωgc should remain unchanged:

d
dω

(Arg
[
H(jω)

]
)
∣∣
ω=ωgc

= 0, (7.28)

where ωgc and ∅m denote the gain crossover frequency and phase margin,
respectively.

The FOPI controller provides a control signal u(t) given by

u(t) = kpe(t) + ki
d−δ

dt−δ
e(t). (7.29)

In the Laplace domain, its transfer function is as follows:

C(s) = U(s)
E(s)

= kp + Ki

sδ
. (7.30)

The corresponding trigonometric transfer function is

C
(
jω

) = kp + Kiω
−δ cos (δπ/2) − jKiω

−δ sin (δπ/2) . (7.31)

7.4.1 Design of a fractional-order PI controller as current
regulator

In this subsection the proposed fractional-order PI controller is designed to
be used as a d- and q-axis rotor current regulator. We consider the rotor
current regulation loop for the two axes, shown in Fig. 7.6, with a FOPI
controller that is employed as current regulator. The open-loop transfer
function of the rotor current regulation loop can be written as

H(s) = C(s)G(s) =
(

kpc + kic

sδc

)
k

1 + τ s
, (7.32)

where k = 1/Rr and τ = Lrσ/Rr .
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The open-loop trigonometric transfer function of system H
(
jω

)
can be

expressed as

H
(
jω

) =
[
kpc + Kic (ω)−δc cos

(
δcπ

2

)
− jKic (ω)−δc sin

(
δcπ

2

)]
k

1 + jτω
.

(7.33)

To accomplish Requirement 1, the magnitude of the open-loop
trigonometric transfer function at ωgc must have a value equal to 1, i.e.,

∣∣H(jωgc)
∣∣ =

√[
kpc + Kic

(
ωgc

)−δc cos (δcπ/2)
]2 +

[
Kic

(
ωgc

)−δc sin (δcπ/2)
]2

× k√
1 + [

τωgc
]2

= 1. (7.34)

According to Requirement 2, the phase of H
(
jω

)
at ωgc can be expressed

as

Arg
[
H(jωgc)

] = Arg
[
C(jωgc)

] + Arg
[
G(jωgc)

] = ∅m − 180◦, (7.35)

− arctan
Kic

(
ωgc

)−δc sin (δcπ/2)

kpc + Kic
(
ωgc

)−δc cos (δcπ/2)
− arctan

(
τωgc

) = ∅m − 180◦. (7.35a)

From expression (7.35a), we can express the ratio kic
kpc

as a function of frac-
tional order δc:

kic

kpc
= − tan

[
arctan

(
τωgc

) + ∅m
]

(
ωgc

)−δc sin(δcπ/2) + α
, (7.35b)

where α = (
ωgc

)−δc cos(δcπ/2) tan
[
arctan

(
τωgc

) + ∅m
]
.

To ensure the robustness of the controller, Requirement 3 has to be
fulfilled; therefore,

d
dω

(
Arg

[
H

(
jω

)])∣∣
ω=ωgc

= d
dω

(
Arg

[
C

(
jω

)])∣∣
ω=ωgc

+ d
dω

(
Arg

[
G

(
jω

)])∣∣
ω=ωcg

= 0, (7.36)
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d
dω

(
Arg

[
H

(
jω

)])∣∣
ω=ωgc

=
kic
kpc

δc
(
ωgc

)δc−1
sin(δcπ/2)(

ωgc
)2δc + 2

(
kic
kpc

)(
ωgc

)δc cos (δcπ/2) +
(

kic
kpc

)2 − τ

1 + (
τωgc

)2 = 0.

(7.36a)

From (7.36a), we can establish another equation regarding the ratio of kic

and kpc in the following form:

a
(

kic

kpc

)2

+ b
(

kic

kpc

)
+ c = 0, (7.36b)

where a = τ

1+(
τωgc

)2 , b = 2a
(
ωgc

)δc cos (δcπ/2) − δc
(
ωgc

)δc−1
sin(δcπ/2) and c =

a
(
ωgc

)2δc .
Solution of Eq. (7.36b) gives

(
kic

kpc

)
= −b ± √

b2 − 4ac
2a

. (7.36c)

The design specifications of the rotor current controller have been final-
ized, and three nonlinear equations of the three variables kpc, kic, and δc are
obtained; the two mathematical relations (7.34) and (7.35b) are from the ba-
sic specifications of gain and phase at the crossover frequency and the third
one (7.36c) is formed to prove the robustness of the controller against the
gain variations around ωgc. To progress in the design of the FOPI controller
for the rotor current control loop, the open-loop gain crossover frequency
and the phase margin are considered as ωgc = 250 rad/s and ∅m = 50 degrees.
By plotting the ratio Kic/Kpc in the function of δc for the two Eqs. (7.35b)
and (7.36c), the proper values of δc and Kic/Kpc can be concluded from
the coordinates of the intersection point, as shown in Fig. 7.7. After defin-
ing the ratio Kic/Kpc and fractional order δc, the values of Kpc and Kic can
be calculated from the proper value of Kic/Kpc and Eq. (7.34). Hence, the
designed FOPI controller for rotor current regulation loop is

C(s) = kpc + kic

sδc
= 0.028 + 7.37

s0.857 . (7.37)

The open-loop Bode plot of the trigonometric transfer function of the
rotor current regulation loop is shown in Fig. 7.8. It can be observed that
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Figure 7.6 d- and q-axis rotor current regulation loops.

Figure 7.7 Relationship between kic/kpc and δc .

the phase plot is flat around the crossover frequency [−24.4%, +28.8%]ωgc

and the set of frequency specifications is confirmed. It means that with the
designed FOPI controller, the system is most robust.
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Figure 7.8 Open-loop Bode diagram of the current loop transfer function.

Table 7.1 Stability analysis for rotor current control closed-
loop system.

Stability index Symbol Value Unit
Crossover frequency ωgc 250 rad/s
Phase ∠H(jω)

∣∣
ωgc

−130 deg

Phase margin PM 50 deg
Gain margin GM ∞ -

Now the closed-loop stability analysis of the rotor current system with
proposed FOPI controller is investigated. Stability is one of the essential
indices of control system analysis. Here, the stability of the system with the
proposed FOPI controller can be assessed from the Bode diagram which
provides quantitative measures for stability in terms of phase and gain mar-
gins. It also provides a complete picture of the system dynamics from the
low- to high-frequency range. As per reference [30], a closed-loop system
is stable if both the phase margin (PM) and the gain margin (GM) are pos-
itive. The corresponding values identified from the open-loop frequency
response of the system are presented in Table 7.1, and according to the
Bode analysis technique, the rotor current closed-loop system is stable.
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Figure 7.9 Decoupled reactive and real power control of DFIG.

7.4.2 Design of a fractional-order PI controller as power
regulator

The simplified scheme of the DFIG power regulation loops based on the
FOPI controllers is shown in Fig. 7.9. The FOPI controller used as power
regulator will be designed in the same way the rotor current regulator.

The open-loop transfer function H(s) of the DFIG power control sys-
tem is described by the following equation:

H(s) =
[
kpp + kip

sδp

] [
kpc + kic

sδc

]
[
kpc + kic

sδc

]
+ 1+τ s

k

, (7.38)

we pose P(s) = kpp + kip

sδp
, Q(s) = kpc + kic

sδc , and R(s) =
[
kpc + kic

sδc

]
+ 1+τ s

k .

The corresponding open-loop trigonometric transfer function H
(
jω

)
can be expressed as follows:

H
(
jω

) = P
(
jω

) Q
(
jω

)
R

(
jω

) ⇒

H
(
jω

) =
[
kpp + Kip (ω)−δp cos

(
δpπ

2

)
− jKip (ω)−δp sin

(
δpπ

2

)]

× kpc + Kic (ω)−δc cos
(

δcπ
2

) − jKic (ω)−δc sin
(

δcπ
2

)
kpc + Kic (ω)−δc cos

(
δcπ
2

) − jKic (ω)−δc sin
(

δcπ
2

) + 1+jτω

k

. (7.39)
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Requirement 1 concerning the gain limitation constraint at ωgc gives the
following equation:

∣∣H(jωgc)
∣∣ = 1 ⇒ ∣∣P(jωgc)

∣∣ =
∣∣R(jωgc)

∣∣∣∣Q(jωgc)
∣∣ ⇒

√[
kpp + Kip

(
ωgc

)−δp cos
(
δpπ/2

)]2 +
[
Kip

(
ωgc

)−δp sin
(
δpπ/2

)]2

=

√[
1 + kkpc + kKic

(
ωgc

)−δc cos (δcπ/2)
]2 +

[
τωgc − kKic

(
ωgc

)−δc sin (δcπ/2)
]2

√[
kkp.c + kKic

(
ωgc

)−δc cos (δcπ/2)
]2 +

[
kKic

(
ωgc

)−δc sin (δcπ/2)
]2

.

(7.40)

The phase margin of the open-loop trigonometric transfer function at
crossover frequency ωgc should satisfy Requirement 2; therefore,

Arg
[
H(jωgc)

] = Arg
[
P

(
ωgc

)] + Arg
[
Q

(
ωgc

)] − Arg
[
R

(
ωgc

)] = ∅m − 180◦,
(7.41)

where

Arg
[
P

(
ωgc

)] = θ
(
ωgc

) = − arctan
Kip

(
ωgc

)−δp sin
(
δpπ/2

)
kpp + Kip

(
ωgc

)−δp cos
(
δpπ/2

) ,

Arg
[
Q

(
ωgc

)] = �
(
ωgc

) = − arctan
Kic

(
ωgc

)−δc sin (δcπ/2)

kpc + Kic
(
ωgc

)−δc cos (δcπ/2)
,

Arg
[
R

(
ωgc

)] = ξ
(
ωgc

) = arctan
τωc − kKic

(
ωgc

)−δc sin (δcπ/2)

1 + kkpc + kKic
(
ωgc

)−δc cos (δcπ/2)
.

Then, expression (7.41) becomes as follows:

− arctan
Kip

(
ωgc

)−δp sin
(
δpπ/2

)
kpp + Kip

(
ωgc

)−δp cos
(
δpπ/2

) = ϕm − 180◦ − � + ξ. (7.41a)

Following Eq. (7.41a), we can establish the expression of the ratio Kip/Kpp

in the function of δp as

kip

kpp
= − tan [ϕm + ξ − �](

ωgc
)−δp sin(δpπ/2) + α

, (7.41b)

where α = (
ωgc

)−δp cos(δpπ/2) tan [ϕm + ξ − �].
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According to Requirement 3 about the robustness condition, the phase
angle gradient of the system open-loop transfer function at crossover fre-
quency ωgc is expressed as follows:

d
dω

(
Arg

[
H

(
jω

)])∣∣
ω=ωgc

= d
dω

θ (ω)|ω=ωgc + d
dω

� (ω)|ω=ωgc − d
dω

ξ (ω)|ω=ωgc = 0 ⇒
d

dω
θ (ω)|ω=ωgc = − d

dω
� (ω)|ω=ωgc + d

dω
ξ (ω)|ω=ωgc ⇒

kip
kpp

δp
(
ωgc

)δp−1
sin(δpπ/2)(

ωgc
)2δp + 2 ki.p

kpp

(
ωgc

)δp cos
(
δpπ/2

) +
(

kip
kpp

)2 = −A
B

+ C
D

, (7.42)

where

A = kic

kpc
δc

(
ωgc

)−δc−1
sin(δcπ/2),

B = 1 + 2
kic

kpc

(
ωgc

)−δc cos (δcπ/2) + (
ωgc

)−2δc

(
kic

kc

)2

,

C = τ
(
1 + kkpc

) + τkkic
(
ωgc

)−δc cos (δcπ/2)

+ k
(
1 + kkpc

)
ki.cδc

(
ωgc

)−δc−1
sin(δcπ/2)

+ τkδckic
(
ωgc

)−δc cos (δcπ/2) ,

D = [1 + kkp.c + kKic
(
ωgc

)−δc cos (δcπ/2)]2
+ [τωgc − kKic

(
ωgc

)−δc sin (δcπ/2)]2.

From expression (7.42), we can establish another formula regarding the
ratio between kip and kpp in the following form:

kip
kpp

δp
(
ωgc

)δp−1
sin(δpπ/2)(

ωgc
)2δp + 2 kip

kpp

(
ωgc

)δp cos
(
δpπ/2

) +
(

kip
kpp

)2 = a

⇒ a
(

kip

kpp

)2

+ b
(

kip

kpp

)
+ c = 0, (7.42a)

where a = −A
B + C

D , b = 2a
(
ωgc

)δp cos
(
δpπ/2

) − δp
(
ωgc

)δp−1
sin(δpπ/2), and

c = a
(
ωgc

)2δp .
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Figure 7.10 Relation curve between kip/kpp and δp.

Solution of Eq. (7.42a) gives

(
kip

kpp

)
= −b ± √

b2 − 4ac
2a

. (7.42b)

Similar to Section 7.4.1, we can solve the equation system (7.40), (7.41b),
and (7.42b) in order to get the three parameters which specify the FOPI
controller. As exemplified in Fig. 7.10, the intersection point of graphs of
Eqs. (7.41b) and (7.42b) defines the proper values of the fractional order δp

and of the ratio Kip/Kpp. From the proper value of Kip/Kpp and Eq. (7.40),
the values of integral gain and proportional gain can be calculated. Hence,
the designed FOPI controller for DFIG power regulation loops is

C(s) = kpp + kip

sδp
= 3.57 + 116.62

s0.613 . (7.43)

Fig. 7.11 shows the open-loop Bode plot of the trigonometric transfer
function of the DFIG power regulation loop. According to this figure, it can
be observed that the phase plot is flat around the gain crossover frequency
[−4.8%,+61.8%]ωgc and all frequency domain constraints are satisfied. This
means that the system response is more robust with the designed fractional-
order controller.

Furthermore, the stability of the whole system with the proposed con-
trol scheme is analyzed by applying the Bode analysis technique which is
discussed in the previous section, by which we can analyze the stability of
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Figure 7.11 Open-loop Bode diagram of the power regulation loop.

the whole system from the open-loop system frequency response by mea-
suring the gain margin and the phase margin, which can determine the
stability of the closed-loop system. From Fig. 7.11, the phase margin and
gain margin of the open-loop system frequency response are as follows:
PM = 50◦ and GM = ∞. This means that the closed-loop system with the
proposed control scheme is stable.

7.5. Numerical results and analysis

To assess the effectiveness and superiority of the presented control
scheme and for comparison aims, numerical simulations for both FVC and
CVC are carried out using MATLAB®/Simulink software. The test system
which has been considered in this study consists of a network-connected
1.5-MW DFIG, with the corresponding parameters reported in Table 7.2.
Concerning the DFIG control strategy, the reactive axis is controlled to op-
erate the WPS at reactive power imposed by the electrical network where a
series of three consecutive references of reactive power Qs are imposed, i.e.,
0 VAR, 500000 VAR, −500000 VAR, lasting 7 s, 6 s, and 7 s, respectively,
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Table 7.2 DFIG generator and wind turbine parameters.
DFIG Wind turbine
Typical peak power (Pn) 1.5 MW Number of blades 3
Stator voltage (Vs) 398/690 V Blade radius (R) 30.5 m
Stator frequency (fs) 50 Hz Gearbox gain (G) 70
DC-link voltage (UDC) 1200 V Inertia moment (J) 103 kgm2

DC-link capacitor (CDC) 16000 µF Friction coefficient (fv) 24 10−4 Nms−1

Stator inductance (Ls) 0.0137 H Optimal tip speed ratio
(λopt)

8.1

Stator resistance (Rs) 0.012 � Maximal power
coefficient (Cp-max)

0.48

Rotor inductance (Lr ) 0.0136 H
Rotor resistance (Rr ) 0.021 �

Mutual inductance (Lm) 0.0135 H
Number of pole pairs (P) 2

Table 7.3 Controllers’ parameters in the power and current control loops.
CVC FVC

Current
controller

kpc = 0.006, kic = 0.420 kpc = 0.028, kic = 7.37, δc = 0.857

Power
controller

kpp = 0.333, kip = 6.667 kpp = 3.57, kip = 116.62, δp = 0.618

whereas the active-axis control is performed under an MPPT law which
forces the wind turbine to extract maximum power from the wind, i.e., it
allows the system to function at the optimum power coefficient value of
Cp-max = 0.48. Table 7.3 lists the regulators’ parameters in the power and
current regulation loops for both control structures.

So as to be close to the real conditions, the DFIG wind turbine was
tested with a variable wind speed model to examine the dynamic per-
formance of the proposed control structure; the wind profile applied for
simulation purposes is depicted in Fig. 7.12. Moreover, to evaluate the ef-
fectiveness and robustness degree of the presented control structure, the
DFIG wind turbine was investigated under two major disturbances, which
generally affect the productivity and operating of the system:
• generator parameters variations and
• network voltage faults.

Firstly, to show the dynamic performance of the fractional-character
vector control proposed, the WPS is operated under the adopted vari-
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Figure 7.12 Wind speed model.

Figure 7.13 Temporal evolution of DFIG rotor speed and power coefficient.

able wind speed without any other disturbance. The control performance
for both CVC and FVC in active and reactive axes is demonstrated in
Figs. 7.13–7.15, from which one can note that MPPT of the DFIG wind
turbine connected to the network is well achieved for both control struc-
tures.

Besides, the evolution of the power coefficient Cp, which represents the
aerodynamic efficiency of the wind turbine, confirms that a DFIG WPS ex-
tracts the optimal wind power under a random variation of the wind speed,
because it keeps its optimum value at each given wind speed, as demon-
strated by Fig. 7.13. Moreover, one can see that not only the suggested
control structure reaches the MPPT more rapidly than the CVC structure,
but also more precisely and without oscillations. The DFIG rotor shaft is
driven in rotation by the turbine through the gearbox. Fig. 7.13 illustrates
that the generator speed evolves in the same shape as the adopted wind
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Figure 7.14 Active power Ps, active current Irq, reactive power Qs, and reactive current
Ird tracking performance using the CVC (in the ideal case).

speed model to extract the optimal power according to the MPPT control
law.

In such an ideal case without any disturbances, the tracking performance
of the current and power control loops, for both active and reactive axes,
under CVC and FVC are presented in Figs. 7.14 and 7.15, respectively.
The stator real power tracks its reference value that is defined by the max-
imum power point for each wind speed, while the reactive power tracks its
reference value which is imposed by the network. The active component
of the rotor current has the same shape as the stator real power, and fol-
lows its reference in order to optimize the wind energy extraction, while
the reactive component, which corresponds to the power factor, follows
its reference to meet the requirement in reactive power. From such nu-
merical results, which illustrate the tracking performance of the CVC and
FVC schemes, it can be concluded that the FVC controls the reactive and
real powers in a more rapid, accurate, and smooth way compared to the
CVC.
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Figure 7.15 Active power Ps, active current Irq, reactive power Qs, and reactive current
Ird tracking performance using the FVC (in the ideal case).

7.5.1 Robustness evaluation against generator parameter
variations

Herein, the robustness performance of FVC and CVC is examined against
parameter variation disturbances, produced by the temperature increase in
windings of the generator, which is commonly seen over the operation
of electrical machines. In order to evaluate the control performance of
the proposed control structure under the effect of parameter uncertainties,
a 100% variation from their rated values of the rotor inductance Lr and
resistance Rr is imposed at t = 10 s.

Note that both control structures applied to the DFIG were tested under
parameter variations and that the numerical results obtained by each struc-
ture were graphically compared to the ones of the ideal case without any
uncertainties, as depicted in Fig. 7.16 (CVC) and Fig. 7.17 (FVC). It can
be clearly observed from the controlled variable profiles of the current and
power regulation loops that the control performance of the CVC scheme
deteriorates when the system is subjected to parameter uncertainties, while
from the numerical results provided in Fig. 7.17, it can be concluded that
the proposed control structure is able to reject such parametric disturbances
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Figure 7.16 Active power Ps, active current Irq, reactive power Qs, and reactive current
Ird profile obtained using CVC (in the ideal case and under parameter variations).

and guarantees a suitable dynamic response, where, except for the peaks
appearing at the instant of DFIG parameter variation, the wind system re-
sponse is almost the same as in the case of normal conditions.

7.5.2 Robustness evaluation against network voltage drop
Due to the high integration of WPSs into the electrical network during the
last years, DFIG WPSs are essentially required to have the ability to realize
low-voltage ride-through in order to remain safely connected in situations
where the power network voltage temporarily reduces due to a fault or
a sudden load change. The output powers of the DFIG are sensitive to
the network voltage drops because the stator windings of DFIGs are con-
nected directly to the power network. Indeed, the network voltage drops
cause a decrease in the stator flux value, which leads to demagnetization
of the DFIG, and a change of the flux affects the stator real and reactive
power.

To investigate the ability and feasibility of the proposed control struc-
ture in the face of network voltage disturbances, which are a common
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Figure 7.17 Active power Ps, active current Irq, reactive power Qs, and reactive current
Ird profiles obtained using FVC (in the ideal case and under parameter variations).

phenomenon that appears in the power network and affects the perfor-
mance of its connected WPSs, a 30% symmetrical three-phase voltage
drop from the rated value at the electrical network which lasts 1000 ms
has been applied at t = 10 s. Fig. 7.18 and Fig. 7.19 show the DFIG rota-
tional speed �m, power coefficient Cp, real power Ps, and reactive power
Qs profiles obtained by CVC and FVC structures, respectively. Peaks appear
at power network voltage change instances. The superior efficiency of the
FVC scheme in comparison with the CVC scheme of the generator side
converter is clearly observed, due to a 643 kW peak reduction of the active
power, immediately at the occurrence of the voltage drop. Moreover, one
can see that the proposed control structure reaches the MPPT more rapidly
than the CVC structure, during and after voltage drop. From the simula-
tion results presented, it is concluded that the proposed fractional-character
control structure guarantees the highest robust performance regarding the
voltage drop disturbance rejection.
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Figure 7.18 DFIG rotational speed �m, power coefficient Cp, real power Ps, and reac-
tive power Qs profiles obtained using CVC (in the ideal case and under a sudden 30%
voltage drop at the power network).

7.5.3 Comparative studies
Table 7.4 presents a quantitative comparison between the two control
structures in terms of the percentage of the steady-state error in the ideal
conditions without any disturbances. In the operation case under parameter
variations or network voltage drop, the comparison is made in terms of the
peak value of real power |Ps| and settling time ts at disturbance occurrence.
It is worth noting that the proposed control structure has slightly stronger
robustness than that of the CVC due to its fractional mechanism.

7.6. Conclusion

As fractional-order control offers a higher degree of freedom and
a number of advantages over integer-order control, this chapter proposes
a fractional-character vector control scheme to control a WPS equipped
with a DFIG in network-connected mode. The proposed control scheme
structure focuses on using the fractional-order PI controllers instead of
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Figure 7.19 DFIG rotational speed �m, power coefficient Cp, real power Ps, and reac-
tive power Qs profiles obtained using FVC (in the ideal case and under a sudden 30%
voltage drop at the power network).

Table 7.4 Control structures comparison.
Operation under ideal conditions without any disturbances

CVC FVC
Error [%] 3.32 2.47

Operation under parameter
variations

Operation under voltage
drop

CVC FVC CVC FVC
|Ps| [%] 77.27 4.55 72.76 13.33
ts [s] >10 0.021 0.221 0.025

the integer-order ones in the power and rotor current regulation loops of
the generator-side converter according to the stator flux orientation-based
control strategy. In this work, the design of the power and current FOPI
controllers is made using a frequency-domain method, which is based on
the linearized dynamic model of the DFIG generator. The efficiency of the
FVC compared to that of the CVC has been examined through simulation



210 Abdellatif Kasbi and Abderrafii Rahali

tests performed for a 1.5-MW DFIG WPS. Moreover, the robustness of
the new control structure is surveyed against generator parameter uncer-
tainties as well as network voltage faults. The obtained numerical results
validate that the FVC is capable to attenuate the effects of the system pa-
rameter evolution and network voltage disturbances and improve the WPS
response and the performance in wind energy conversion. Future studies
will focus on the use of fractional calculus theory to more accurately de-
scribe the nonlinear dynamics of a DFIG-based WPS.
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Chapter points

• The existence of solution in Filippov’s sense for FDCGMNNs is obtained.

• A finite time sliding mode controller is designed to guarantee the synchronization
of FDCGMNNs for finite time cases.

8.1. Introduction

Around 300 years ago, fractional-order calculus was introduced, and
it did not gain further interest for a long time due to its lack of ap-
plication background and its complexity. The final objective of solving
differential systems which are representations of physical phenomena is to
understand the real-world problems and provide solutions to the addressed
problems with high accuracy [64,65]. Over the past few years, fractional-
order differential equations found numerous applications in different types
of complex systems from diverse disciplines, for example colored noise,
ecology, finance, medicine, turbulence, and statistical distribution theory
[2,16,33,39]. Moreover, they have many applications in various branches
of science and engineering. One of the most peculiar properties of the
fractional differential equation is its ability to trace the motion of an object
continuously and instantaneously. Moreover, it possesses the memory of the
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system [37,51]. The fractional differential equation penetrates the sciences
and allows us to use it as a tool to understand the nature of dynamical
systems with more accuracy than in the case of integer-order differen-
tial equations [33]. In recent times, fractional calculus became the hub
of research among diverse fields of researchers and scientists owing to its
aforementioned properties [6,23,28]. Due to these properties, by model-
ing dynamical systems using fractional orders instead of integer orders, we
come up with precise information regarding the system even at every real-
order moment, which is a highly valuable tool for analyzing the complex
characteristics that are useful to predict the nature of the system more ef-
fectively. For recent developments in this theory and applications, we refer
the reader to [6–8,21,24–26,55].

The basic idea of Cohen–Grossberg neural networks (CGNNs) was ini-
tially coined by Cohen and Grossberg in 1983 [15]. In their model, they
demonstrate the implementation of specific CGNNs in which the pro-
cessing units will converge if the inputs are static and can be used for
useful calculations. In dynamical systems, CGNNs have widespread appli-
cations in several fields, such as filtering, secure communications, nonlinear
optimization problems, image processing, associative memory, and paral-
lel computation [48,73,74]. In addition, the time lags will always occur
in the process of transmission and information storage in real neural net-
works due to the finite switching rate of the amplifiers. As a result, the
occurrence of time delay in CGNNs may cause the behavior of a system
to exhibit oscillation, divergence, and instability characteristics, which are
generally encountered in different engineering, physical, and neural-based
systems. With the above details, in the current scenario, CGNNs have be-
come a great topic of intellectual study to check the dynamical behaviors
of CGNNs with time delays, attracting the interest of several researchers
from all over the world (see [29–31,54] and references cited therein).

By utilizing the symmetry theory concept [14], a memristor was firstly
considered by Chua in 1971 as the fourth circuit component after resistor,
capacitor, and inductor. The resistor depicts the voltage–current relation-
ship, the capacitor depicts the charge–voltage relationship, and the inductor
depicts the flux–current relationship. Chua illustrated the lack of a flux–
charge relationship, which he characterized as memristance, which is the
value of the memristor. The mathematical linkage between flux (q) and
charge (ϕ) is M(q)= dϕ

dq . The Hewlett-Packard laboratory fabricated a prac-
tically working memristor device in 2008 [56,57]. The new circuit has
memory characteristics like biological neurons, which are distinctive from
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other elements of the circuit, such as resistor and capacitor. A memristor has
a number of good features like nanometer size, nonvolatility, and nonlinear-
ity, which make it more suitable for simulating synapse resistors [5,34,41].
By replacing the resistors with memristors in a conventional CGNN model,
a new Cohen–Grossberg type memristive neural network model can be
constructed. The resulting Cohen–Grossberg type memristive neural net-
works (CGMNNs) are advantage over the conventional Cohen–Grossberg
type neural networks because they require low power with strong scal-
ability and high density. Currently, CGMNNs play a significant role in
understanding the neuronal processes in the human brain. They are useful
in many areas, including associative memory, optimization, engineering,
and signal and image processing. Therefore, in theory and applications, it is
necessary and important to study CGMNNs. Several interesting results have
been documented in recent literatures [38,50,52,53]. On the other hand,
a lot of consideration has been given to fractional-order neural networks
in light of their potential applications to different fields such as associative
memory, electrical engineering, fluid dynamics, and secure communica-
tion. In the circuit implementation of integer-order memristive neural
networks, many scholars endeavored to update the ordinary capacitor to
a fractional capacitor; at that point fractional-order memristor-based neu-
ral networks (FOMBNNs) are formed. In recent years, several outstanding
results on the different types of FOMBNNs, especially FOMBNNs with
recurrent type [3,40], FOMBNNs with fuzzy type [4,36], FOMBNNs
with BAM type [9,49], FOMBNNs with competitive type [44,47], and
FOMBNNs with Cohen–Grossberg type [73,74], have been proposed and
studied. Currently, an ever-increasing number of specialists talks about
FCGNNs and some significant outcomes were accounted [32,48,58,71].
However, there have been few investigations of fractional-order CGMNNs
(FCGMNNs), as shown by [73,74].

Over the past few years, synchronization has already emerged as a hot
research theme and it has been successfully applied in fluid dynamics, op-
timal control, control theory, and so on. Several kinds of synchronization
have been analyzed in the sense of discontinuous CGNNs represented by
delay differential equations and lots of scientific results have been established
in the literature [1,35,59,60]. But, these results deal with integer-order
cases, and few outcomes are concentrated on fractional-order cases [45].
Different from infinite time synchronization, finite time synchronization
requires the master–slave system to remain completely identical after some
finite time, which is known as the settling time. For finite time drive-
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response synchronization of noninteger-order neural networks, many as-
pects have been broadly investigated under various control techniques such
as adaptive feedback control [11], state feedback control [13], pinning con-
trol [45], and impulsive control [74]. The interesting feature of sliding mode
control is its fast global convergence and high robustness to outside distur-
bances. By using the sliding mode control scheme the state trajectories of
the considered dynamical system are retained by constructing a preferable
sliding surface and designing the suitable control for our sliding mode sur-
face. The prime advantages of sliding mode control include less reaction to
the disturbances, quick responses, and implementation simplicity. Similarly,
the key feature of control strategies of sliding mode control is their ability
to apply the suitable sliding surface based on the input–output behavior of
the observed plant. It establishes the stability and robustness of the system
in an effective way.

8.1.1 Related works
Chen et al. [12] have examined the sliding mode control problem of
projective, complete, and anti-synchronization criteria for time-delayed
fractional-order neural networks (FONNs) for different parameters based
on Lyapunov stability theory and the Razumikhin approach. Chen et
al. [13] have designed the state feedback and adaptive control for several
synchronization criteria for discontinuous FONNs by means of some fa-
mous inequality techniques, properties of Caputo fractional derivatives, and
Lyapunov stability theory. Pratap et al. [45] have established the stability and
quasisynchronization criteria for discontinuous FCGNNs with time-delay
effects by the fractional comparison principle and pinning feedback con-
trol. Rajivganthi et al. [48] have investigated the delay-independent stability
criteria for FCGNNs with BAM type model for finite time cases based
on properties of the Caputo fractional derivative, the contraction map-
ping principle, some famous inequality scaling skills, and the mean value
theorem. Wang et al. [62] have investigated the sliding mode control prob-
lem of synchronization criteria of time-delayed memristive FONNs for
fixed time cases by Lyapunov stability theory. Wu et al. [68] have derived
some sufficient criteria via a matrix element method that ensure the finite
time synchronization criteria for FONNs for finite time cases under sliding
mode control technology. Zhang et al. [73] have analyzed the finite time
and impulsive synchronization criteria for memristive FCGNNs with time-
delay effects by state feedback and impulsive control, respectively. Zheng
et al. [74] have demonstrated the stability and synchronization criteria for
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memristive FCGNNs with time-delay effects by the Gronwall inequality
and simple linear feedback control, respectively.

Motivated by the aforementioned publications, the main objective of
this chapter is to investigate the sliding model control for finite time syn-
chronization of discontinuous FCGMNNs with discrete delays. The es-
sential theme of this chapter lies in the following aspects. (1) Based on
nonsmooth analysis and the growth property, the existence of solutions
in Filippov’s sense is established and it is improved compared to those in
previous works. (2) Based on the theory of sliding mode control, a novel
fractional integral sliding mode dynamic surface is designed and an ap-
propriate finite time sliding mode control law is proposed to guarantee
the existence of sliding motion. (3) Based on the finite time stability the-
ory and fractional Lyapunov stability theory, we have established the finite
time reachability criteria for specified fractional integral sliding mode dy-
namic surfaces, and some sufficient criteria are derived to ensure finite
time synchronization of the addressed model. The remaining structure of
this chapter is outlined as follows: Basic tools on fractional-order deriva-
tives, properties of the Mittag-Leffler function, and a system description
for FDCGMNNs are formally defined in Section 8.2. Section 8.3 describes
the main results of this chapter. In Section 8.4, numerical results and their
applications are presented. At last, Section 8.5 ends with conclusions and
future directions.

In the following, R
m refers to the m-dimensional space. The set of

all m × m real matrices is represented by R
m×m. Let us denote ‖R‖ =

max1≤x≤m{∑m
y=1 |rxy|}. The symbol ‖ · ‖ indicates norm-2; C

([−μ, 0],Rm
)

refers to the set of all continuous functions from [−μ, 0] to R
m, where

μ > 0; sign(·) indicates the signum function; and BCC(�) refers to the set
of all nonempty bounded closed and convex subsets of �.

8.2. Preliminaries

In this section, some preliminaries, a model description, and some
assumptions are introduced.

8.2.1 Basic tools for fractional-order derivatives
There are several fractional derivatives, like the Riemann–Liouville frac-
tional derivative, the Caputo fractional derivative, the Caputo–Fabrizio
derivative, the Atangana derivative, and the Hadamard derivative. Com-
pared to the other kinds of fractional-order derivative, the initial values of
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the Caputo fractional have a similar form as those of the integer-order dif-
ferential equation, facilitating understanding of physical significance and ex-
tensive practical applications. Furthermore, the Caputo fractional derivative
can easily solve the initial value problem of nonlinear fractional dynamical
systems, which is broadly applied in the modeling of real-world practical
systems. Due to these advantages, the definition of Caputo derivative will
be considered in this chapter.

Definition 8.1. [43] The fractional-order integral with order λ > 0 for a
function u(t) is described as follows:

0D−λ
t u(t)= 1

�(λ)

∫ t

0
(t − ς)λ−1u(ς)dς, (8.1)

where �(·) is the gamma function, which is described as

�(τ)=
∫ ∞

0
exp(−t)tϑ−1 dt, (Re(ϑ) > 0), (8.2)

where Re(ϑ) refers to the real part of ϑ .

Definition 8.2. [43] The Caputo fractional derivative with order 0< λ< 1
for function u(t) is described as follows:

C
0 Dλ

t u(t)= 1
�(1 − λ)

∫ t

0

u′(ς)
(t − ς)λ dς. (8.3)

Furthermore, the following Caputo fractional-order derivative proper-
ties are given.

Property (i). Let δ be any scalar. Then C
0 Dγ

t δ = 0 holds.

Property (ii). For any scalars ω and � , the linearity of the Caputo
fractional-order derivative gives

C
0 Dλ

t

(
ωu1(t)+�u2(t)

)
= ωC

0 Dλ
t u1(t)+�C

0 Dλ
t u2(t).

Property (iii). Suppose ξ1(t) and ξ2(t) and its all derivatives are continuous
in the interval [0, t]. The Leibniz rule for fractional-order differentiation is

C
0 Dλ

t

(
ξ1(t)ξ2(t)

)
=

+∞∑
�=0

λ�(λ)

��(�)�(λ+ 1 − �)ξ
(�)

1 (t)
C
0 Dλ−�

t ξ2(t),
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where ξ (�)1 (t) indicates the integer-order derivative of function ξ1(t) with
order � and C

0 Dλ−�
t ξ2(t) indicates the fractional-order derivative of function

ξ2(t) with order λ− �.
Property (iv). For λ1 > 0, λ2 > 0, and λ1 +λ2 > 1, the following inequality
holds:

C
0 Dλ1

t

(
C
0 Dλ2

t u(t)
)
= C

0 Dλ1+λ2
t u(t).

Property (v). For the Caputo fractional-order derivative, we have

C
0 Dλ

t 0D−λ
t u(t)= u(t).

Property (vi). If u(t) ∈ Cm[0,+∞), then

0D−λ
t

C
0 Dλ

t u(t)= u(t)−
m−1∑
�=1

t(�)

�! u�(0), t ≥ 0,

where m − 1< λ<m and m is a positive integer.

Consider the following delay differential system with fractional order:

{
C
0 Dλ

t u(t)= g(t,u(t −μ)), t> 0,

u(t)= u0(t), t ∈ [−μ,0], (8.4)

where 0 < λ < 1, u(t) ∈ R
m, μ > 0, g : [0,+∞) × R

m → R
m is piecewise

continuous and its solution can be written as follows:

u(t)= u0(t)+ 1
�(λ)

∫ t

0
(t − �)λ−1g(�,u(�−μ))d�. (8.5)

Lemma 8.1. [70] Let ξ(t) ∈ R
m be a continuously differentiable vector-valued

function. Then

C
0 Dλ

t ξ
2(t)≤ 2ξ(t) C

0 Dλ
t ξ(t), λ ∈ (0,1). (8.6)

8.2.2 Mittag-Leffler function
The definition of the Mittag-Leffler function with one and two parameters
and its properties are given in this subsection.
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Definition 8.3. [43] The Mittag-Leffler function with two parameters
λ, ζ > 0 is described as follows:

Mλ,ζ (ς)=
+∞∑
�=0

ς�

�(λu + ζ ) , (8.7)

where ς ∈ R. Especially, when ζ = 1,

Mλ,1(ς)=: Mλ(ς)=
+∞∑
�=0

ς�

�(λu + 1)
. (8.8)

Definition 8.4. [43] The Laplace transform of the Mittag-Leffler function
with two parameters is defined as

L
{
tγ−1Mλ,γ (αtλ)

}
= sλ−γ

sλ − α ,
(
Re(s) > λ

√|α|
)
,

where λ ∈ (m − 1,m) and s and t are variables in the Laplace domain and
the time domain, respectively.

Lemma 8.2. [66] Suppose the increasing nonnegative function u1(�) is locally
integrable on � ∈ [0,T) and the increasing nonnegative function u2(�) ≤� is de-
scribed on � ∈ [0,T), where � is a positive scalar. . If v(�) is nonnegative, locally
integrable and satisfies

v(�)≤ u1(�)+ u2(�)

∫ �

0
(�− t)λ−1v(t)dt, � ∈ [0,T), (8.9)

we have

v(�)≤ u1(�)Mλ

(
u2(�)�(λ)�

λ
)
, (8.10)

where λ is a positive scalar. This inequality is called as the generalized Gronwall
inequality.

Lemma 8.3. [69] For 0< λ< 1 and |arg t|< π
2 , we have

Mλ(t)= 1
λ

exp t
1
λ −

υ∑
�=1

1
t��(1 − λ�) +O

( 1
tυ+1

)
, 0 	= t ∈ R, |t| → +∞,

(8.11)

where υ > 1 is a scalar.



Finite time synchronization criteria 221

8.2.3 Model formulation
In this chapter, the dynamics of fractional-order discontinuous CGMNNs
(FDCGMNNs) can be described by the fractional-order delay differential
equations:

C
0 Dλ

t ux(t)= −px
(
ux(t)

)[
qx
(
ux(t)

)−
m∑

y=1

rxy
(
uy(t)

)
gy(uy(t))

−
m∑

y=1

sxy
(
uy(t)

)
gy(uy(t −μ))− Fx

]
, (8.12)

and the vector form is

C
0 Dλ

t u(t)= −P
(
u(t)

)[
Q
(
u(t)

)− R
(
u(t)

)
g(u(t))− S

(
u(t)

)
g(u(t −μ))− F

]
,

(8.13)

where x = 1,2, ...,m, C
0 Dλ

t refers to the Caputo fractional derivative of
order 0 < λ < 1, u(t) = (

u1(t), ...,um(t)
)T ∈ R

m are the state variables at
time t, P(u(t)) = diag

(
p1(u1(t)), ...,pm(um(t))

)
and Q(u(t)) = diag

(
q1(u1(t)),

..., qm(um(t))
)

indicate an amplification function and a well-behaved func-

tion, g
(
u(t)

) =
[
g1
(
u1(t)

)
, ...gm

(
um(t)

)]T
signifies the neuron activations at

time t, constant μ > 0 refers to the time lag, and F = (F1, ...,Fm)
T is an

external input.
Based on the memristive properties of current–voltage, the model

of memristive connection weights can be described as R
(
u(t)

) =[
rxy(ux(t))

]
m×m

, S
(
u(t)

)=
[
sxy(ux(t))

]
m×m

, where

rxy(uy(t))=

⎧⎪⎪⎨
⎪⎪⎩

ŕxy, |uy(t)| ≤�x,

r̀xy, |uy(t)|>�x,

ŕxy or r̀xy, |uy(t)| =�x

and

sxy(uy(t))=

⎧⎪⎪⎨
⎪⎪⎩

śxy, |uy(t)| ≤�x,

s̀xy, |uy(t)|>�x,

śxy or s̀xy, |uy(t)| =�x,

where �x are switching jumps, ŕxy, r̀xy, śxy, and s̀xy are all constants, and
x,y ∈ N. Let r−xy = min{ŕxy, r̀xy}, r+xy = max{ŕxy, r̀xy}, s−xy = min{śxy, s̀xy}, and
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s+xy = max{śxy, s̀xy}. The initial values of fractional system (8.12) are u(�)=
υ(�)= (υ1(�), ..., υm(�)

)T ∈ R
m and the norm is described as

‖υ‖ = sup
�∈[−μ,0]

‖υ(�)‖.

In this chapter, the neuron activations are not continuous. Based on the
classical definition, the solution of the FDCGMNNs (8.12) does not exist.
Therefore, we can recommend the theory of Filippov solution [22].

Definition 8.5. Consider the differential system with fractional order

{
C
0 Dλ

t u(t)= g(t,u), t > 0,

u(0)= u0, u ∈ R
m,

(8.14)

where g(t,u) is discontinuous in u. The set-valued map G : Rm → 2R
m is

described as

G(t,u)=
⋂
τ>0

⋂
σ(J )=0

co
[
g(t,B

(
u, τ )\K)],

where B
(
u, τ )= {ŭ; ‖ŭ − u‖ ≤ τ }, J ⊆ R

m. The Lebesgue measurable of set
K is denoted as σ(K). A vector function u(t) defined on M ⊆ R is said to be
a Filippov solution of fractional differential system (8.14) if it is absolutely
continuous on any subinterval of a nondegenerate interval [t1, t2] of M, for
a.a. t ∈ M, u(t) satisfies the following differential inclusion

C
0 Dλ

t u(t) ∈ G(t,u).

Via the above theory of differential inclusion, the FDCGMNNs (8.12)
can be obtained as follows:

C
0 Dλ

t ux(t) ∈ −px
(
ux(t)

)[
qx
(
ux(t)

)−
m∑

y=1

G
(
rxy
(
uy(t)

))
G
[
gy(uy(t))

]

−
m∑

y=1

G
(
sxy
(
uy(t)

))
G
[
gy(uy(t −μ))

]
− Fx

]
, (8.15)

for x = 1,2, ...,m, a.a. t ≥ 0, where the Filippov set-valued maps are

G
[
gy(uy)

]
=
{

min{g−
y (uy), g+

y (uy)}, max{g−
y (uy), g+

y (uy)}
}
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and

G
(
rxy
(
uy(t)

))=

⎧⎪⎪⎨
⎪⎪⎩

ŕxy, |uy(t)| ≤�x,

r̀xy, |uy(t)|>�x,

[r−xy, r
+
xy], |uy(t)| =�x,

G
(
sxy
(
uy(t)

))=

⎧⎪⎪⎨
⎪⎪⎩

śxy, |uy(t)| ≤�x,

s̀xy, |uy(t)|>�x,

[s−xy, s
+
xy], |uy(t)| =�x,

or there exist measurable functions r̆xy ∈ G
(
rxy
(
uy(t)

))
, s̆xy ∈ G

(
sxy
(
uy(t)

))
,

and βy(t) ∈ G
[
gy(uy(t))

]
such that

C
0 Dλ

t ux(t)= −px
(
ux(t)

)[
qx
(
ux(t)

)−
m∑

y=1

r̆xyβy(t)−
m∑

y=1

s̆xyβy(t −μ)− Fx

]
.

(8.16)

Throughout this chapter, the corresponding response system is described as

C
0 Dλ

t vx(t)= −px
(
vx(t)

)[
qx
(
vx(t)

)−
m∑

y=1

rxy
(
vy(t)

)
gy(vy(t))

−
m∑

y=1

sxy
(
vy(t)

)
gy(vy(t −μ))− Fx

]
+ zx(t), (8.17)

and the vector form is

C
0 Dλ

t v(t)= −P
(
v(t)

)[
Q
(
v(t)

)− R
(
v(t)

)
g(v(t))− S

(
v(t)

)
g(v(t −μ))− F

]
+ z(t), (8.18)

where x = 1,2, ..,m, v(t)= (
v1(t), ..., vm(t)

)T ∈ R
m are the state variables of

system (8.18) at time t, and z(t)= (
z1(t), ...,zm(t)

)T ∈ R
m are suitable con-

trol inputs. The model of memristive connection weights of system (8.18)
can be described as R

(
v(t)

) =
[
rxy(vx(t))

]
m×m

, S
(
v(t)

) =
[
sxy(vx(t))

]
m×m

,
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where

rxy(vy(t))=

⎧⎪⎪⎨
⎪⎪⎩

ŕxy, |vy(t)| ≤�x,

r̀xy, |vy(t)|>�x,

ŕxy or r̀xy, |vy(t)| =�x

and

sxy(vy(t))=

⎧⎪⎪⎨
⎪⎪⎩

śxy, |vy(t)| ≤�x,

s̀xy, |vy(t)|>�x,

śxy or s̀xy, |vy(t)| =�x.

Via the above theory of differential inclusion, the FDCGMNNs (8.18) can
be obtained as follows:

C
0 Dλ

t vx(t) ∈ −px
(
vx(t)

)[
qx
(
vx(t)

)−
m∑

y=1

G
(
rxy
(
vy(t)

))
G
[
gy(vy(t))

]

−
m∑

y=1

G
(
sxy
(
vy(t)

))
G
[
gy(vy(t −μ))

]
− Fx

]
+ zx(t), (8.19)

for x = 1,2, ...,m, a.a. t ≥ 0, where the Filippov set-valued maps are

G
[
gy(vy)

]
=
{

min{g−
y (vy), g+

y (vy)}, max{g−
y (vy), g+

y (vy)}
}

and

G
(
rxy
(
vy(t)

))=

⎧⎪⎪⎨
⎪⎪⎩

ŕxy, |vy(t)| ≤�x,

r̀xy, |vy(t)|>�x,

[r−xy, r
+
xy], |vy(t)| =�x,

G
(
sxy
(
vy(t)

))=

⎧⎪⎪⎨
⎪⎪⎩

śxy, |vy(t)| ≤�x,

s̀xy, |vy(t)|>�x,

[s−xy, s
+
xy], |vy(t)| =�x,

or there exist measurable functions r̂xy ∈ G
(
rxy
(
vy(t)

))
, ŝxy ∈ G

(
sxy
(
vy(t)

))
,

and γy(t) ∈ G
[
gy(vy(t))

]
such that
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C
0 Dλ

t vx(t)= −px
(
vx(t)

)[
qx
(
vx(t)

)−
m∑

y=1

r̂xyγy(t)−
m∑

y=1

ŝxyγy(t −μ)− Fx

]

+ zx(t). (8.20)

Let wx(t)= vx(t)− ux(t). Then based on (8.16) and (8.20), the synchroniza-
tion error dynamic is described as

C
0 Dλ

t wx(t)

= −px
(
vx(t)

)[
qx
(
vx(t)

)−
m∑

y=1

r̂xyγy(t)−
m∑

y=1

ŝxyγy(t −μ)− Fx

]

+ zx(t)+ px
(
ux(t)

)[
qx
(
ux(t)

)−
m∑

y=1

r̆xyβy(t)−
m∑

y=1

s̆xyβy(t −μ)− Fx

]

= −
(
px
(
vx(t)

)
qx
(
vx(t)

)− px
(
ux(t)

)
qx
(
ux(t)

))+
(
px
(
vx(t)

)− px
(
ux(t)

))
Fx

+
m∑

y=1

px
(
vx(t)

)
r̂xy
(
γy(t)− βy(t)

)+
m∑

y=1

px
(
vx(t)

)
ŝxy
(
γy(t −μ)− βy(t −μ))

+
m∑

y=1

px
(
vx(t)

)
r̂xyβy(t)−

m∑
y=1

px
(
ux(t)

)
r̆xyβy(t)+

m∑
y=1

px
(
vx(t)

)
ŝxyβy(t −μ)

−
m∑

y=1

px
(
ux(t)

)
s̆xyβy(t −μ)+ zx(t). (8.21)

Throughout this chapter, the following assumptions are very impor-
tant to solve the synchronization problem of FDCGMNNs (8.12) and
FDCGMNNs (8.16), respectively.

Assumption 8.1. Suppose there exist positive scalars ηy > 0 and θy > 0
such that

∣∣G[gy(uy(t))]
∣∣= sup

α∈G[gy(uy(t))]
|α| ≤ ηy

∣∣uy(t)
∣∣+ θy,

for y = 1,2, ...,m.

Assumption 8.2. In every bounded interval, the bounded nonlinear func-
tion

(|gy(·)| ≤�y
)

is a continuous function except for a finite number of
isolated points σ j

k. Furthermore, there exist right and left limits g+
y (σ

y
j ) and

g−
y (σ

y
j ), respectively.
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Assumption 8.3. For each x = 1,2, ...,m, there exist positive scalars η̆y > 0
and θ̆y > 0 such that

∣∣γy(t)− βy(t)
∣∣≤ η̆y

∣∣vy(t)− uy(t)
∣∣+ θ̆y,

where γy(t) ∈ G
[
gy(vy(t))

]
and βy(t) ∈ G

[
gy(uy(t))

]
.

Assumption 8.4. For every x = 1,2, ...,m, there exist scalars p�x > 0,
p��x > 0, q�x > 0, q��x > 0, and p̆x such that the amplification function and
the behavior function fulfill the following relationship:

0 ≤ p�x ≤ px
(
ux
)≤ p��x <∞, 0 ≤ q�x ≤ qx

(
ux
)≤ q��x <∞,

|px(v)− px(u)| ≤ p̆x|v − u|, u, v ∈ R.

Assumption 8.5. For every x = 1,2, ...,m, there exist scalars ϕx > 0 such
that the following relationship holds:

px(v)qx(v)− px(u)qx(u)
v − u

≥ ϕx,

for all u, v ∈ R, u 	= v.

To derive the existence of Filippov solutions for the FDCGMNNs
(8.12), we need to provide the following lemma.

Lemma 8.4. Suppose the set � =
{
u ∈ � : ςu ∈ ςG(u), ς > 1

}
is bounded.

Then the set � is a fixed point, where G :�→ BCC(�) is a condensing map and
� is a Banach space.

8.3. Main results

In this part, we will derive the existence of solutions in the Filippov
sense. Then, a novel fractional integral sliding mode dynamic surface and
finite time sliding model control will be incorporated into the proposed
synchronization problem of FDCGMNNs with time delays.

8.3.1 Existence of Filippov solutions
Theorem 8.1. When Assumption 8.1 and Assumption 8.2 hold, then there
exist at least one solution ũ(t) of FDCGMNNs (8.12) on a positive interval in
view of FDCGMNNs (8.15).
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Proof. A set-valued map

u(t) ↪→ −P
(
u(t)

)[
Q
(
u(t)

)− R
(
u(t)

)
g(u(t))− S

(
u(t)

)
g(u(t −μ))− F

]

has nonempty bounded closed convex values and is upper semicontinuous.

Construct a map G : C
(
[−δ,T ], Rm

)
→ C

(
[−δ,T ], Rm

)
based on

the solution of FDCGMNNs. We have

G : u(t)= u(0)+ 1
�(λ)

∫ t

0
(t − �)λ−1

{
− P

(
u(�)

)[
Q
(
u(�)

)− R
(
u(�)

)
g(u(�))

− S
(
u(�)

)
g(u(�−μ))− F

]}
d�.

Then, we will prove that the set � is bounded, where

�=
{

u ∈ C
(
[−δ,T ], Rm

)
: ςu ∈ G(u), ς > 1

}
.

Thus,

u(t)= 1
ς

{
u(0)+ 1

�(λ)

∫ t

0
(t − �)λ−1

{
−P
(
u(�)

)[
Q
(
u(�)

)− R
(
u(�)

)
g(u(�))

− S
(
u(�)

)
g(u(�−μ))− F

]}
d�

}
.

From Assumption 8.1 and Assumption 8.2, we have

‖u(t)‖ ≤ ‖u(0)‖ +
∥∥∥ 1
�(λ)

∫ t

0
(t − �)λ−1

{
−P
(
u(�)

)[
Q
(
u(�)

)− R
(
u(�)

)
g(u(�))

− S
(
u(�)

)
g(u(�−μ))− F

]}
d�
∥∥∥

≤ ‖u(0)‖ + 1
�(λ)

∫ t

0
(t − �)λ−1

{
‖P̃‖‖Q̃‖‖u(�)‖ + ‖P̃‖‖R̃‖∥∥g(u(�))∥∥

+ ‖P̃‖ ‖S̃‖∥∥g(u(�−μ))∥∥+ ‖P̃‖‖F‖
}
d�

≤ ‖u(0)‖ + 1
�(λ)

∫ t

0
(t − �)λ−1

{
‖P̃‖‖Q̃‖‖u(�)‖

+ ‖P̃‖‖R̃‖
[
E‖u(�)‖ +�

]
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+ ‖P̃‖‖S̃‖
[
E‖u(�−μ)‖ +�

]
+ ‖P̃‖‖F‖

}
d�

= ‖u(0)‖ + 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖Q̃‖‖u(�)‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖R̃‖

[
E‖u(�)‖ +�

]
d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖S̃‖

[
E‖u(�−μ)‖ +�

]
+ ‖P̃‖‖F‖d�,

where

E = max{η1, ..., ηm}, � = max{θ1, ..., θm},
P̃ = diag{p��1 , ...,p��m }, Q̃ = diag{q��1 , ..., q��m },
R̃ = (rxy

)
m×m, rxy = max{|ŕxy|, |r̀xy|},

S̃ = (sxy
)
m×m, sxy = max{|śxy|, |s̀xy|}.

It is notable that
∥∥u(t −μ)∥∥≤ sup

�∈[−μ,t]

∥∥u(�)∥∥
= sup
�∈[−μ,0]

∥∥u(�)∥∥+ sup
�∈[0,t]

∥∥u(�)∥∥
= ‖υ‖ + ∥∥u(t)∥∥.

From the above inequality, we have

‖u(t)‖ ≤ ‖u(0)‖ + 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖Q̃‖‖u(�)‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖R̃‖

[
E‖u(�)‖ +�

]
d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖S̃‖

[
E
(
‖u(�)‖ + ‖υ‖

)
+�

]

+ ‖P̃‖‖F‖
�(λ)

∫ t

0
(t − �)λ−1d�

≤ ‖υ‖ + 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖Q̃‖‖u(�)‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖R̃‖E‖u(�)‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖R̃‖�d�
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+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖S̃‖E‖u(�)‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖S̃‖E‖υ‖d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖S̃‖�d�+ 1

�(λ)

∫ t

0
(t − �)λ−1‖P̃‖‖F̃‖d�

= ‖υ‖ + ‖P̃‖‖S̃‖E
�(λ)

∫ t

0
(t − �)λ−1‖υ‖d�

+
{
‖P̃‖‖R̃‖� + ‖P̃‖‖S̃‖� + ‖P̃‖‖F‖

}
�(λ)

∫ t

0
(t − �)λ−1d�

+
{
‖P̃‖‖Q̃‖ + ‖P̃‖‖R̃‖E + ‖P̃‖‖S̃‖E

}
�(λ)

∫ t

0
(t − �)λ−1‖u(�)‖d�

=
[

1 + ‖P̃‖‖S̃‖Etλ

λ�(λ)

]
‖υ‖

+ 1
�(λ)

∫ t

0
(t − �)λ−1

{
‖P̃‖‖R̃‖� + ‖P̃‖‖S̃‖� + ‖P̃‖‖F‖

}
d�

+ 1
�(λ)

∫ t

0
(t − �)λ−1

{
‖P̃‖‖Q̃‖ + ‖P̃‖‖R̃‖E + ‖P̃‖‖S̃‖E

}
‖u(�)‖d�

=:�1(t)+ �2(t)
�(λ)

∫ t

0
(t − �)λ−1‖u(�)‖d�,

where

�1(t)= ‖P̃‖
[(

‖R̃‖ + ‖S̃‖
)
� + ‖F‖

] tλ

�(λ+ 1)
+
[

1 + ‖P̃‖‖S̃‖Etλ

�(λ+ 1)

]
‖υ‖,

�2(t)= ‖P̃‖
(
‖Q̃‖ +

(
‖R̃‖ + ‖S̃‖

)
E
)
.

In view of the famous generalized Gronwall inequality (Lemma 8.2), we
have

‖u(t)‖ ≤�1(t)Mλ,1

(
�2(t)tλ

)
,

which means that � is bounded for any positive interval. Based on
Lemma 8.4, we conclude that G has a unique fixed point ũ, which is a
solution of FDCGMNNs (8.15). The proof is completed.
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8.3.2 Finite time stability criteria for the sliding motion
In view of synchronization error dynamic (8.21), we design the following
fractional-order integral sliding surface:

ϒx(t)= wx(t)+0 D−λ
t

{
ξxwx(t)+ σx sign

(
wx(t)

)∣∣wx(t)
∣∣

}
, (8.22)

where ξx, σx > 0, x = 1,2, ..,m.

By means of the theory of sliding mode, the sliding surface and its
derivative must hold: {

ϒx(t)= 0,

ϒ̇x(t)= 0.
(8.23)

Furthermore, one can obtain

ϒ̇x(t)= C
0 D1−λ

t

{
C
0 Dλ

t ϒx(t)
}
,

where Property (iv) and Property (v) have been used. So

ϒ̇x(t)= 0,

which leads to

C
0 Dλ

t ϒx(t)= 0.

Then, combined with (8.22) and (8.23), we sustain that

C
0 Dλ

t ϒx(t)= C
0 Dλ

t wx(t)+ ξxwx(t)+ σx sign
(
wx(t)

)∣∣wx(t)
∣∣ ,

which leads to

C
0 Dλ

t wx(t)= −ξxwx(t)− σx sign
(
wx(t)

)∣∣wx(t)
∣∣ . (8.24)

It is notable that w = 0 is an equilibrium point of the system (8.24).

Theorem 8.2. If 0< λ < 1, then the sliding mode dynamic (8.24) is stable in
a finite time t, where

t ≤ λ

√∑m
x=1 w2

x(0)�(λ+ 1)∑m
x=1 2σx

.
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Proof. Construct the following Lyapunov functional:

L1(t)=
m∑

x=1

w2
x(t).

According to Lemma 8.1, we have

C
0 Dλ

t L1(t)≤ 2
m∑

x=1

wx(t) C
0 Dλ

t wx(t)

= 2
m∑

x=1

wx(t)

[
− ξxwx(t)− σx sign

(
wx(t)

)∣∣wx(t)
∣∣

]

≤ − min
1≤x≤m

{2ξx}L1(t)−
m∑

x=1

2σx

≤ −ρ1L1(t)−
m∑

x=1

2σx

≤ −ρ1L1(t). (8.25)

From (8.25), there exists a nonnegative function  (t) for which

C
0 Dλ

t L1(t)+ (t)= −ρL1(t). (8.26)

Applying Laplace transform to (8.26), we obtain

sλL1(s)− sλ−1L1(0)+ (s)= −ρL1(s), t ≥ 0,

where L1(s)= L{L1(t)} and  (s)= L{ (t)}. Thus, we have

L1(s)= L1(0)sλ−1 − (s)
sλ + ρ . (8.27)

Applying the inverse Laplace transform to (8.27), we receive

L1(t)≤ L1(0)Mλ,1(−λtλ)− (t) ∗ [tλ−1Mλ,λ(−ρtλ)],

where ∗ is a convolution operator. On the other hand,  (t), tλ−1 and
Mλ,λ(−ρtλ) are nonnegative functions, thus we have

 (t) ∗ [tλ−1Mλ,λ(−ρtλ)] ≥ 0.
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Hence, we have

L1(t)≤ L1(0)Mλ,1(−ρtλ). (8.28)

Based on Lemma 8.3, we have

Mλ,1(t)= 1
λ

et
1
λ −

υ∑
�=1

1
t��(1 − λ�) + O

(
1

tυ+1

)
, |t| → ∞,

where O
(

1
tυ+1

)
= 0. Thus we have

lim
t→+∞

⎡
⎣ 1
λ
et

1
λ −∑υ

�=1
1

t��(1−λ�) + O
( 1

tυ+1

)
1
λ
et

1
λ −∑υ

�=1
1

t��(1−λ�)

⎤
⎦= 1.

Therefore

Mλ,1 ∼ 1
λ

et
1
λ −

υ∑
�=1

1
t��(1 − λ�) , as t → +∞.

Since
∑υ
�=1

1
t��(1−λ�) ≥ 0, one has

Mλ,1 ≤ 1
λ

et
1
λ
, as t → +∞.

By thinking of limit function axioms, there exists t0 > 0 such that

Mλ,1 ≤ 1
λ

et
1
λ
, t> t0 > 0.

Therefore

Mλ,1(−λ(t − t0)λ)≤ 1
λ

e−[λ(t−t0)λ]
1
λ
, t> t0 > 0. (8.29)

By utilizing inequality (8.28), Eq. (8.29) becomes

L1(t)≤ L1(0)
[

1
λ

e−[λ(t−t0)λ]
1
λ

]
, t> t0 > 0.

That is,

m∑
x=1

w2
x(t)≤

m∑
x=1

w2
x(0)

[
1
λ

e−[λ(t−t0)λ]
1
λ

]
, t> t0 > 0.
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Then

(
m∑

x=1

w2
x(t)

) 1
2

≤
(

m∑
x=1

w2
x(0)

) 1
2 [1
λ

e−[λ(t−t0)λ]
1
λ

] 1
2

, t > t0 > 0.

Therefore ‖w(t)‖ → 0 as t → +∞, which means the sliding mode dy-
namic (8.24) converges to zero asymptotically, and hence the sliding mode
dynamic (8.24) is globally asymptotic stable.

Furthermore, we will deduce that the sliding mode dynamic (8.24) is
stable in a finite time. From (8.25), we have

C
0 Dλ

t L1(t)≤ −
m∑

x=1

2σx

= −ϑ.

There exists a function H(t)≥ 0 such that the following condition holds:

C
0 Dλ

t L1(t)+ H(t)= −ϑ. (8.30)

Taking the fractional integral on each side of (8.30) from 0 to t, we obtain

L1(t)− L1(0)+ 0D−λ
t H(t)= 0D−λ

t

(−ϑ), (8.31)

where

0D−λ
t H(t)= 1

�(λ)

∫ t

0
(t − ς)λ−1H(ς)dς ≥ 0,

since �(λ) > 0 and (t − ς)λ−1H(ς) > 0 for 0 ≤ ς ≤ t.

Furthermore,

0D−λ
t

(−ϑ)= − ϑ

�(λ)

∫ t

0
(t − ς)λ−1dς

= −ϑ tλ

�(λ+ 1)
. (8.32)

In view of inequalities (8.31) and (8.32), one gets

−L1(0)≤ L1(t)− L1(0)+ 0D−λ
t H(t)= −ϑ tλ

�(λ+ 1)
.
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Then we get

t ≤ λ

√
L1(0)�(λ+ 1)

ϑ

= λ

√∑m
x=1 w2

x(0)�(λ+ 1)
ϑ

.

Thus, the sliding mode dynamic (8.24) is stable in a finite time. This com-
pletes the proof.

8.3.3 Reachability criteria
In order to guarantee the existence of the sliding motion, that is to say, in
order to ensure that the error trajectories wx(t) tends to the sliding surface
ϒ(t) = 0, we design an appropriate sliding control technique to force the
error trajectories (8.21) go on to the sliding surface within a finite time
and remain on it forever. The finite-time sliding mode control strategy is
designed as follows:

zx(t)=
(
ϕx − Fxp̆x −

m∑
y=1

p̆x�y

(
rxy + sxy

)
−

m∑
y=1

p��y |r̂yx|η̆x

)∣∣wx(t)
∣∣

−
m∑

y=1

p��y |ŝyx|η̆x
∣∣wx(t −μ)∣∣− m∑

y=1

p��x
(
|r̂xy| + |ŝxy|

)
θ̆y

− ξxwx(t)− σx sign
(
wx(t)

)∣∣wx(t)
∣∣

− ξ̆xϒx(t)− σ̆x sign
(
ϒx(t)

)∣∣ϒx(t)
∣∣ − ζ sign

(
ϒx(t)

)
, (8.33)

where ξx, σx, ξ̆x, σ̆x, ζ > 0 are the control gains, rxy = max{|r̂xy|, |r̆xy|}, and
sxy = max{|ŝxy|, |s̆xy|}.

Here, the following condition is significant.

Assumption 8.6. If ε < ζ , then the following inequality holds:

∣∣∣∣∣
+∞∑
�=0

λ�(λ)

��(�)�(λ+ 1 − �)ϒ
(�)(t)C0 Dλ−�

t ϒ(t)

∣∣∣∣∣≤ ε∥∥ϒ(t)∥∥,
where ϒ(t) indicates the sliding surface, which is defined in (8.22).
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Theorem 8.3. If Assumptions 8.2–8.6 hold, the trajectories of the synchroniza-
tion error system (8.21) can be reached onto the sliding surface in a finite time under
the designed sliding model control strategy (8.33).

Proof. Construct the following Lyapunov functional:

L2(t)=ϒ2(t). (8.34)

Based on Property (iii), we have

C
0 Dλ

t L2(t)=ϒ(t) C
0 Dλ

t ϒ(t)+
+∞∑
�=0

λ�(λ)

��(�)�(λ+ 1 − �)ϒ
(�)(t)C0 Dλ−�

t ϒ(t)

≤ϒ(t) C
0 Dλ

t ϒ(t)+ ε
∥∥ϒ(t)∥∥

=
m∑

x=1

ϒx(t) C
0 Dλ

t ϒx(t)+ ε
∥∥ϒ(t)∥∥

=
m∑

x=1

ϒx(t)

{
C
0 Dλ

t wx(t)+ ξxwx(t)+ σx sign
(
wx(t)

)∣∣wx(t)
∣∣

}
+ ε∥∥ϒ(t)∥∥

=
m∑

x=1

ϒx(t)

{
−
(
px
(
vx(t)

)
qx
(
vx(t)

)− px
(
ux(t)

)
qx
(
ux(t)

))

+
(
px
(
vx(t)

)− px
(
ux(t)

))
Fx +

m∑
y=1

px
(
vx(t)

)
r̂xy

(
γy(t)− βy(t)

)

+
m∑

y=1

px
(
vx(t)

)
ŝxy

(
γy(t −μ)− βy(t −μ)

)

+
m∑

y=1

px
(
vx(t)

)
r̂xyβy(t)−

m∑
y=1

px
(
ux(t)

)
r̆xyβy(t)

+
m∑

y=1

px
(
vx(t)

)
ŝxyβy(t −μ)−

m∑
y=1

px
(
ux(t)

)
s̆xyβy(t −μ)

+
(
ϕx − Fxp̆x −

m∑
y=1

p̆x�y

(
rxy + sxy

)
−

m∑
y=1

p��y |r̂yx|η̆x

)∣∣wx(t)
∣∣

−
m∑

y=1

p��y |ŝyx|η̆x
∣∣wx(t −μ)∣∣− m∑

y=1

p��x
(
|r̂xy| + |ŝxy|

)
θ̆y

− ξxwx(t)− σx sign
(
wx(t)

)∣∣wx(t)
∣∣ − ξ̆xϒx(t)− σ̆x sign

(
ϒx(t)

)∣∣ϒx(t)
∣∣
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− ζ sign
(
ϒx(t)

)+ ξxwx(t)+ σx sign
(
wx(t)

)∣∣wx(t)
∣∣

}
+ ε∥∥ϒ(t)∥∥

≤ −
m∑

x=1

ξ̆xϒ
2
x (t)−

m∑
x=1

σ̆xϒx(t)
sign

(
ϒx(t)

)∣∣ϒx(t)
∣∣

−
m∑

x=1

ζϒx(t) sign
(
ϒx(t)

)+ ε∥∥ϒ(t)∥∥
≤ −(ζ − ε)ε∥∥ϒ(t)∥∥−

m∑
x=1

ξ̆xϒ
2
x (t)−

m∑
x=1

σ̆x. (8.35)

As ζ − ε > 0, the synchronization error system will realize the sliding sur-
face ϒ(t) = 0 asymptotically based on the designed sliding model control
strategy (8.33).

Now we prove that the synchronization error system (8.21) can be
reached on the sliding surface in a finite time.

From (8.35), we have

C
0 Dλ

t L2(t)≤ −
m∑

x=1

σ̆x. (8.36)

By a procedure similar to that in Theorem 8.2, it is easy to get

t ≤ λ

√
ϒ2(0)�(λ+ 1)∑m

x=1 σ̆x
.

Therefore, the trajectories of the synchronization error system (8.21) will
tend to the sliding surface in a finite time. The proof is completed.

If the activation function of FDCGMNNs (8.12) is continuous, then
the following assumption is very important to establish the finite time syn-
chronization problem of FDCGMNNs.

Assumption 8.7. For each x = 1,2, ...,m, there exist positive scalars η̆y > 0
such that

∣∣gy(v)− gy(u)
∣∣≤ η̆y

∣∣v − u
∣∣, ∣∣gy(v)

∣∣≤�y, ∀ u, v ∈ R, y = 1,2, ...,m.

The fractional-order integral sliding surface (8.22) is the same as
FDCGMNNs with a continuous activation function. The finite time slid-
ing model control strategy is designed for FDCGMNNs with continuous
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activation function as follows:

zx(t)=
(
ϕx − Fxp̆x −

m∑
y=1

p̆x�y

(
rxy + sxy

)
−

m∑
y=1

p��y |r̂yx|η̆x

)∣∣wx(t)
∣∣

−
m∑

y=1

p��y |ŝyx|η̆x
∣∣wx(t −μ)∣∣− ξxwx(t)− σx sign

(
wx(t)

)∣∣wx(t)
∣∣

− ξ̆xϒx(t)− σ̆x sign
(
ϒx(t)

)∣∣ϒx(t)
∣∣ − ζ sign

(
ϒx(t)

)
, (8.37)

where ξx, σx, ξ̆x, σ̆x, ζ > 0 are the control gains, rxy = max{|r̂xy|, |r̆xy|}, and
sxy = max{|ŝxy|, |s̆xy|}.

Suppose that u(t)= (u1(t), ...,um(t)
)T ∈ R

m and v(t)= (v1(t), ..., vm(t)
)T ∈

R
m are any two solutions of (8.12) and (8.17). Let wx(t)= vx(t)− ux(t). The

synchronization error dynamic is described as

C
0 Dλ

t wx(t)= −px
(
vx(t)

)[
qx
(
vx(t)

)−
m∑

y=1

rxy
(
vy(t)

)
gy(vy(t))

−
m∑

y=1

sxy
(
uy(t)

)
gy(vy(t −μ))− Fx

]

+ px
(
ux(t)

)[
qx
(
ux(t)

)− m∑
y=1

rxy
(
uy(t)

)
gy(uy(t))

−
m∑

y=1

sxy
(
uy(t)

)
gy(uy(t −μ))− Fx

]
+ zx(t)

= −
(
px
(
vx(t)

)
qx
(
vx(t)

)− px
(
ux(t)

)
qx
(
ux(t)

))
+
(
px
(
vx(t)

)− px
(
ux(t)

))
Fx +

m∑
y=1

px
(
vx(t)

)
r̂xygy(wy(t))

+
m∑

y=1

px
(
vx(t)

)
ŝxygy(wy(t −μ))+

m∑
y=1

px
(
vx(t)

)
r̂xygy(uy(t))

−
m∑

y=1

px
(
ux(t)

)
r̆xygy(uy(t))+

m∑
y=1

px
(
vx(t)

)
ŝxygy(uy(t −μ))

−
m∑

y=1

px
(
ux(t)

)
s̆xygy(uy(t −μ))+ zx(t), (8.38)

where gy(wy(t))= gy(vy(t))− gy(uy(t)).
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Corollary 8.1 is straightforwardly obtained from Theorem 8.2 and The-
orem 8.3.

Corollary 8.1. If Assumptions 8.4–8.7 hold, the trajectories of the synchroniza-
tion error system (8.38) can be reached on the sliding surface in a finite time under
the designed sliding model control strategy (8.37).

Remark 8.1. This study constitutes the first attempt on the finite
time synchronization criteria for the sliding mode control technique to
FODGRNs with time delays. This research takes into account the frac-
tional order, time delays, memristive synaptic connection weights, sliding
mode control theory, and two-norm methods. Their results are not easy to
calculate and they are very complicated. This key innovation of this chapter
is to overcome that complication.

Remark 8.2. In the past few years, CGMNNs with fractional-order
derivative [73,74] and memristive discontinuous neural networks with
fractional-order derivative [17–19,42] have been broadly researched. How-
ever, there is no discussion on the dynamics of fractional-order memristive
Cohen–Grossberg delayed neural networks with discontinuous activations.

Remark 8.3. When the memristive connection weights of a memristor
ŕxy = r̀xy and śxy = s̀xy, which means the connection weights are imple-
mented only by a resistor, then the proposed results are still valid for
finite-time synchronization criteria for the sliding mode control technique
to fractional-order general Cohen–Grossberg delayed neural networks with
discontinuous activations, while these conservatism results have not been
reported anywhere else in the existing literature.

Remark 8.4. When λ = 1, the FODGRN model (8.22) reduces into
finite time synchronization criteria for the sliding mode control technique
to integer-order general Cohen–Grossberg delayed neural networks with
discontinuous activations, and the results of synchronization criteria are not
discussed in the literature.

Remark 8.5. The novel technique to various kinds of synchronization
results in this chapter can be easily generalized to different dynamical
behaviors like stability, stabilization, passivity, dissipativity, and state es-
timation for fractional-order Hopfield type neural networks, fractional-
order competitive neural networks, fractional-order cellular type neural
networks, fractional-order MAM type neural networks, fractional-order
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BAM type neural networks, fractional-order Cohen–Grossberg type neu-
ral networks, fractional-order complex-valued CGNNs, fractional-order
quaternion-valued CGNNs, and other networks. Therefore, the proposed
synchronization results and models are more general.

8.4. A numerical example

This section provides an example to justify the superiority and ad-
vantages of obtaining finite time synchronization criteria. In the exist-
ing literature [20,27,46,49,61,63,67,72], several scientific results have been
presented on fractional-order nonlinear time delay systems, and these nu-
merical results can be solved by the Adams–Bashforth–Moulton predictor-
corrector algorithm [10]. Inspired by the abovementioned works, the
Adams–Bashforth–Moulton predictor-corrector algorithm is applied to nu-
merically solve the fractional-order discontinuous time-delayed CGNNs in
the following simulations with step length 0.01. Consider a class of 2D
FDCGMNNs with time delays:

C
0 D0.998

t u(t)= −P
(
u(t)

)[
Q
(
u(t)

)− R
(
u(t)

)
g(u(t))− S

(
u(t)

)
g(u(t − 3))− F

]
,

(8.39)

where u(t) = (
u1(t),u2(t)

)T , P(u(t)) = diag
(
p1(u1(t)),p2(u2(t))

)
, Q(u(t)) =

diag
(
q1(u1(t)), q2(u2(t))

)
, p1(u) = p2(u) = 1 + 2.2

1+u2 , q1(u) = q2(u) = 0.5u +
tanh(u), g(u)= 0.005u + 0.08 sign(u), F1 = F2 = 0.1, and

r11
(
u1(t)

)=
{

−1.2, |u1(t)| ≤ 1,

−1.7, |u1(t)|> 1,

r12
(
u2(t)

)=
{

−1.3, |u2(t)| ≤ 1,

−1.1, |u2(t)|> 1,

r21
(
u1(t)

)=
{

1.6, |u1(t)| ≤ 1,

2, |u1(t)|> 1,

r22
(
u2(t)

)=
{

1.4, |u2(t)| ≤ 1,

1.45, |u2(t)|> 1,

s11
(
u1(t)

)=
{

−3.12, |u1(t)| ≤ 1,

−2.8, |u1(t)|> 1,
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s12
(
u2(t)

)=
{

2.4, |u2(t)| ≤ 1,

2.8, |u2(t)|> 1,

s21
(
u1(t)

)=
{

2.8, |u1(t)| ≤ 1,

1.9, |u1(t)|> 1,

s22
(
u2(t)

)=
{

3.5, |u2(t)| ≤ 1,

2.3, |u2(t)|> 1.

The corresponding 3D response system is described as follows:

C
0 D0.998

t v(t)= −P
(
v(t)

)[
Q
(
v(t)

)− R
(
v(t)

)
g(v(t))− S

(
v(t)

)
g(v(t − 3))− F

]
+ z(t), (8.40)

where v(t) = (
v1(t), v2(t)

)T , P(v(t)) = diag
(
p1(v1(t)),p2(v2(t))

)
, Q(u(t)) =

diag
(
q1(v1(t)), q2(v2(t))

)
, z(t) is the control input, and others are the same

as for the FDCGMNNs (8.39). The initial conditions are chosen as u(t)=(−0.2,−0.1
)T and v(t) = (

0.2,−0.8
)T . When the control is not applied,

the state trajectories of FDCGMNNs (8.38) and FDCGMNNs (8.39) are
shown in Fig. 8.1. Fig. 8.2 depicts the synchronization error trajectories
of FDCGMNNs (8.38) and FDCGMNNs (8.39), without applying any
control inputs.

One simply verifies that Assumptions 8.2–8.6 hold with �1 = �2 =
0.01, η̆1 = η̆2 = 1, θ̆1 = θ̆2 = 0.5, p��1 = p��2 = 0.03, p̆1 = p̆2 = 0.6, and ϕ1 =
ϕ2 = 0.075. In the finite time sliding model control strategy (8.33), we
select the control gain parameters ξ1 = ξ2 = 7.5, σ1 = σ2 = 0.009, ξ̆1 = ξ̆2 =
0.01, σ̆1 = σ̆2 = 0.03, and ζ = 0.2. The initial value of the sliding mode
surface is ϒ(0) = (

0.2,0.4
)T . Based on Theorem 8.2, the sliding mode

dynamic (8.24) is stable in a finite time and the finite time settling time T
is less than 18.052.

Based on the finite time sliding model control z(t), the state tra-
jectories of FDCGMNNs (8.38) and FDCGMNNs (8.39) are exhibited
in Fig. 8.3. In Fig. 8.4, the synchronization error trajectory tends to
zero, which guarantees the global asymptotic synchronization between
FDCGMNNs (8.38) and FDCGMNNs (8.39), respectively. Furthermore,
based on Theorem 8.3, the obtained finite time settling time T is less than
3.326. In Fig. 8.5, the time behaviors of the sliding dynamic surface (8.22)
are shown. Synchronization error norms and sliding dynamic surface norms
are displayed in Fig. 8.6.
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Figure 8.1 The time response of the state variables u(t) and v(t) for the drive sys-
tem (8.38) and response system (8.39) without control.

Figure 8.2 Time responses of the synchronization error variables w(t) between drive
system (8.38) and response system (8.39) without control.
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Figure 8.3 The time response of the state variables u(t) and v(t) for drive system (8.38)
and response system (8.39) with control.

Figure 8.4 Time responses of the synchronization error variables w(t) between drive
system (8.38) and response system (8.39) with control.
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Figure 8.5 The convergence behavior of the sliding dynamic surface (8.22).

Figure 8.6 The convergence behavior of the norm of synchronization error state vari-
ables w(t)with control input and norm of the control evaluation ‖ϒ(t)‖.
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8.5. Conclusions

In this chapter, we have analyzed the dynamics of FDCGMNNs
with time delay. Based on the nonsmooth analysis, the growth property,
and the generalized Gronwall inequality, the existence of Filippov solutions
was derived. Then, a novel sliding mode dynamic surface and an effective
finite-time sliding mode controller were designed to ensure the finite-time
synchronization for addressing FDCGMNNs based on the fractional-order
Lyapunov direct approach, sliding mode control theory, and some prop-
erties of Caputo fractional-order derivatives. Our future work will be
generalized to the adaptive sliding mode controller design for fractional-
order discontinuous memristive BAM neural networks with both leakage
and mixed time delays.
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CHAPTER NINE

Variable-order control systems:
a steady-state error analysis
Hamidreza Ghazisaeedi and Mohammad Saleh Tavazoei
Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

9.1. Introduction

In the past decade, fractional-order systems have received much atten-
tion and have been considerably applied for modeling and control of a wide
range of real-world plants [1,2,6,10,22,23,25]. The important characteristic
associated with fractional calculus is to extend the concept of integration
and differentiation to any real or imaginary order. This characteristic leads
to the proposal of the concept of variable-order operators as a generalization
of constant-order integrals and derivatives [8,22,23]. In this case, the order
of operators is a multivariable function. This function is called the order
function. Also, the dynamical systems described by variable-order opera-
tors are called variable-order systems (some applications of variable-order
systems and operators can be found in [3,9,17,18,21]). Moreover, frac-
tional variable-order controllers are the extended controllers resulting from
the use of variable-order operators. For instance, fractional variable-order
proportional integral derivative (FVOPID) controllers have been applied
for satisfying complicated control objectives in design of control systems
[4,7,11,12,20,26].

There are three common definitions for variable operators which have
been thoroughly studied in [8] and [22,23]. In this chapter, our focus is
on the third definition, which is in a convolution form. The convolution
form of the third definition of variable-order integral connects it to time-
invariant variable-order systems. The main purpose of this chapter is to
present some results on the type number concept in variable-order systems.
To this end, first of all the concept of type number in fractional systems [24]
is restated. Then, some theorems are presented for determining the type
number in an intensive range of variable-order systems (it is worth noting
that in [5] and [27] powerful numerical methods have been presented which
can be used for simulation of variable-order systems).

Fractional-Order Modeling of Dynamic Systems with
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This chapter is organized as follows. Section 9.2 presents definitions of
variable-order integrators. Also, in this section a notation for representation
of variable-order integrators in the Laplace domain is offered which is used
in the rest of the chapter. In Section 9.3, some results are presented for de-
termination of the type number in a wide range of variable-order systems.
A numerical method for simulation of a class of fractional variable-order
systems is presented in Section 9.4. In Section 9.5, the obtained results are
verified by some numerical examples on variable-order systems and circuits.
Finally, this chapter is concluded in Section 9.6.

9.2. Variable-order operators

In this section, the definition of fractional variable-order operators is
briefly reviewed, and a notation is offered for Laplace transform of integral
types of variable-order operators.

Definition 9.1. [8] Assume that q(t) > 0 for all t > 0. The integral of
function f (t) with variable-order function q(t) is defined as follows:

0Dt
−q(t)f (t) =

∫ t

0

(t − τ)q(t−τ)−1

�(q(t − τ))
f (τ )dτ. (9.1)

Now, we suggest the notation Iq(t)(s) for describing the variable-order in-
tegrators of order q(t) in the Laplace domain. Considering (9.1), Iq(t)(s) is
defined as follows:

Iq(t)(s) =
∫ ∞

0
e−st tq(t)−1

�(q(t))
dt. (9.2)

For example, if

q(t) =
{

1, t ≤ 1,

2, t > 1,
(9.3)

then

Iq(t)(s) = s + e−s

s2
. (9.4)

Definition 9.2. [20] Considering the order function α(t) > 0, the frac-
tional variable-order derivative operators of types A, B, and C are defined
as follows.
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The variable-order derivative of type A is defined as

A
0 Dα(t)

t = lim
h→0

n∑
r=0

(−1)r

hα(t)

(
α(t)

r

)
f (t − rh). (9.5)

The variable-order derivative of type B is defined as

B
0 Dα(t)

t = lim
h→0

n∑
r=0

(−1)r

hα(t−rh)

(
α(t − rh)

r

)
f (t − rh). (9.6)

The variable-order derivative of type C is defined as

C
0 Dα(t)

t = lim
h→0

n∑
r=0

(−1)r

hα(rh)

(
α(rh)

r

)
f (t − rh). (9.7)

In Eqs. (9.5)–(9.7),

n =
⌊

t
h

⌋
and

(
a
b

)
= �(a + 1)

�(b + 1)�(a − b + 1)
. (9.8)

Variable-order operators can be effectively applied in modeling of physi-
cal processes containing elements with variable behaviors. For example, in
heterogeneous media fractional-order operators have been widely used for
modeling the heat transfer process [14]. But in the cases that some elements
inside the process change over time, the use of variable-order operators can
provide a more precise model for describing the behavior of the process
[16].

9.3. Main results

This section is dedicated to presenting some theorems which are use-
ful in determining the type number of variable-order systems. First of all,
the definition of type number is restated.

Definition 9.3. [24] An asymptotically stable system with input r(t) and
output y(t) is of type number γ ∈ R

≥0 if for inputs in the form r(t) = tλ,
lim
t→∞

(
r(t) − y(t)

)
is zero where 0 < λ < γ and infinite where λ > γ .

In [24] it is shown that the type number of an asymptotically sta-
ble closed-loop fractional-order system in the unity feedback structure
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equals γ , if its open-loop transfer function has the form Gol(s) = G(s)/sγ ,
where G(0) �= 0,∞ and

G(s) = brsβr + br−1sβr−1 + .... + b0

sαn + an−1sαn−1 + .... + a0
. (9.9)

Here, the aim is to extend the abovementioned result for a more general
case, i.e., the case that the fractional integral is replaced by a variable-order
one. To this end, at first consider the following lemma.

Lemma 9.1. If 0 < b < q(t) < m for t > 0, where b and m are two constants,
then

lim
s→0+ sλ

∫ l

0
e−st tq(t)−1

�(q(t))
dt = 0, (9.10)

for λ > 0 and 0 ≤ l < ∞.

Proof. It is clear that

x1 < x2 →
{

ax2 < ax1, a < 1,

ax1 < ax2, a > 1.
(9.11)

A straightforward result of (9.11) is{
tm−1 < tq(t)−1 < tb−1, 0 < t < 1,

tb−1 < tq(t)−1 < tm−1, t > 1.
(9.12)

The integral in Lemma 9.1 can be split into two integrals as follows:

∫ l

0
e−st tq(t)−1

�(q(t))
dt =

∫ a

0
e−st tq(t)−1

�(q(t))
dt +

∫ l

a
e−st tq(t)−1

�(q(t))
dt. (9.13)

Assume that 0 < a < 1. Now, it is shown that (9.13) is finite. Note that the
second integral in the right-hand side of (9.13) is finite because the integral
function is finite for a < t < l and 0 < b < q(t) < m. Therefore, it should be
proved that the first integral in the right-hand side of (9.13) is also finite.
From (9.12),

tq(t)−1 < tb−1, (9.14)

where 0 < t < a < 1. Also, since q(t) > b > 0, 1/�(q(t)) is finite, i.e.,

1
�(q(t))

< L, (9.15)



Variable-order control systems: a steady-state error analysis 253

Figure 9.1 A unity negative feedback control system.

where L is a constant. From (9.14) and (9.15), it is obtained that

e−st tq(t)−1

�(q(t))
< Le−sttb−1, (9.16)

where 0 < t < a < 1. By integrating of (9.16) from 0 to a,

∫ a

0
e−st tq(t)−1

�(q(t))
dt <

∫ a

0
Le−sttb−1dt. (9.17)

The integral in the right-hand side of (9.17) is finite. Hence, the integral
in the left-hand side of (9.13) is finite, and consequently Lemma 9.1 is
concluded.

We are now in a position to state Theorem 9.1, which can be used
for determining the type number of an asymptotically stable system whose
open-loop transfer function is in the form of Gol(s) = Iq(t)(s)G(s), where
G(0) �= 0,∞ and the limit of order function at infinity is available.

Theorem 9.1. In the control system of Fig. 9.1, assume that 0 < b < q(t) < M
for t > 0, where b and M are two constants. Also, suppose that this control system
is asymptotically stable, G(0) �= 0 & ∞, and lim

t→∞ q(t) = α < ∞. In this case, the

type number of the control system equals α.

Proof. Assume that eλ(t) = tλ − y(t) is the error of the control system of
Fig. 9.1 to input r(t) = tλ where λ > 0. The Laplace transform of error
signal eλ(t) is given as follows:

Eλ(s) = �(λ + 1)

sλ+1 + sλ+1Iq(t)(s)G(s)
. (9.18)

Using the final value theorem, we obtain

eλ(∞) = lim
s→0+

� (λ + 1)

sλIq(t)(s)G(s)
. (9.19)
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The control system of Fig. 9.1 is of type number α if

lim
s→0+ sλIq(t)(s)G(s) =

{
∞, λ < α,

0, λ > α.
(9.20)

Since G(0) �= 0,∞, (9.20) is equivalent to

lim
s→0+ sλIq(t)(s) =

{
∞, λ < α,

0, λ > α.
(9.21)

Note that

lim
t→∞ q (t) = α → ∀ε > 0 ∃l , t > l → ∣∣q (t) − α

∣∣ < ε. (9.22)

Also, let ε in (9.22) be chosen small enough such that l > 1. In this case,
from (9.22) and (9.12), we obtain for t > l

tα−ε−1 < tq(t)−1 < tα+ε−1. (9.23)

According to the result obtained in (9.15),

p <
1

�(q(t))
< L, (9.24)

where p is a constant. From (9.23) and (9.24), it is concluded that

ptα−ε−1 <
tq(t)−1

�(q(t))
< Ltα+ε−1, 1 < l < t. (9.25)

Multiplying (9.25) in e−st (in the remainder, we assume that it is a real
positive value) and integrating resulting inequalities, we find

∫ ∞

l
pe−sttα−ε−1dt <

∫ ∞

l
e−st tq(t)−1

�(q(t))
dt <

∫ ∞

l
Le−sttα+ε−1dt. (9.26)

If we add the term
∫ l

0 e−st tq(t)−1

�(q(t))dt to the above inequalities, the center part
of (9.26) will be the Laplace transform of a variable-order integrator, i.e.,

∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
pe−sttα−ε−1dt < Iq(t)(s) <

∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
Le−sttα+ε−1dt.

(9.27)
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Suppose that λ is a positive number. From (9.27),

sλ(
∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
pe−sttα−ε−1dt) < sλIq(t)(s) <

sλ(
∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
Le−sttα+ε−1dt).

(9.28)

Consider λ = α + 2ε. Now, we calculate the limit of the right- and left-
hand sides of the above inequalities as s → 0. The limit of the right-hand
side of (9.28) is rewritten as

lim
s→0+ sα+2ε(

∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
Le−sttα+ε−1dt) =

lim
s→0+ sα+2ε

∫ ∞

l
Le−sttα+ε−1dt.

(9.29)

The first part of the left-hand side of (9.29) is zero (see Lemma 9.1). Also,

lim
s→0+ sα+2ε

∫ ∞

l
Le−sttα+ε−1dt =

lim
s→0+ sα+2ε(

∫ l

0
Le−sttα+ε−1dt +

∫ ∞

l
Le−sttα+ε−1dt).

(9.30)

The right-hand side of (9.30) is the Laplace transform of Ltα+ε−1. Hence,
we have

lim
s→0+ sα+2ε

∫ ∞

l
Le−sttα+ε−1dt = lim

s→0+ sα+2ε L�(α + ε)

sα+ε
= 0. (9.31)

Eqs. (9.29) and (9.31) result in

lim
s→0+ sα+2ε(

∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
Le−sttα+ε−1dt) = 0. (9.32)

By repeating the same idea for the left-hand side of Eq. (9.28), it is found
that

lim
s→0+ sα+2ε(

∫ l

0
e−st tq(t)−1

�(q(t))
dt +

∫ ∞

l
pe−sttα−ε−1dt) = 0. (9.33)

Considering (9.28), (9.32), and (9.33) and using the pinching theorem [15],
we obtain

lim
s→0+ sα+2εIq(t)(s) = 0. (9.34)
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By assuming λ = α − 2ε > 0 and following a similar procedure, from (9.28)
it can be concluded that

lim
s→0+ sα−2εIq(t)(s) = ∞. (9.35)

Eqs. (9.34) and (9.35) result in (9.21), or equivalently (9.20), and the proof
is completed.

Theorem 9.1 is of great benefit for determining the type number
in some classes of variable-order systems. The following lemma can be
used for finding the steady-state error of these systems to reference input
r(t) = tα, where α is the system type number.

Lemma 9.2. If 0 < b < q(t) < M, where b and M are two positive constants
and lim

t→∞ q(t) = α, then

lim
s→0+ sαIq(t)(s) = 1. (9.36)

Proof. Suppose that f (t) = tq(t)−1

�(q(t)) − tα−1

�(α)
. It is clear that

lim
t→∞ f (t) = 0. (9.37)

From (9.37) and the final value theorem,

lim
s→0+ sF(s) = 0, (9.38)

where F(s) = Iq(t)(s) − 1
sα is the Laplace transform of f (t). If α > 1,

lim
s→0+ s1−α(sαIq(t)(s) − 1) = 0. (9.39)

It is obvious that lim
s→0+ s1−α = ∞ where α > 1. Hence, (9.36) is deduced

from (9.39) for the case α > 1. Now, assume that α ≤ 1. In this case, from
the obtained result we find

lim
s→0+ sα+1Iq(t)+1(s) = 1. (9.40)

Define g(t) = tq(t)
�(q(t)) − αtq(t)

�(q(t)+1)
and note that lim

t→∞ g(t) = 0. Using properties

of the Laplace transform, it can be easily shown that

G(s) = −(Iq(t)(s))′ − αIq(t)+1(s), (9.41)
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where G(s) is the Laplace transform of g(t). If the final value theorem is
applied, lim

t→∞ g(t) = 0 results in

lim
s→0+ sG(s) = 0. (9.42)

From (9.41) and (9.42), it can be concluded that

lim
s→0+ s(−(Iq(t)(s))′ − αIq(t)+1(s)) = 0. (9.43)

By using the l’Hopital rule,

lim
s→0+

Iq(t)(s)
s−α

= lim
s→0+

(Iq(t)(s))′

−αs−α−1 . (9.44)

Multiplying the nominator and denominator in the right-hand side
of (9.44) to Iq(t)+1(s) yields

lim
s→0+

Iq(t)(s)
s−α

= lim
s→0+

(Iq(t)(s))′Iq(t)+1(s)sα+1

−αIq(t)+1(s)
. (9.45)

From (9.40) and (9.45), it is deduced that

lim
s→0+

Iq(t)(s)
s−α

= lim
s→0+

(Iq(t)(s))′

−αIq(t)+1(s)
. (9.46)

The right-hand side of (9.46) can be rewritten as

lim
s→0+

(Iq(t)(s))′

−αIq(t)+1(s)
= lim

s→0+
s(−(Iq(t)(s))′ − αIq(t)+1(s))

s(αIq(t)+1(s))
+ 1. (9.47)

According to (9.21), (9.43), and (9.47), (9.36) is derived.

As an example, consider the order function (9.3). For this order func-
tion, from (9.4) we have lim

s→0
s2Iq(t)(s) = 1, which is verified by Lemma 9.2.

The following theorem deals with finding the type number in a more gen-
eral form of variable-order systems.

Theorem 9.2. Consider an asymptotically stable system described by the following
transfer function:

T(s) =

n∑
j=1

bjIqj(t)(s)

1 +
n∑

i=1
aiIqi(t)(s)

, (9.48)
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where αj = lim
t→∞ qj(t) and αn > αn−1 > · · · > α1. This system is of type number

αn − β, where β is defined as

β = {max
i

αi|ai �= bi}. (9.49)

Proof. Define Kqj(t)(s) = sαj I qj(t)(s). By this definition, (9.48) can be rewrit-
ten as

T(s) =

n∑
j=1

bjs−αjKqj(t)(s)

1 +
n∑

i=1
ais−αiKqi(t)(s)

. (9.50)

From Lemma 9.2, it can be concluded that lim
s→0

Kqj(t)(s) = 1. Assume that

the Laplace transform of system error for input r(t) = tλ is denoted by Eλ(s)
as the Laplace transform of eλ(t). It can be easily shown that

Eλ(s) = � (λ + 1)

sλ+1

1 +
n∑

i=1
ais−αiKqi(t)(s) −

n∑
j=1

bjs−αjKqj(t)(s)

1 +
n∑

i=1
ais−αiKqi(t)(s)

. (9.51)

By multiplying the numerator and denominator in the right-hand side
of (9.51) with sαn and using the final value theorem, it can be shown that

eλ(∞) = lim
s→0+

� (λ + 1)

sλ

sαn +
n∑

i=1
aisαn−αiKqi(t)(s) −

n∑
j=1

bjsαn−αjKqj(t)(s)

sαn +
n∑

i=1
aisαn−αiKqi(t)(s)

.

(9.52)
Note that

sαn +
n∑

i=1

aisαn−αiKqi(t)(s) � an, as s → 0+, (9.53)

sαn +
n∑

i=1

aisαn−αiKqi(t)(s) −
n∑

j=1

bjsαn−αjKqj(t)(s) � (a − b)sαn−β, as s → 0+,

(9.54)

where a and b are defined as follows:{
a = {ai|αi = β} ,

b = {
bi|αi = β

}
.

(9.55)
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From (9.52), (9.53), and (9.54), we obtain

eλ (∞) = lim
s→0+

� (λ + 1)

sλ

(
a − b

)
sαn−β

an
. (9.56)

Eq. (9.56) confirms that the closed-loop system is of type number αn − β,
and its steady-state error to input tαn−β is

eαn−β (∞) =
(
a − b

)
� (αn − β + 1)

an
. (9.57)

9.4. A method for numerical simulation

In this section, a method for simulation of a class of fractional
variable-order systems based on the Adams predictor method [5] is pro-
posed.

Assume that T(s) as the transfer function of a closed-loop system is
described by

T(s) = Y (s)
R(s)

=

∑
j

bjFnj(t)(s)

1 + ∑
i

aiFdj(t)(s)
, (9.58)

where Y (s) and R(s) are the Laplace transform of the output of system (y(t))
and the input of system (r(t)), respectively. Eq. (9.58) in the time domain
can be rewritten as

y(t) =
∫ t

0

∑
j

bj
(t − τ)nj(t−τ)−1

�(nj(t − τ))
r(τ )dτ −

∫ t

0

∑
i

ai
(t − τ)di(t−τ)−1

�(di(t − τ))
y(τ )dτ.

(9.59)
The aim of the proposed algorithm is to find the output value at times
tn = nh, where h is the sample time of simulation. According to (9.59), we
have

y(tn) =
∫ tn

0

∑
j

bj
(tn − τ)nj(tn−τ)−1

�(nj(tn − τ))
r(τ )dτ −

∫ tn

0

∑
i

ai
(tn − τ)di(tn−τ)−1

�(di(tn − τ))
y(τ )dτ.

(9.60)
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By splitting the interval [t0, tn] in the above integral to n successive intervals,
we obtain

y(tn) =
n−1∑
k=0

∫ tk+1

tk

∑
j

bj
(tn − τ)nj(tn−τ)−1

�(nj(tn − τ))
r(tk)dτ

−
n−1∑
k=0

∫ tk+1

tk

∑
i

ai
(tn − τ)di(tn−τ)−1

�(di(tn − τ))
y(tk)dτ. (9.61)

Choosing h enough small, we can use the following approximations for
nj(tn − τ) and di(tn − τ) in interval [tk, tk+1]:

nj(tn − τ) ≈ nj((n − k − 0.5)h), di(tn − τ) ≈ di((n − k − 0.5)h). (9.62)

Define

α(n,k, j) = nj((n − k − 0.5)h), β(n,k, i) = di((n − k − 0.5)h). (9.63)

According to (9.61), (9.62), and (9.63) and benefiting from the Adams
predictor method [5], we have

y(tn) =
∑

j

bj

n−1∑
k=0

hα(n,k,j)

�(α(n,k, j) + 1)
((n − k)

α(n,k,j) − (n − k − 1)
α(n,k,j)

)r(kh)

−
∑

i

aj

n−1∑
k=0

hβ(n,k,i)

�(β(n,k, i) + 1)
((n − k)

β(n,k,i) − (n − k − 1)
β(n,k,i)

)y(kh).

(9.64)

Eq. (9.64) can be applied in numerical simulations of a variable-order sys-
tem described by transfer function (9.58).

9.5. Numerical examples

In this section, three numerical examples are presented to verify the
usefulness of the obtained results in behavior analysis of variable-order sys-
tems and circuits.

Example 9.1. Consider an asymptotically stable system defined by transfer
function

T(s) = s−α

1 + Iq(t)(s)
, (9.65)



Variable-order control systems: a steady-state error analysis 261

Figure 9.2 Unit step response of system (9.65) for q(t) = 0.65t+1
t+1 .

where lim
t→∞ q(t) = α. Assume that y(t) denotes the unit step response of this

system. Using the final value theorem results in

lim
s→0+ sαIq(t)(s) = 1

y(∞)
. (9.66)

Considering Lemma 9.2 and (9.66), the final value of the unit step response
of system (9.65) should be 1. This result is confirmed by the unit step
response of system (9.65) for the sample order function q(t) = 0.65t+1

t+1 which
is numerically plotted in Fig. 9.2 (the Adams predictor method [5] with
some modifications is used for numerical simulation of system (9.65)).

Example 9.2. Suppose that an asymptotically stable system is described by
transfer function

T(s) = Iq2(t)(s)
1 + 2Iq1(t)(s) + Iq2(t)(s)

, (9.67)

where q2(t) = 1.3 and q1(t) = 0.5 + sin(0.5t+0.3)

1+2t . According to Theorem 9.2,
this system should be of type number 1.3 − 0.5 = 0.8 and its steady-state
error to input r(t) = t0.8 is 2�(1.8) = 1.86. The error of this system in
tracking input r(t) = t0.8, which is obtained by the method mentioned in
the previous example and plotted in Fig. 9.3, confirms this result.

Example 9.3. In [13], the equivalent electrical circuit for a pickup (a trans-
ducer capturing mechanical vibrations in stringed instruments like guitars
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Figure 9.3 The error of system (9.67) in tracking reference input r(t) = t0.8.

Figure 9.4 Equivalent circuit for pickup as a voltage divider.

and converting them into electrical signals) has been given as a passive net-
work consisting of two resistors, a capacitor, and an inductor. Assume that
in this electrical circuit (Fig. 9.4), the capacitor and inductor are variable-
order ones [19] with the same order function q(t) tending to the positive
value α. In this case, the transfer function H(s) = V0(s)/Vi(s) has the fol-
lowing form:

H(s) = (Iq(t)(s))2

(1 + R
R1

)(Iq(t)(s))2 + ( L
R1

+ RC)Iq(t)(s) + LC
. (9.68)

From Lemma 9.2, it is easy to show that if vi(t) is a unit step signal, then

vo (∞) = lim
s→0

(sαIq(t)(s))2

(1 + R
R1

)(sαIq(t)(s))2 + ( L
R1

+ RC)s2αIq(t)(s) + LCs2α
= R1

R1 + R
.

(9.69)
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Figure 9.5 The unit step response of the variable-order circuit of Example 9.3 where
L = 2, R = 104, R1 = 106, C = 5 × 10−11, and q(t) = 0.4 + e−t sin(t + 1) (as expected
from (9.69), this response tends to vo (∞) = 0.99).

Consequently, if R �= 0, the type number of the described electrical circuit,
as a dynamical system, is zero. This result is consistent with the integer-
order counterpart of this circuit which acts as a voltage divider in the steady
state (the unit step response of the system described by (9.68) is plotted in
Fig. 9.5 to confirm this point).

Example 9.4. Consider a system described by transfer function G(s) =
3.13e−50s

433.33s+1 (see [10]). Assume that the aim is to design a controller (denoted
by C(s)) for control of this system (in a unity negative feedback structure)
such that the following objectives are satisfied.
1) The steady-state error of the closed-loop system to ramp inputs should

be constant.
2) The gain crossover frequency should be equal to ωcg = 0.008 rad/s.
3) The phase margin should be π

3 rad.
4) The sensitivity function S(s) = 1/(1 + C(s)G(s)) should satisfy∣∣S(jω)

∣∣ ≤ −20db for ω ≤ 0.001 (for effective rejection of low-
frequency disturbances).

5) The closed-loop transfer function T(s) = C(s)G(s)/(1 + C(s)G(s))
should satisfy

∣∣T(jω)
∣∣ ≤ −20db for ω ≥ 10 (for attenuating the high-

frequency noises).



264 Hamidreza Ghazisaeedi and Mohammad Saleh Tavazoei

6) The derivative of the phase of the loop transfer function with respect
to the frequency at the gain crossover frequency should be near zero,
i.e., d

dω
(arg(C(jω)G(jω))

∣∣
ω=ωcg � 0 (for robustness in the overshoot

value of the step response of the closed-loop system in the presence of
the gain variation).

For more details about control objectives 2–7, see [10].
The controller considered in this example to meet the aforementioned

objectives is a fractional variable-order fractional proportional integral
derivative (FVOPID) one, which is of the following form:

C(s) = kp + kI Iq(t)(s) + kdsμ, (9.70)

where

q(t) =
{

α2, t ≤ l,
α1, t > l

(9.71)

and l is a tunable constant. In order to satisfy the steady-state error-based
objective (objective 1), the type number of the control system should be
greater than 1. Consequently, according to Theorem 9.1, to satisfy the
mentioned objective, we should have α2 ≥ 1. Let us choose α2 = 1. Now
by substituting s = jω in Iq(t)(s) and assuming α2 = 1, we obtain

Iq(t)(jω) = e−jωl

jω
+ lα1

�(α1)

∞∑
k=0

(−jωl)k

k!(k + α1)
. (9.72)

Objectives 2 and 3 yield

C(jωcg)G(jωcg) = e−j2π/3. (9.73)

From (9.72) and (9.73), we have

e−jωcg l

jωcg
+ lα1

�(α1)

∞∑
k=0

(−jωcgl)
k

k!(k + α1)
= e−2jπ /3

G(jωcg)
. (9.74)

Also, objectives 4 and 5 can be formulated as
∣∣∣∣ 1
1 + C(j0.001)G(j0.001)

∣∣∣∣ = −20db,∣∣∣∣ C(j10)G(j10)

1 + C(j10)G(j10)

∣∣∣∣ = −20db.
(9.75)



Variable-order control systems: a steady-state error analysis 265

Table 9.1 The parameters of controller (9.70) in Example 9.4.
kp kI kd l α1 α2 μ

1.1508 0.0038 3.9867 0.7537 0.5521 1 1.06226

Figure 9.6 Bode diagram of the loop transfer function in Example 9.4.

Solving Eqs. (9.74) and (9.75) and considering the objective

d
dω

(arg(C(jω)G(jω))
∣∣
ω=ωcg � 0,

the controller parameters can be tuned as specified in Table 9.1.
To verify that objectives 2 and 3 are met by the proposed controller, the

Bode diagram of the loop transfer function is plotted in Fig. 9.6. Also the
steady-state error of the control system to ramp input r(t) can be computed
as

e(∞) = lim
s→0

�(2)

s(1 + C(s)G(s))
= �(2)

0.0038 × 3.13
= 84.076, (9.76)

which is confirmed by the time-domain numerical simulation results pre-
sented in Fig. 9.7. Moreover, since the type number of the control system
is 1, this system tracks the step inputs with zero steady-state error. This
point is confirmed by the simulation results of Fig. 9.8.

Finally, the frequency response of the closed-loop system and the sensi-
tivity transfer function are plotted in Fig. 9.9 and Fig. 9.10, respectively, in
order to verify that objectives 5 and 4 are satisfied.
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Figure 9.7 The error signal of the closed-loop system in tracking the reference input
r(t) = t in Example 9.4.

Figure 9.8 The unit step response of the closed-loop system in Example 9.4.

9.6. Conclusion

In this chapter, some useful results were presented for determining
the type number in variable-order systems. These results revealed that the
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Figure 9.9 Frequency response of the closed-loop transfer function in Example 9.4.

Figure 9.10 Frequency response of the sensitivity transfer function in Example 9.4.

type number of an asymptotically stable variable system is related to the
limit of the order functions of the involved operators at infinity. Finally,
the obtained results were verified by numerical examples on variable-order
systems and circuits.
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CHAPTER TEN

Theoretical study in conformal
thermal antennas optimized by a
fractional energy✩

Rabha W. Ibrahim
IEEE: 94086547, Kuala Lumpur, Malaysia

10.1. Introduction

A conformal map (CM) is a function that locally reserves angles, but
not fundamentally sizes. It reserves both angles and the characters (figures)
of minor statistics, but not definitely their magnitude, size, or curve. The
conformal possessions can be designated in terms of the Jacobian derivative
matrix of an established transformation. The transformation is conformal
when the Jacobian at each point is a positive scalar time of an alterna-
tion matrix (orthogonal matrix satisfying that the determinant is equivalent
to one). Several investigators have described CM to cover orientation-
reversing mappings whose Jacobians can be carved as some scalar times
of an orthogonal matrix. In the complex plane, CM is analytic univalent
(one-to-one) on the open unit disk. Moreover, it normalizes to confirm the
geometric representation of any formal involving it. Most of these formals
includes derivatives of CMs (see [1,2]).

A thermal antenna is an electromagnetic foundation that produces in
its neighborhood a spatially clear field in the electromagnetic frequency ar-
ray. Generally, its production pattern alternates with the wavelength so that
the heat flux it emits is guiding. Usually, the production angle of the ther-
mal antenna expressively transforms to the wavelength during the Planck
window. Consequently, the heat flux from the spectral assimilation which
is slanted by the Planck distribution function is not markedly directional.
Nowadays, the improvement of broadband angular discerning sources in
the infrared array remains a stimulating difficulty (see [3]).

Conformal antennas (CAs) are gaining attention in numerous aspects
from sensor and movable communication structures. Array antennas, whose

✩ Theoretical study in conformal thermal antennas optimized by a fractional energy.
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components are placed on a curved surface, may display some compensa-
tions, not only from the aerodynamic point of view, since they can survey
the surface of pitchers or airliners, but also from the electrical one. In in-
formation, they can emit matching concentrating designs within higher
angular areas, as necessary in some investigations (see [4–8]). Specifically,
the diagnostics of CAs are necessary to resolve an inverse source problem
on the energy field. Its result totals to capsizing a linear integral operator.
Actually, the energy source � and the energy field � are associated with
the integral operator � : � ∈ X → � ∈ Y , and in order to properly over-
come the problem, not only the energy operator � but also the source
and field functional spaces X and Y need to be detailed. In applying an
antenna scheme, full power transmission will happen when the antenna’s
response, impedance, is used to a conjugate impedance equal to the individ-
ual impedance of the communication line. Consequently, CA optimization
would contain not only the energy properties, but also the impedance ap-
pearances.

The conformal thermal antenna (CTA) has the attention of many re-
searchers. Aziz et al. [9] presented a system of CTAs using conductive ink
which normally requires thermal treatment for removal of binder and sol-
vent, which is not suitable for a thermally sensitive substrate. Mohamadzade
et al. [10] reviewed the notion of CTA and its applications in different
fields. Song [11] suggested CTA for microwave-induced thermal ablation.
A novel CTA system is proposed by Goa et al. [12] using a coverage method
based on bipolar-angle mapping that determines whether a liver tumor is
completely encompassed by thermal coagulation zones. Singh et al. [13]
utilized a thermal simulation in a compact CTA. The engineered coef-
ficient of thermal expansion is used to design CTAs given by Yuxiao and
Papapolymerou [14]. The antenna radome and the thermal-protective coat-
ing layer outside of the carrier are considered in the design given by Yinusa
[15]. Striker et al. [16] presented a multimaterial technique for directly 3D
printing Electrify and Ninja Flex together, in a single print job, on a single-
extruded printer. The antenna and substrate layers are thermally bonded to
one another, during the printing process, with no adhesives added. Simu-
lated temperature profiles and overlaid thermal damage contours without
blood perfusion are assumed in the CTA formulation by Fallahi [17]. Biswas
and Mirotznik [18] considered the thermal processing to design and embed
the antenna elements conformally. Design, optimization, and simulation of
CTAs using hyperthermia technology is considered by Rajabi et al. [19].
A low-cost textile CTA utilizing thermal-transfer printing is suggested by
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Pulanthran et al. [20]. A hybrid 3D printing process involving a thermal
wire-mesh embedding method for conductors of CTA is formulated by
Wang et al. [21]. A similar study was conducted by Zhao et al. [22]

Here, we combine the CA and TA to organize the CTA. The geomet-
ric representation is considered to be the shell shape by using geometric
function theory, such that the antenna is indicated on the cylinder. We
shall deal with the frequency, accuracy, and gain of the model, including
comparisons with recent works. To complete our investigation, we present
the fractional energy operator of the system with analytic presentations.

The chapter is organized as follows. Section 10.2 deals with the defini-
tion of the conformal mapping notion, Section 10.3 discusses the thermal
optimization method, Section 10.4 discusses CTA optimization, and Sec-
tion 10.5 presents the conformal fractional energy.

10.2. Conformal mapping

A function ϕ : X → Y is titled conformal (or angle preserving) at a
point x0 ∈ X if it preserves angles between directed curves through x0, as
well as preserving orientation. Conformal maps preserve shapes, angles,
and the small figures, but fail to preserve size or curvature. In this effort,
we present a conformal mapping based on geometric function theory (see
[23] and [24]).

Suppose that ∧ is the set of all analytic functions � ∈ ∪, ∪ := {ξ : |ξ | < 1}
(the open unit disk) and normalized by the conditions �(0) = 0 and
�′(0) = 1, expanded by

� (ξ) = ξ +
∞∑

n=2

�nξ
n, ξ ∈ ∪. (10.1)

A subclass of ∧ is the univalent functions (one-to-one) indicated by (�).
Moreover, a function � ∈ ∧ is known as starlike in ∪, represented by S∗, if
and only if

	
(

ξ �′ (ξ)

�(ξ)

)
> 0, ξ ∈ ∪.

A function � ∈ ∧ is convex in ∪, represented by C, if and only if



274 Rabha W. Ibrahim

Figure 10.1 Plot of the Koebe function (ξ/(1 − ξ)2).

1 + 	
(

ξ �′′ (ξ)

�′(ξ)

)
> 0, ξ ∈ ∪.

The category of univalent functions is classified as a set of special conformal
mappings in the open unit disk (for details see [23]). We introduce different
types of examples such as the Koebe functions and others.

Example 10.1. We have the following constructions.
Consider the Koebe function of second order (see Fig. 10.1) which

represents the extreme starlike function in ∪

�(ξ) = ξ

(1 − ξ)2 (10.2)

= ξ +
∞∑

n=2

nξ n.

Next, we consider the Koebe function of first order (see Fig. 10.2), which
indicates the extreme convex univalent function in ∪ (also starlike)

�(ξ) = ξ

1 − ξ
(10.3)

= ξ +
∞∑

n=2

ξ n.
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Figure 10.2 Plot of the Koebe function of first order (ξ/(1 − ξ)).

Figure 10.3 The parametric Koebe function of first order 0 < t < 1.

As a special case of the Koebe function is the parametric Koebe function of
first order (see Fig. 10.3),

�t(ξ) = ξ

1 − t ξ
(10.4)

= ξ +
∞∑

n=2

tn−1ξ n.

In addition, the rotated Koebe function of first order has the formula (see
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Figure 10.4 The rotated Koebe function; shown are 3D real and imaginary parts, con-
tour plots, and the radiation distribution plot.

Fig. 10.4)

χt(ξ) = ξ

1 − eit ξ
(10.5)

= ξ +
∞∑

n=2

e(n−1)i tξ n.

In our discussion, we shall consider the parameters and the rotated
Koebe function of first order because they are convex functions (the con-
vexity represents the shell of the antenna).

10.3. Thermal optimization approach

Our approach is based on the class of heat equations of complex
variables taking the formula

∂t �t (ξ) − ∂2
ξ �t (ξ) = Et(ξ), ξ ∈ ∪, (10.6)

where E(ξ) represents the error function (Fig. 10.5), which is convex in ∪,
satisfying

E(0) =�(0) = 0, �t(ξ) ∈ ∧,

and indicates the optimal coarse model design and t is the temperature
mode. Also, we have the following class:
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∂t χt(ξ) − ∂2
ξ χt(ξ) = �t(ξ), ξ ∈ ∪, (10.7)

where

�t(ξ) := En(ξ) = 1√
π


(n)

(



(
1
n

)
− 


(
1
n
, ξ n

))
.

The iteration formula becomes

Et:i+1(ξ) = (
∂t �t (ξ) − ∂2

ξ �t (ξ)
)
i
, i = 1,2,3, ... , (10.8)

and

�t:i+1(ξ) = (
∂t χt(ξ) − ∂2

ξ χt(ξ)
)
i
, i = 1,2,3, ... . (10.9)

The process is dismissed if |Et:i+1(ξ)| converts adequately slightly or the
scheme qualifications are fulfilled (see Algorithm 10.1).

Result: Minimize the value of Et:i+1(ξ) or �t:i+1(ξ)

initialization : i,�t(ξ)

while ξ ∈ ∪; |ξ | < 1 do(
∂t �t (ξ) − ∂2

ξ �t (ξ)
)
i
;

if ∂t �t (ξ) − ∂2
ξ �t (ξ) ≈ 0 then

|Et:i+1(ξ)| ;
else

|Et:i+1(ξ)| ≈ 0;
end

end
Algorithm 10.1: Optimization algorithm for conformal mapping.

Similarly for �t:i+1.

Example 10.2. Consider the following function:

�t(ξ) = ξ

1 − t ξ

= ξ +
∞∑

n=2

tn−1ξ n.

Then, we obtain
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Figure 10.5 The plot of the error function.

∂t �t (ξ) − ∂2
ξ �t (ξ) = Et(ξ) ⇒

(t(ξ3 + 2) − ξ2)

(tξ − 1)3 = Et(ξ) ⇒
(t(ξ3 + 2) − ξ2)

(tξ − 1)3 = (2tξ)√
(π)

− (2t3ξ3)

(3
√

(π))
+ (t5ξ5)

(5
√

(π))
+ O(ξ7).

Solving the above equation for ξ , we arrive at |ξ | = 1 when t = 1 and

|ξ | < 1
t

when t > 0. Now consider the function

χt(ξ) = ξ

1 − eit ξ

= ξ +
∞∑

n=2

e(n−1)i tξ n.

Then a computation implies that

∂t χt(ξ) − ∂2
ξ χt(ξ) = �t(ξ) ⇒

(e(it)(ie(it)ξ3 − iξ2 + 2))

(−1 + e(it)ξ )3 = �t(ξ) ⇒
(e(it)(ie(it)ξ3 − iξ2 + 2))

(−1 + e(it)ξ )3 ≈ 1.
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Solving for ξ , we get

|ξ | ≤
∣∣∣ (e(−it)(

√
(−e(it)(e(it) − 2i)) + e(it)))

(e(it) − i)

∣∣∣, e(it) �= i,

≤ 3
4
, t = 1

2
(4πn + π − 2 log(2)).

From the above, we conclude that the thermal optimization appears
near the boundary of the disk. Next, we introduce a wavelet conformal
function as follows.

Example 10.3. Consider the following function:

�t(ξ) = sin(tξ)

t
, t > 0, ξ ∈ ∪

= ξ − (t2ξ3)

6
+ (t4ξ5)

120
+ O(ξ7).

(10.10)

Then, we obtain

∂t �t (ξ) − ∂2
ξ �t (ξ) = Et(ξ) ⇒

(tξ cos(tξ) − sin(tξ))

t2
+ t sin(tξ)

= (2tξ)√
(π)

− (2t3ξ3)

(3
√

(π))
+ (t5ξ5)

(5
√

(π))
+ O(ξ7) ⇒

t2ξ − 1
6
(t(t3 + 2))ξ3 + 1

120
t3(t3 + 4)ξ5 + O(ξ7)

= (2tξ)√
(π)

− (2t3ξ3)

(3
√

(π))
+ (t5ξ5)

(5
√

(π))
+ O(ξ7).

A comparison between the coefficients implies that we find the optimal

solution when t = 2√
π

. Fig. 10.6 shows the behavior of the solution when

the heat equation is optimized by the error function.

Example 10.4. Consider the following function:

�t(ξ) = e(tξ)

t
, t > 0, ξ ∈ ∪

= ξ + (tξ2)

2
+ (t2ξ3)

6
+ (t3ξ4)

24
+ (t4ξ5)

120
+ (t5ξ6)

720
+ O(ξ7).

(10.11)
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Figure 10.6 The behavior of solutions of the heat equation indicated by func-
tion (10.10) optimized by the error function near the origin in the first row and the
behavior of the solutions at the boundary (−1,1) in the second row.

Then, we have

∂t �t (ξ) − ∂2
ξ �t (ξ) = Et(ξ) ⇒

(e(tξ)(tξ − 1) + 1)

t2 − te(tξ)
= (2tξ)√

(π)
− (2t3ξ3)

(3
√

(π))
+ (t5ξ5)

(5
√

(π))
+ O(ξ7) ⇒

− t − t2ξ + 1
2
(1 − t3)ξ2 − 1

6
(t(t3 − 2))ξ3

− 1
24

(t2(t3 − 3))ξ4 − 1
120

(t3(t3 − 4))ξ5 + O(ξ6)

= (2tξ)√
(π)

− (2t3ξ3)

(3
√

(π))
+ (t5ξ5)

(5
√

(π))
+ O(ξ7).

The behavior solution at the origin ∂t �t (ξ) − ∂2
ξ �t (ξ) = 0 satisfies the

following formula:
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t �= 0, ξ = (Wn(−e(−t3−1)) + t3 + 1)

t
, n ∈ Z,

where Wn is the analytic omega function (Lambert W function). And the
real solution is given by the formula

	(ξ) = W (−e(−t3−1)) + t3 + 1
t

≈ (W (−2.71828(−t3−1)) + t3 + 1)

t
.

Moreover, the solution for ∂t �t (ξ) − ∂2
ξ �t (ξ) = 1 is given by the formula

ξ =
W

(
e(−t3−1)(t2 − 1)

)
+ t3 + 1

t
, t �= 0.

The solution for the equation ∂t �t (ξ) − ∂2
ξ �t (ξ) = −1 is formulated as

follows:

t �= 0, ξ =
Wn

(
e(−t3−1)(−t2 − 1)

)
+ t3 + 1

t
, n ∈ Z,

with

	(ξ) =
(
W (−e(−t3−1)(t2 + 1))

)
+ t3 + 1

t
.

Note that the Taylor series of W around 0 can be expanded by the formula

W (ξ) =
∞∑

n=1

(−n)n−1

n! ξ n

= ξ − ξ2 + 3
2ξ3 − 8

3ξ4 + 125
24 ξ5 − · · · .

Fig. 10.7 shows the behavior of the solution when the heat equation is
optimized by the error function.

10.4. CTA optimization

This section deals with the conformal thermal antenna shaped by
the shell conformal mapping graph. We consider the cylindrical conformal
antenna and the quasicylindrical conformal antenna (see Fig. 10.8).
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Figure 10.7 The behavior of solutions of the heat equation given by function (10.11)
optimized by the error function near the origin in the first row and the behavior of the
solutions at the boundary (−1,1) in the second row.

Figure 10.8 Shell conformal thermal antennas placed on the cylinder and quasicylin-
der.

10.4.1 Cylindrical CTA
The design of starlike-shaped antennas is produced on a reproduced circuit
board with r < 1, h = 1.5 mm. The restriction request to be optimized
is the half-length of the reverberation edges (each one). The surface of
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Figure 10.9 Frequency, phase, and magnitude of Et(ξ) when t = 0.5 The stability of
the magnitude and the phase at the boundary of ∪.

Figure 10.10 Frequency, phase, and magnitude of Et(ξ) when t = 0.75. The stability of
the magnitude and the phase at the boundary of ∪.

a cylinder platform has the following data: the radius is 10 mm and the
cylinder height is 20 mm. The CA is published on the same substrate, and
the optimal construction is given by the conformal convex combination
�t(ξ) where

	(1 + ξ �′′
t (ξ)

�t(ξ)
) > 0.

The properties of Et(ξ) show that convergence to the equilibrium point
occurs when |ξ | ∈ ∂∪ (see Figs. 10.9–10.11 for different values of t). Thus,
we confirm that the edges are minimized. We indicate that one can reduce
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Figure 10.11 Frequency, phase, and magnitude of Et(ξ) when t = 1. The stability of the
magnitude and the phase at the boundary of ∪.

or increase the high h and get the same result. We note that the iteration in
this case is only two to converge to the optimal value.

10.4.2 Quasicylindrical CTA

For this type of antennas, we consider the conformal mapping

χt(ξ) = ξ

1 − eit ξ
.

In the same manner of the cylindrical conformal antenna, |ξ | ∈ ∂∪ mini-
mizes the edges of the quasicylindrical conformal antenna after three itera-
tions. Figs. 10.12–10.14 indicate the properties of �t(ξ) (error function) in
Example 10.2 for different values of t.

10.5. Conformal fractional energy

The required fluctuation wavelengths of the arbitrary outcomes are
their assorted kernels that are selected to fit the requirements of different
arrangements. As applied, the central variations between Caputo fractional
calculus, Caputo–Fabrizio calculus [25], and others are that Caputo calcu-
lus is expressed exploiting a control rule and Caputo–Fabrizio calculus is
presented employing an exponential function as follows.
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Figure 10.12 Frequency, phase, and magnitude of �t(ξ) when t = 0.5. The stability of
the magnitude and the phase at the boundary of ∪.

Figure 10.13 Frequency, phase, and magnitude of �t(ξ) when t = 0.75. The stability
of the magnitude and the phase at the boundary of ∪.

Definition 10.1 (CFD). A differential operator �ν , ν ∈ (0,1), is titled
CFD of order ν of a function g if and only if �ν fulfills

�νg(t) = 1
1 − ν

∫ t

0
g′(τ ) exp

( −ν

1 − ν
(t − τ)

)
dτ, t ∈ [0,∞).

The analogical integral is expressed by the formal

Iνg(t) = (1 − ν)g(t) + ν

∫ t

0
g(τ )dτ. (10.12)



286 Rabha W. Ibrahim

Figure 10.14 Frequency, phase, and magnitude of �t(ξ) when t = 1. The stability of
the magnitude and the phase at the boundary of ∪.

In this section, we formulate our planned strategy for the open unit disk
conformal characterizations by using the fractional integral with respect to
the time variable (10.12) for the fractional value ν ∈ (0,1). The disk con-
formal characterizations are achieved thanks to the existence of an effective
iterative algorithm. The major objective of the iterative system is to progress
the conformal distortions adjacent to the edges step by step. Note that the
conformity distortion near the edges is small. Founded by the above con-
clusion and by utilizing the concept of the shell structure of the normalized
function � ∈ ∧, we indicate the harmonic energy (minimization of the
Dirichlet energy) of � as follows:

Eν(�t)(ξ) = (1 − ν)

2

∫
ξ

(Et(ξ))2 dξ + ν

2

∫ t

0

∫
ξ

(Eτ (ξ))2 dξ dτ, (10.13)

where t represents the temperature and

Dν(χt)(ξ) = (1 − ν)

2

∫
ξ

(�t(ξ))2 dξ + ν

2

∫ t

0

∫
ξ

(�τ (ξ))2 dξ dτ. (10.14)

Note that the energy is a magnitude of how much the smooth function
changes over the disk. Mathematically, the condition that h is a harmonic
function yields that for all functions p ∈ ∂∪, we have

lim
ε→0

E(h + εp) − Eh
ε

= 0.

Fig. 10.15 shows the steps of the proposed method.
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Figure 10.15 The steps of the proposed method.

Example 10.5. Consider the following function:

�t(ξ) = ξ

1 − t ξ
= ξ +

∞∑
n=2

tn−1ξ n.

Then, we obtain

Eν(�t)(ξ) = (1 − ν)

2

∫
ξ

(
∂t �t (ξ) − ∂2

ξ �t (ξ)
)2 dξ

+ ν

2

∫
t

∫
ξ

(
∂t �t (ξ) − ∂2

ξ �t (ξ)
)2 dξ dt

= (1 − ν)

2

∫
ξ

(
ξ2 − 1

(1 − t ξ)2

)2

dξ + ν

2

∫
t

∫
ξ

(
ξ2 − 1

(1 − t ξ)2

)2

dξ dt

= (t4 − 2t2 + 13)/(6t5) + ξ + tξ2 + 2/6(5t2 − 1)ξ3

+ t/2(5t2 − 2)ξ4 + O(ξ5), (10.15)

provided ν → 0 (because the second integral does not converge) (see
Fig. 10.16). But the real root of t4 − 2t2 + 13 = 0 is t ≈ 3.6055. Then we
have

Eν(�t)(ξ) ≈ ξ + 3.605ξ2 + 21.3ξ3 + 31.4ξ4 + O(ξ5).

Consequently, we have

minEν(�t)(ξ) = min
(
ξ + 3.605ξ2 + 21.3ξ3 + 31.4ξ4 + O(ξ5)

)
,

which yields 	(ξ) = − 853
5032 ≈ −0.4.
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Figure 10.16 Minimization of the energy Eν(�t)(ξ) when ν → 0.

Example 10.6. Consider the following function:

χt(ξ) = ξ

1 − eit ξ

= ξ +
∞∑

n=2

tn−1ξ n, ξ ∈ ∪.

Then, we obtain (see Fig. 10.17)

Dν(χt)(ξ) = (1 − ν)

2

∫
ξ

(�t(ξ))2 dξ + ν

2

∫
t

∫
ξ

(�t(ξ))2 dξ dt

= 1 − ν

2

∫
ξ

(
(ie(it)ξ2) − 1
(1 − e(it)ξ )2

)2

dξ + ν

2

∫
t

∫
ξ

(
(ie(it)ξ2) − 1
(1 − e(it)ξ )2

)2

dξ dt

= 1/6e(−3it)(−2ie(it) + e(2it) − 13) + ξ + e(it)ξ2 + 2/6e(it)(5e(it) − i)ξ3

+ e(2it)(5e(it) − 2i)/2ξ4 + O(ξ5)

≈ ξ + ξ2 + ξ3 + ξ4 + O(ξ5)

= ξ

1 − ξ
. (10.16)

The solution of 1/6e(−3it)(−2ie(it) + e(2it) − 13) is t ≈ 9.2, and consequently
Dν ≈ ξ/(1 − ξ), that is, the energy is minimized at the boundary of ∪.
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Figure 10.17 Minimization of the energy Dν(χt)(ξ) when ν → 0.

10.6. Conclusion

From the above construction, we gave a theoretical study of CTAs.
The suggested CTA is considered by a conformal mapping in the open unit
disk. The class of the conformal mappings is picked from univalent function
theory (injective function). This class confirms a geometric representation
in the open unit disk. Then, the conformal mapping is formulated by a heat
equation and the error function. Accordingly, we suggested a fractional en-
ergy formula utilizing the Caputo–Fabrizio integral operator. We indicated
that the fractional energy around the normal frequency remains a stimu-
lating property. As the thinness of the production design is disturbed, it is
closely associated to the preoccupation of the construction of the boundary
of the shell. In our previous discussion, we did not take angle or rotation
into account, because the shell conformal mapping preserves the angles. In
the future, one may consider different conformal mapping shapes, such as
close to convex (semishell) or starlike conformal mappings.
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CHAPTER ELEVEN

Optimal design of fractional-order
Butterworth filter with improved
accuracy and stability margin
Shibendu Mahata, Rajib Kar, and Durbadal Mandal
National Institute of Technology Durgapur, Department of Electronics and Communication
Engineering, Durgapur, West Bengal, India

Chapter points

• The proposed technique uses the ideal (1 + α)-order Butterworth magnitude
characteristic considered for six decades of frequency in the fitness function.

• It achieves superior accuracy and a better margin of stability compared to the
reported literature.

• It demonstrates applicability of the flower pollination algorithm for FOBF design.

11.1. Introduction

The interdisciplinary nature of research concerning the domain of
fractional calculus ([11]) has led to significant interest among scholars
in recent years ([58]). The fields of science and engineering where the
theoretical concepts of fractional calculus are practically applied include
control systems ([68]), signal processing ([59]), circuit theory ([46]), and
biomedicine ([14], [6]).

The difference between an integer-order system (IOS) and a fractional-
order system (FOS) may be understood from their transfer function repre-
sentations, as given by (11.1) and (11.2), respectively:

GI(s) = bmsm + bm−1sm−1 + · · · + b0

ansn + an−1sn−1 + · · · + a0
, (11.1)

GF(s) = bmsαm + bm−1sαm−1 + · · · + b0sα0

ansβn + an−1sβn−1 + · · · + a0sβ0
, (11.2)

where αj (j = 0,1, ...,m) and βj (j = 0,1, ...,n) can be integer or noninteger
numbers; bj (j = 0,1, ...,m) and aj (j = 0,1, ...,n) represent the coefficients
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of the numerator and the denominator polynomials, respectively, of the
transfer function.

From (11.1) and (11.2), it follows that an FOS is a superset of an IOS.
Also, the well-known Laplacian operator s in an IOS may be generalized
to the fractional-order Laplacian operator sα in case of an FOS. For the
particular case when α = 1, we have sα = s. The function Z(s) = sα is ex-
pressed in the frequency domain as Z(jω) = ωα{cos(0.5απ) + j sin(0.5απ)}.
The concept of the sα operator has led to many exciting developments in
the field of circuits and systems:

(i) The impedances of an integer-order inductor and capacitor are given
by sL and 1/sC, respectively, where the inductance L and the capac-
itance C are expressed in Henry (H) and Farad (F), respectively. The
impedances of the fractance elements, such as the fractional-order induc-
tor and the fractional-order capacitor of order α, are defined by sαLα and
1/sαCα, respectively; Lα and Cα are known as the pseudoinductance and
the pseudocapacitance, respectively, with units of H/second1−α (H/s1−α)
and F/second1−α (F/s1−α), respectively. These new circuit elements are also
known as constant phase elements (CPE) since they exhibit a phase re-
sponse which is frequency-independent ([9]). While no commercial CPE
exists in the market as yet, research results indicate a promising future ([52]).
To emulate the impedance characteristics of the fractional-order capacitors,
researchers have also reported various R-C ladder networks such as the
Foster and Cauer structures ([60], [4]).

(ii) An integer-order low-pass filter of order n exhibits a roll-off of
−20n dB/dec. This implies that only step changes in the roll-off rate are
possible with such filters. A fractional-order low-pass filter of order (n + α)

may, however, exhibit a roll-off of −20(n + α) dB/dec. Generalizations of
the first-order and second-order filters to the fractional-order domain have
been reported in two seminal papers ([50], [47]).

Numerical and stochastic optimization techniques have been exploited
in recent years to develop optimal fractional-order filter models. Although
the metaheuristics do not provide any proof of convergence to the global
optima, their primary advantage lies in the simplicity of implementation.
Unlike the numerical optimization methods, the metaheuristics are gener-
ally inspired by nature, do not require any derivative information, and use
multiple search agents. These algorithms employ a combination of stochas-
tic and deterministic rules to update the position of the agents from the
exploration in the initial stages to the exploitation of the search space at
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the later stages of the execution. The nature-inspired algorithms require
appropriate tuning of the control parameters, which is time consuming;
consequently, recent research efforts in the field of evolutionary computa-
tion are directed towards the development of adaptive algorithms ([10]).

Both classical and nonclassical optimization techniques have been ex-
plored for the optimal modeling of fractional-order filters. The particle
swarm optimization (PSO) algorithm, which is inspired by the personal
and social intelligence sharing during the movement of birds, fish, etc., was
used to model the fractional-order differentiator (FOD) using pole-zero
optimization ([43]). An adaptive chaotic PSO algorithm was employed to
approximate the frequency-domain behavior of the FOD based on a third-
order model ([19]). A hybridization of PSO and the gravitational search
algorithm (GSA), which uses adaptive acceleration coefficients and achieves
an improved exploitation characteristic, has been used for the design of
infinite impulse response (IIR) FOD by [37]. Analog and digital approx-
imations of the FOD were proposed using the flower pollination algo-
rithm (FPA) ([1], [40]). Performance comparisons among different swarm
intelligence (SI) techniques, such as ant lion optimization, whale optimiza-
tion (WO), multiverse optimization, the cuckoo search algorithm (CSA),
and FPA were investigated for the rational approximation of the FOD
using a weighted sum of first-order high-pass filters by [65]. A physics-
inspired internal parameter-free algorithm, namely colliding bodies opti-
mization (CBO), which draws inspiration from the Newtonian laws of
collision among gravitational objects, was employed for the design of an
IIR fractional-order integrator (FOI) in [36]. A bio-inspired algorithm
called symbiotic organisms search (SOS), which mimics the symbiotic rela-
tionship among the organisms in the ecosystem, was employed along with
a curve fitting technique to determine the analytical expressions of the
model coefficients pertaining to an IIR FOI ([42]). The optimal modeling
of fractional-order RLC circuits in [48] and filters of the form 1/(1+ s)α in
[20] were demonstrated using the classical optimization methods. CBO-
optimized generalized fractional-order filters of orders α and α + β of
low-pass, high-pass, and band-pass characteristics were approximated us-
ing an integer-order transfer function (IOTF) ([39], [35]). Applicability
of the real-coded genetic algorithm (GA) for quality factor maximization
of fractional-order band-reject and band-pass filters was reported in [45].
A nonlinear least-squares fitting routine based on the MATLAB® function
lsqcurvefit was used to approximate the fractional-order Chebyshev ([13]),
inverse Chebyshev ([16]), elliptic ([17]), and (1 + α)-order low-pass filters
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exhibiting an arbitrary quality factor ([25]). A multiobjective optimization
framework was developed to model fractional-order filters based on differ-
ent specifications, namely the stop band gain, the transition bandwidth, and
the highest permissible peak in the pass band ([51]). Fractional-order Dar-
winian PSO, which incorporates a fractional-order velocity expression, was
employed to obtain the optimal discrete-time models of fractional-order fil-
ters in [7]. The design conditions for a grounded fractional-order inductor
designed using the generalized impedance converter were optimally derived
and also practically demonstrated by [3]. Fractional-order low-pass Cheby-
shev filters were optimally modeled using the simulated annealing (SA)
algorithm, the nonlinear least-squares method, and the interior search al-
gorithm (ISA) in [56]. ISA was also employed to design the fractional-order
low-pass Bessel filter ([55]). Optimal selection of passive components from
the industrial series to approximate the impedance profile of the fractional-
order elements using the GA was demonstrated in [21]. A comparative
study of various SI algorithms such as WO, gray wolf optimization, FPA,
moth flame optimization (MFO), and grasshopper optimization was carried
out to determine the human eardrum fractional-order model parameters
in [8]. GA-based synthesis of capacitive type fractional-order impedance
based on the homogeneous distributed R-C structures has been proposed
and validated using the thin-film technology in [62]. FPA-optimized pro-
grammable CPE implementations using resistive crossbar arrays have also
been reported recently ([12]).

A fractional-order Butterworth filter (FOBF) of order (1 + α) is char-
acterized by the magnitude–frequency response, as defined by

|T1+α(jω)| = 1√
1 +

(
ω
ωc

)2(1+α)
, (11.3)

where the cut-off frequency (in rad/s) of the filter is denoted by ωc.
From (11.3), it follows that (i) |T1+α(j0)| = 0 dB and (ii) |T1+α(jωc)| =
−3.01 dB. An integer-order Butterworth filter also exhibits both these
properties. However, the stop band attenuation of the (1 + α) order FOBF
is −20(1 + α) dB/dec, which allows the transition band slope to be pre-
cisely controlled. Fig. 11.1 shows the magnitude–frequency response of an
ideal FOBF for α = 0.5, which illustrates that its roll-off rate lies exactly
in-between the first-order and second-order Butterworth filters.

Analysis and design procedures using two fractional elements of the
same and different orders by considering the Butterworth filter cut-off
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Figure 11.1 Magnitude plots of the first-, second-, and 1.5th-order Butterworth filters.

frequency and magnitude conditions were reported by [53]. Numerical
method-based fractional-order transfer function (FOTF) approximants of
the FOBF were realized using the passive and active components in [5].
The transformation from the complex s-plane to the complex W -plane,
followed by retrofitting to the s-domain, was used to model the FOBF in
[2]. SA ([24]), GA ([61], [54]), PSO ([23]), CSA ([57]), ISA ([57]), and the
speed-enhanced series combination of CSA and ISA, namely CSA → ISA
([57]), were employed to obtain the optimal coefficients of the FOBF
which minimize the magnitude error relative to the second-order Butter-
worth filter model. FOBFs of low-pass and high-pass behavior for orders
such as 1.2, 1.4, and 1.8 were reported by [22]. A comparative study
between three (1+α)-order FOTF models to approximate the magnitude–
frequency response of the first-order Butterworth filter using a nonlinear
curve fitting technique was reported in [15]. Various FOTFs based on the
frequency transformation of low-pass FOBF models were presented to ap-
proximate the characteristics of the high-pass and band-pass FOBFs ([26]).
SOS-optimized FOTF-based high-pass FOBF models were proposed and
implemented using the current-mode second-generation current convey-
ors by [28]. FOTF-based approximation of the FOBF using the numerical
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search method was reported in [18]. The corresponding IOTF model
was then obtained by substitution of the sα operator with the biquadratic
CFE approximant. Differential voltage–current conveyor-based realization
of FOBF was demonstrated by considering a double fractance-based model
in [44]. Direct frequency-domain error minimization of the FOBF was car-
ried out in an optimal manner using GSA ([41]). A CBO-based constrained
optimization technique was developed to obtain the IOTF approximants of
the FOBF in [38]. A two-step, unconstrained optimization method was
proposed for the rational approximation of the FOBF with a bandwidth
of 10−2 to 102 rad/s. In the first step, the squared-magnitude function of
the IOTF which matches the corresponding ideal response was determined
using the GA. In the second step, an optimal third-order FOBF model was
achieved by using the GA-based stable approximant as the initial point for
Powell’s algorithm ([27]). An extensive comparative study involving five ad-
vanced variants of the differential evolution (DE) algorithm (CoDE, EDEV,
EFADE, EPSDE, JADE), three state-of-the-art PSO algorithms (AGGSA,
EPSO, HCLPSO), and an evolutionary strategy method (CMA-ES-RIS)
was conducted for the fifth-order approximation of FOBFs using the death
penalty method ([29]). This work also demonstrated for the first time the
design of (2 + α)-order FOBFs without using the cascade of (1 + α)-order
FOBFs with the first-order Butterworth model. Experiments showed that
EFADE achieved the most robust performance among the nine algorithms.
In [32], a biquadratic approximant of the CFE pertaining to the sα operator
was substituted in one of the FOTF models reported by [15]. This integer-
order model is then used as an initial point for a constrained optimization
routine. Results showed that the optimal third-order FOBF approximant
achieved good agreement with the theoretical magnitude–frequency rela-
tion for six decades of bandwidth. Optimal design of band-pass FOBFs
exhibiting symmetric attenuation characteristics was reported using MFO,
SOS, FPA, and two variants of PSO ([33]). A computationally efficient
optimal method to approximate the asymmetric band-pass FOBF was also
recently reported in [31]. Optimal design of digital IIR FOBFs using the
direct determination of the z-domain transfer function was reported in
[30]. The computationally efficient lattice-wave digital filter was optimally
modeled to realize the magnitude–frequency characteristics of the FOBF
in [34].

This chapter presents the optimal FOTF approximation of the FOBF
by introducing two simple yet effective modifications to the existing ap-
proaches. The contributions of the chapter are outlined below.
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(i) The proposed cost function uses the ideal FOBF transfer function instead
of the first-order or the second-order Butterworth response. It can be intu-
itively realized that employing the exact theoretical magnitude–frequency
characteristic in the cost function may lead to a more accurate approximant.

(ii) The design frequency range of the proposed normalized FOBF is
considered over six decades (10−3 to 103 rad/s). This is in contrast to the re-
ported optimization techniques where lower bandwidths are used; namely
10−2 to 1 rad/s ([15]) and 10−5 to 1.5 rad/s ([57]). It may be emphasized
that the fundamental reason why the reported works used lower or no stop
band frequency range for the FOBF modeling is due to their incorporation
of the integer-order (first- or second-order) Butterworth magnitude func-
tion in the cost function. The optimizer tries to minimize the modeling
error throughout the considered frequency range. If a higher stop band fre-
quency (such as up to 1000 rad/s as proposed in this work) was employed,
the magnitude–frequency response of the resultant model will track the
stop band attenuation behavior of the integer-order filter, thus losing its
fractional step characteristic. In contrast, since the proposed work uses the
ideal magnitude response of the (1+α)-order FOBF in the fitness function,
the stop band frequency range in the cost function can be extended up to
three decades beyond the cut-off frequency. Thus, the proposed method
provides an equal emphasis in minimizing the errors in both the pass band
and the stop band.

(iii) The applicability of a state-of-the-art metaheuristic global optimiza-
tion technique, such as FPA, for the design of FOBFs is demonstrated. FPA
is a population-based nature-inspired algorithm which mimics the pollina-
tion process in flowering plants. This algorithm has recently been employed
in several fractional-order filter design applications, demonstrating an effi-
cient performance ([1], [40]). Generalized equations of the coefficients for
the proposed model are obtained by employing curve fitting on the FPA-
optimized coefficients. The differences between the proposed FOBF design
approach and those based on the various optimal techniques reported in the
literature are shown in Table 11.1. Modeling accuracy and design stability
margin comparisons are conducted to justify the efficacy of the proposed
approach over the state-of-the-art.

(iv) In [24], [15], and [57], a three-operational amplifier (Op-Amp)
configuration-based FOBF implementation was shown. In this chapter,
a single Op-Amp filter topology is used for the same purpose, which fur-
ther reduces the circuit complexity. Simulations are conducted in OrCAD
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Table 11.1 Comparisons between the different optimal FOBF design techniques.
Reference Optimization

algorithm
Targeted
Butterworth
filter

Orders
considered

Bandwidth
(rad/s)

[24] SA 2nd order 1.1, 1.5, 1.9 NRa

[23] PSO 2nd order 1.3, 1.5, 1.6 NR
[61] GA 2nd order 1.3, 1.5, 1.6 NR
[15] lsqcurvefit 1st order 1.01 to 1.99 10−2 to 1
[54] GA 2nd order 1.1, 1.2, . . . , 1.9 10−5 to 1
[57] CSA, ISA,

CSA → ISA
2nd order 1.1, 1.2, . . . , 1.9 10−5 to 1.5

Present
work

FPA (1 + α) order 1.01 to 1.99 10−3 to 103

a NR: Not reported.

PSpice to justify the practical effectiveness of the proposed model. Monte
Carlo analysis is also performed to study the sensitivity to device tolerances
for the designed circuit.

The rest of the chapter is structured as follows. Section 11.2 presents the
procedure to determine the proposed FOBF model. Simulation results are
shown in Section 11.3. In Section 11.4, the main conclusions and future
research directions are highlighted.

11.2. Proposed technique

Consider the FOTF model given by

H1+α(s) = c
s1+α + asα + b

, (11.4)

where a, b, and c are the coefficients of the approximant.
The cost function for the proposed two-variable optimization (mini-

mization) problem is formulated by

f =
105∑
i=1

(∣∣T1+α(jωi)
∣∣ − ∣∣H1+α(jωi,X)

∣∣)2
, (11.5)

where c = 1, ω ∈ [
10−3,103

]
rad/s, ωc = 1 rad/s,

∣∣H1+α(jω)
∣∣ is the magni-

tude of the proposed FOBF, and the decision variables vector is denoted by
X = [a b]. The sampled frequency points are linearly spaced in the design
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bandwidth. The purpose of the optimization process is to determine the
optimal value of X which produces the least error. To obtain the FOBF
model for any α ∈ (0,1), the following two-step design procedure is used:
(i) the optimal coefficients for the proposed FOBF, with α varying from
0.01 to 0.99 in steps of 0.01, are generated using FPA; and
(ii) polynomial fitting is applied on the optimized coefficients to determine
the α-dependent expressions of a and b for the proposed FOBF model.

The design technique is discussed in detail below.

11.2.1 Determination of optimal coefficients using FPA
FPA is a bio-inspired optimization algorithm inspired by the pollination
process in flowering plants ([63]). The rules used by FPA to imitate the pro-
cess of pollination are as follows. (i) Cross-pollination leads to global polli-
nation. A Lévy distribution is maintained during the flying movements of
the pollinators such as birds and bees. (ii) Self-pollination may be regarded
as local pollination since no pollinating agents are required. (iii) Flower
constancy is a measure of the reproduction probability. (iv) A control pa-
rameter called switch probability (p) provides a choice between carrying out
either global or local pollination. The modeling equations of FPA are based
on the application of these four rules to attain local and global search pro-
cesses efficiently. It may be noted that while this work uses the basic FPA as
proposed by [63], the local search capability of the algorithm has been en-
hanced using the concept of fractional-order calculus in [64]. The reported
algorithm, called fractional-order FPA (FO-FPA), demonstrated efficient
performance in solving the image segmentation problem. The fractional-
order chaos maps were incorporated with the basic FPA to adaptively tune
the control parameters of the algorithm in [66]. The proposed algorithm,
known as fractional-chaotic FPA (FC-FPA), was employed to identify the
system parameters for the chaotic characteristic in brushless DC motors.
FC-FPA was also applied to obtain the maximum power point tracking for
solar photovoltaic systems in a robust and optimal manner in [67].

The search agents of FPA are called flowers. The FOBF is designed
using FPA as per the steps outlined below.

Step 1. Randomly distribute all the flowers in the range [0, 2] in the search
space.

Step 2. Initialize the control parameters: population size = 50; step size (h)
= 1.25; Lévy distribution factor (λ) = 1.5; scaling factor (γ ) = 0.12; switch



302 Shibendu Mahata et al.

probability (p) = 0.8; termination condition = 20,000 function evaluations
(FEs).

Step 3. Find out the fitness of flowers based on evaluation of (11.5). Identify
the global-best solution X∗.

Step 4. Generate a random number rand, 0 ≤ rand ≤ 1, for each flower.
Depending on whether rand exceeds p or not, perform a local search based
on (11.6) or the global search according to (11.7), respectively:

xt+1
i = xt

i + γ L(λ)(X∗ − xt
i), (11.6)

where �(·) denotes the standard Gamma function and L(λ) ∼ λ�(λ)
sin(πλ)

2
πh1+λ ,

xt+1
i = xt

i + ε(xt
j − xt

k). (11.7)

The ith flower at the tth and (t + 1)th iterations is represented by xt
i and

xt+1
i , respectively, and 0 ≤ ε ≤ 1 is obtained from a uniform distribution.

Step 5. Find out the fitness of flowers by evaluating (11.5).

Step 6. Identify X∗ from the new population if it is superior to the previ-
ous X∗.

Step 7. Repeat from Step 4 until the algorithm terminates.

Step 8. Declare X∗ as the near-global optimal solution which contains the
optimal values of a and b.

The above steps are employed for each design order by performing 20
independent runs of the algorithm. The best solution for each design or-
der is considered as the FPA-optimized solution. The design configuration
using the FPA optimizer is shown in Fig. 11.2.

11.2.2 Polynomial fitting
An expression for a and b in terms of α is derived (using the MATLAB
function polyfit) by fitting the FPA-optimized coefficients in terms of a
fourth-degree polynomial. Figs. 11.3 and 11.4 show the polynomial fitting
of a and b, respectively, along with their residuals in the corresponding
subplots. The norm of residuals obtained for a and b are 0.00449 and
0.0025085, respectively. The expressions of a and b for the proposed FOBF
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Figure 11.2 FPA-based optimal FOBF design configuration.

Figure 11.3 Coefficient a and the corresponding residual plot.

model are presented as follows:

a = 0.21846α4 − 0.34684α3 + 0.70257α2 + 0.58429α + 0.25448,

(11.8)

b = 0.059107α4 + 0.025084α3 − 0.045725α2 + 0.21474α + 0.74668.

(11.9)
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Figure 11.4 Coefficient b and the corresponding residual plot.

It is worth emphasizing that the norm of residuals for both the coeffi-
cients are extremely small, which implies that the values of the curve-fitted
coefficients are nearly the same as that of the optimal one. This results in
the superimposition of the polynomial fitted values with those of the FPA-
optimized coefficient curves in these two figures.

11.3. Simulation results and discussion

11.3.1 Design accuracy
The total error (TE), as given by (11.10), is used to compare the accuracy
of the proposed FOBFs with the reported ones:

TE = 20 log10(f )dB. (11.10)

The FPA-optimized coefficients and the TE values for α ranging from
0.01 to 0.99 are presented in Tables 11.2–11.4. From Fig. 11.5, it can
be seen that the TE responses for the models before and after the curve
fitting are similar. The magnitude responses of the proposed polynomial-
fitted (1 + α)-order FOBFs, with α varying from 0.1 to 0.9 in steps of 0.1,
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Table 11.2 FPA-optimized coefficients for α = 0.01 to 0.33.

α a b TE (dB)

0.01 0.257835 0.750481 −65.03
0.02 0.266509 0.750322 −53.20
0.03 0.272983 0.752376 −46.29
0.04 0.278803 0.755138 −41.40
0.05 0.285476 0.757207 −37.66
0.06 0.291964 0.759492 −34.63
0.07 0.299552 0.760917 −32.12
0.08 0.306066 0.763328 −29.93
0.09 0.312836 0.765726 −28.03
0.10 0.319844 0.767906 −26.34
0.11 0.326809 0.770147 −24.83
0.12 0.335503 0.771112 −23.52
0.13 0.341900 0.773954 −22.25
0.14 0.349707 0.775765 −21.14
0.15 0.357533 0.777825 −20.11
0.16 0.365111 0.779968 −19.15
0.17 0.372714 0.782231 −18.26
0.18 0.381070 0.784084 −17.45
0.19 0.388881 0.786072 −16.69
0.20 0.396748 0.788460 −15.97
0.21 0.405045 0.790451 −15.30
0.22 0.413776 0.792240 −14.70
0.23 0.422412 0.794098 −14.12
0.24 0.430832 0.796515 −13.56
0.25 0.439550 0.798367 −13.06
0.26 0.448364 0.800458 −12.58
0.27 0.457540 0.802098 −12.14
0.28 0.466719 0.804086 −11.72
0.29 0.476183 0.805967 −11.34
0.30 0.485287 0.808022 −10.97
0.31 0.494482 0.810101 −10.61
0.32 0.504303 0.812024 −10.30
0.33 0.513499 0.814295 −9.98
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Table 11.3 FPA-optimized coefficients for α = 0.34 to 0.66.

α a b TE (dB)

0.34 0.523618 0.815933 −9.71
0.35 0.533114 0.818188 −9.44
0.36 0.543183 0.820044 −9.20
0.37 0.553074 0.822276 −8.97
0.38 0.563351 0.824099 −8.77
0.39 0.573187 0.826389 −8.56
0.40 0.583251 0.828622 −8.38
0.41 0.593964 0.830429 −8.23
0.42 0.604649 0.832465 −8.10
0.43 0.615171 0.834836 −7.96
0.44 0.625904 0.836589 −7.85
0.45 0.637123 0.838673 −7.76
0.46 0.648106 0.840734 −7.68
0.47 0.658766 0.842941 −7.60
0.48 0.670115 0.844995 −7.56
0.49 0.680957 0.847512 −7.50
0.50 0.692839 0.849395 −7.50
0.51 0.704012 0.851582 −7.47
0.52 0.715305 0.853946 −7.47
0.53 0.727327 0.855950 −7.50
0.54 0.738619 0.858362 −7.52
0.55 0.750820 0.860540 −7.57
0.56 0.763071 0.862650 −7.64
0.57 0.774888 0.864945 −7.71
0.58 0.787211 0.867285 −7.80
0.59 0.798972 0.869915 −7.89
0.60 0.811681 0.872122 −8.02
0.61 0.824217 0.874580 −8.15
0.62 0.836939 0.876954 −8.31
0.63 0.849660 0.879404 −8.48
0.64 0.862337 0.881822 −8.66
0.65 0.875244 0.884446 −8.86
0.66 0.888568 0.886922 −9.09



Optimal design of fractional-order Butterworth filter 307

Table 11.4 FPA-optimized coefficients for α = 0.67 to 0.99.

α a b TE (dB)

0.67 0.901390 0.889515 −9.32
0.68 0.914639 0.892083 −9.58
0.69 0.927924 0.894774 −9.86
0.70 0.941452 0.897517 −10.16
0.71 0.954956 0.900146 −10.49
0.72 0.968709 0.902627 −10.85
0.73 0.982742 0.905651 −11.21
0.74 0.996435 0.908478 −11.61
0.75 1.010780 0.911263 −12.05
0.76 1.025210 0.914251 −12.51
0.77 1.039400 0.917131 −13.00
0.78 1.054020 0.920050 −13.54
0.79 1.068520 0.923175 −14.10
0.80 1.083370 0.926242 −14.71
0.81 1.097830 0.929481 −15.34
0.82 1.113190 0.932736 −16.05
0.83 1.128210 0.935840 −16.82
0.84 1.144150 0.939073 −17.66
0.85 1.159270 0.942569 −18.53
0.86 1.175220 0.945701 −19.54
0.87 1.190760 0.949351 −20.57
0.88 1.207050 0.952766 −21.76
0.89 1.223110 0.956306 −23.05
0.90 1.239440 0.959950 −24.48
0.91 1.256050 0.963584 −26.11
0.92 1.272670 0.967524 −27.91
0.93 1.289750 0.971107 −30.06
0.94 1.307080 0.975116 −32.52
0.95 1.324190 0.979174 −35.44
0.96 1.342020 0.982941 −39.20
0.97 1.359380 0.987080 −43.94
0.98 1.377480 0.991445 −50.72
0.99 1.395720 0.995592 −62.64
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Figure 11.5 Comparison of TE plots between the FPA-based and the curve-fitted FOBF
models.

are shown in Fig. 11.6, which illustrates the fractional stepping in the stop
band.

The comparison regarding the TE metric with the FOTF model re-
ported in (1) of [15] is shown in Fig. 11.7. It may be observed that the
proposed model achieves a lower error throughout the entire design range.
Comparisons are also carried out with the FOBF approximants based on
different optimization techniques published in the cited literature. Results
presented in Table 11.5 show that the proposed technique significantly out-
performs all the reported designs in terms of the TE index. Thus, the
simple modifications incorporated in the suggested design scheme lead to
improved modeling accuracy.

11.3.2 Stability margin
Stability margin is defined as the margin between the region of instability
and the nearest pole angle ([15]). A higher margin of stability is a desirable
characteristic for any fractional-order filter. The stability of the proposed
FOBFs is investigated by employing the W -plane stability analysis method
reported in [49]. The steps are outlined below.
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Figure 11.6 Magnitude plots for the proposed FOBF.

Figure 11.7 Comparison of the proposed FOBF (red; light gray in print version) with the
model reported in (1) of [15] (blue; dark gray in print version) regarding the TE metric.
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Table 11.5 Comparison with the literature regarding the TE (dB) metric.
Reference α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
[24] 9.80 NAa NA NA 4.33 NA NA NA 7.75
[23] NA NA −3.42 NA 4.33 0.89 NA NA NA
[22] NA −10.84 NA −2.80 NA NA NA −9.16 NA
[61] NA NA 5.52 NA 1.42 −0.39 NA NA NA
[54] 35.15 39.53 41.36 30.93 31.39 39.90 31.38 40.02 34.27
[57] (CSA) 28.87 28.33 26.92 28.31 28.38 28.00 28.07 30.63 28.62
[57] (ISA) 30.83 33.52 41.16 38.79 36.11 33.79 35.66 30.42 29.46
[57] (CSA → ISA) 31.92 31.12 30.99 30.60 30.19 29.73 29.43 29.22 29.07
Present work −26.34 −15.98 −10.96 −8.40 −7.49 −8.01 −10.16 −14.71 −24.51

a NA: Not Available.
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Figure 11.8 Comparison of the proposed FOBF (red; light gray in print version) with
the model reported in (1) of [15] (blue; dark gray in print version) regarding the absolute
minimum pole angle.

(i) Set s = W m and α = k/m.
(ii) Choose k and m corresponding to a particular value of α. In this work,
m = 100 and k is varied from 1 to 99 in steps of unity.
(iii) To determine the root angles in the W -plane, solve the characteristic
equation as defined by

W m+k + aW k + b = 0. (11.11)

(iv) Determine the absolute root (pole) angles. The FOTF model is stable
if and only if all the root angles are greater than 180

2m degrees. Thus, for
the stability of the proposed model, the root angles must be greater than
0.9 degrees.

The absolute minimum root angle, |θm(ω)|, for the proposed models,
is presented in Fig. 11.8. All the proposed designs are stable, and hence
physically realizable, since |θm(ω)| > 0.9 degrees for all values of α. The
minimum absolute pole angle in the W -plane attained by the reported
model given by (1) in [15] is also shown in Fig. 11.8. It is revealed that
the proposed model achieves a better margin of stability as compared to the
cited literature for 0.01 ≤ α ≤ 0.87.
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Figure 11.9 Comparison of the proposed FOBF (red; light gray in print version) with
the model reported in (1) of [15] (blue; dark gray in print version) regarding the absolute
magnitude error at the cut-off frequency.

11.3.3 Cut-off frequency
The absolute magnitude errors at the cut-off frequency of 1 rad/s achieved
by the reported model in [15] and the proposed FOBF are compared in
Fig. 11.9. The proposed model achieves a smaller error than that of the
reported one for 0.08 ≤ α ≤ 0.68 and α ≥ 0.86, i.e., for nearly 75% of the
design range.

11.3.4 Circuit realization
A single Op-Amp-based biquadratic filter topology is shown in Fig. 11.10,
where Vout designates the terminal from where a low-pass filter response can
be obtained ([15]). The design equations for the circuit topology relative
to the FOTF model defined by (11.4) are presented in Table 11.6. The
component values (with the magnitude and frequency scaling factors taken
as 1000 and 1 kHz, respectively) to realize the proposed 1.5th-order FOBF
are R1 = 0.85 k�, R2 = 1 k�, R3 = 1 k�, C1 = 708 nF, and C2,α =
3.34 × 10−6 F/s0.5. It may be noted that C2,α is employed as a fractional-
order capacitor. However, the model for a fractional capacitor is unavailable
in OrCAD PSpice. Hence, an R-C ladder network such as the well-known
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Table 11.6 Relationship between the FOTF and the biquadratic filter transfer function.
FOTF coefficient c a b
Biquad filter coefficient 1

R1R2C1C2,α

R1R2+R2R3+R3R1
R1R2R3C1

1
R2R3C1C2,α

Figure 11.10 Biquad filter to realize the proposed FOBF.

Figure 11.11 Foster II structure to emulate the fractional-order capacitor.

Foster II structure (refer to Fig. 11.11) is used to emulate the impedance
characteristics of the fractional capacitor.

A continued fraction expansion (CFE)-based fifth-order truncation is
used to determine the component values of the Foster II network pertain-
ing to C2,α. A MATLAB program for this purpose is available from [60].
The center frequency is shifted to 1 kHz. Table 11.7 shows the component
values of the Foster structure for the approximation of C2. The PSpice-
simulated magnitude plot for the implemented 1.5th-order FOBF, with
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Table 11.7 Components of the Foster network for the realization of C2,0.5.
RA (k�) RB (k�) RC (k�) RD (k�) RE (k�) RF (k�) CB (nF) CC (nF) CD (nF) CE (nF) CF (nF)
41.57 0.421 3.59 8.91 14.71 19.13 7.81 9.25 13.40 26.19 96.46
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Figure 11.12 PSpice-simulated magnitude plot of the proposed 1.5th-order FOBF as
compared to the theoretical one.

MC1458 Op-Amp used as the active element, is shown in Fig. 11.12. It
can be observed that the magnitude responses of the theoretical and the
designed filter demonstrate a close match.

To determine the sensitivity to component tolerances for the designed
circuit, Monte Carlo simulations are performed using the Advanced Anal-
ysis Tool in OrCAD PSpice. Component deviations at 5% (chosen from a
uniform distribution) for all the resistors and capacitors are considered. The
magnitude plots for 100 Monte Carlo simulation runs, as compared to the
theoretical response, are shown in Fig. 11.13, which highlights good agree-
ment. The maximum, minimum, mean, and standard deviation indices for
the magnitude (dB) at the cut-off frequency of 1 kHz for the designed
biquad filter are (−2.302, −3.606, −2.887, 0.2662). The corresponding
Monte Carlo histogram is presented in Fig. 11.14.

11.4. Conclusions

This chapter presents the optimal approximation of the (1 + α)-
order Butterworth filter by incorporating two simple modifications into
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Figure 11.13 Magnitude plots of the proposed 1.5th-order FOBF based on Monte Carlo
simulations (solid green; light gray in print version) as compared to the theoretical char-
acteristic (dashed red; dark gray in print version).

Figure 11.14 Monte Carlo histogram of the proposed 1.5th-order FOBF concerning the
magnitude at a cut-off frequency of 1 kHz.
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the existing approaches. The proposed technique shows that employing the
theoretical FOBF response (instead of the first-order or the second-order
Butterworth filter magnitude–frequency characteristic) in the objective
function, along with a larger approximation bandwidth, can significantly
improve the accuracy as well as the stability margin. The applicability of
FPA as an effective optimization tool in fractional-order filter design is also
demonstrated. Implementation of the 1.5th-order FOBF using a single Op-
Amp biquad filter topology is presented along with PSpice simulations.
Monte Carlo simulations are conducted to determine the design sensitivity
to the variations in the component tolerances. Future research may explore
the design of FOBFs from the perspective of multiobjective optimization
which can allow the generation of Pareto-optimal solutions, thus providing
greater flexibility in circuit implementation.
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Chapter points
• Combined Runge–Kutta/Gegenbauer-based pseudospectral collocation schemes

for the space-fractional coupled nonlinear Schrödinger equations are constructed.

• The pseudospectral method is utilized to approximate the fractional Laplacian
operator.

• The Runge–Kutta scheme is employed in temporal discretization.

• Numerical examples are listed to confirm the validity and high accuracy of the
schemes.

• The effect of the fractional index on the pattern formations of the Riesz
space-fractional coupled Schrödinger equations is discussed.

12.1. Introduction

In spite of the fact that the linear Schrödinger equation works well
for a wide range of nonrelativistic quantum mechanical problems, there is
often evidence in favor of nonlinear Schrodinger equations [1]. The non-
linear Schrödinger equation has been considered as one of the cornerstones
of quantum physics in the last century, which describes the state function
or wave function of a quantum mechanical system [2]. Nowadays applica-
tions of the nonlinear Schrödinger’s equation are too numerous to list, not
only in the quantum field, but also in chemistry, optoelectronics, neural
networks, spectroscopy, etc. [3]. Signals in nonlinear acoustic media, inter-
actions between pulses in nonlinear optics, Bose–Einstein condensates, and
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a wide variety of phenomena have been uncovered using models involving
a nonlinear coupled system of Schrödinger equations [4].

Over the past decades, considerable attention has been paid to appli-
cations of fractional calculus. A prominent example of such applications is
given by the spatial fractional anomalous diffusion equation. The similar-
ity between the classical diffusion equation and the Schrödinger equation
motivated the generalization of the nonlinear Schrödinger equation and the
coupled system of Schrödinger equations in the light of non-Brownian mo-
tion in the path integral formulation. This generalization leads to the space-
fractional, the time-fractional, and the time-space-fractional Schrödinger
equations (FSEs). The Riesz space FSE has been introduced by Laskin in
quantum physics by replacing the Brownian paths in the Feynman path
integrals by Lévy flights [5]. Similar to the conventional Schrödinger equa-
tion, the Riesz space FSE satisfies the Markovian evolution law. Stickler [6]
discussed the Lévy crystal in a condensed matter environment as a possi-
ble realization of the space-fractional quantum mechanics by introducing
a tight binding infinite-range chain. Longhi [7] discussed an optical real-
ization of the space FSE based on transverse light dynamics in a cavity by
exploiting the Fourier optics properties. Other physical applications of the
Riesz space FSE have been discussed by Guo and Xu [8] and its solution
for a free particle and an infinite square potential well has also been intro-
duced. The existence and uniqueness of the solution to the space FSE have
been investigated by Guo et al. [9] using the energy method. Moreover,
the existence and uniqueness of the solution to systems of the space FSEs
have been proved by Hu et al. [10] using the Faedo–Galerkin method. Cho
et al. [11] studied the low-regularity well-posedness of the space FSE with
cubic nonlinearity in periodic and nonperiodic settings. Following Laskin
and similar to deriving the time-fractional diffusion equation by consider-
ing non-Markovian evolution [12], Naber [13] used the Caputo temporal
fractional derivative [14] as a generalization of the integer-order derivative
in the conventional Schrödinger equation to study non-Markovian evo-
lution in quantum mechanics and constructed the temporal FSE. More
recently, Dong and Xu [15] and Wang and Xu [16] combined Laskin’s
work with Naber’s work to construct space-time FSEs.

In most cases, it is difficult to give explicit analytical solutions of space-
and/or time-fractional differential equations [17–25], and hence the con-
struction of efficient numerical schemes is a very important demand. For
example, Bhrawy and Zaky [26–28] developed efficient spectral collocation
schemes for variable-order FSEs in multiple dimensions using the variable-
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order fractional differentiation matrices. The authors in [29–31] developed
and extended a full collocation scheme for solving 1D and 2D time FSEs
with Dirichlet boundary and nonlocal conditions. Nonstandard discretiza-
tions were discussed in [32–34]. Bhrawy et al. [35] constructed a spectral
Jacobi collocation scheme using the fractional differentiation matrices for
the numerical solution of FSEs involving time- and space-fractional deriva-
tives. A combination between the L1 scheme and the Legendre spectral
Galerkin method for nonlinear time-space FSEs with both smooth and
nonsmooth solutions was proposed by Hendy et al. [36–38]. Meanwhile,
they discussed the well-posedness of the numerical approximation. Li et
al. [39] constructed a Crank–Nicolson/Galerkin finite element scheme
for a class of nonlinear Riesz space FSEs. Wang et al. [40] proposed a
Crank–Nicolson difference scheme and other linearly implicit conservative
difference schemes for the coupled nonlinear Riesz space FSEs. Zhang and
Jiang [41] considered a Legendre spectral scheme for the space-fractional
coupled nonlinear FSEs. Ran and Zhang [42] analyzed an implicit differ-
ence scheme for solving the strongly coupled nonlinear space FSEs.

Nowadays there is a wide and constantly increasing range of spectral
methods and there has been significant growth in fractional differential and
integral equations [43–46] due to their high-order accuracy. Compared
to the effort put into the analysis of finite difference schemes in the lit-
erature for solving the coupled nonlinear FSEs, little work has been put
into the development and analysis of global spectral schemes. Although
the Riesz space-fractional derivative is used widely, its nonlocal property
makes its approximation difficult to handle. It is not easy to extend the
existing numerical schemes for standard differential equations to their cor-
responding noninteger-order differential counterparts. The fundamental
difficulty in designing an efficient numerical method for approximating
the solution of the nonlinear FSEs is how to discretize the Riesz frac-
tional derivative. Motivated by these considerations, we develop an efficient
Runge–Kutta/Gegenbauer spectral collocation scheme to solve the cou-
pled nonlinear FSE with the Riesz space-fractional derivative.

The rest of this chapter is organized as follows. In the next section, the
coupled system of space FSEs is introduced. In Section 12.3, we collect
some useful properties of the Gegenbauer polynomial. In Section 12.4, the
spectral collocation discretization to the Riesz space-fractional operator is
introduced, and the Runge–Kutta/Gegenbauer spectral collocation scheme
is constructed to solve the coupled nonlinear FSEs. In Section 12.5, some
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numerical simulations are discussed to illustrate the robustness of the pro-
posed approach. Some concluding remarks are given in the last section.

12.2. Space-fractional couplers

The growing number of fractional differential operator applications
in various fields of engineering and science indicates that there are impor-
tant demands for the mathematical models of real objects. They are used
for describing space-time nonlinear optical propagation in disordered me-
dia such as in the photon Lévy flight in atomic vapors and colloids [47]
or in soft matter. In these models, the fractional derivative arises from the
fractal dimension of colloidal aggregates [48]. So far, nonlinear space FSEs
have been applied to different fields of physics such as dynamics of waves
in a system with a PT-symmetric potential [49], propagation of a chirped
Gaussian beam in the system with a harmonic potential [50], light prop-
agation in honeycomb lattices [51], systems with a linear potential [52],
the condensed-matter realization of Levy crystals [6], Shannon information
entropies of multiple quantum well systems [53], etc.

Here, we introduce some properties of the fractional operators. The
left-sided and the right-sided fractional derivatives of Riemann–Liouville
type of order β (n − 1 < β < n) are defined as

−∞Dβ

ξ ψ(ξ, τ ) = 1
γ (n − β)

∂n

∂ξ n

∫ ξ

−∞
(ξ − z)n−1−βψ(z, τ )dz,

ξD
β
+∞ψ(ξ, τ ) = (−1)n

γ (n − β)

∂n

∂ξ n

∫ +∞

ξ

(z − ξ)n−1−βψ(z, τ )dz.

(12.1)

The Riesz fractional derivative is defined as

∂β

∂ |ξ |β ψ(ξ, τ ) = −(−�)
β
2 ψ(ξ, τ ) = cβ

[
−∞Dβ

ξ ψ(ξ, τ ) + ξD
β
+∞ψ(ξ, τ )

]
,

(12.2)
where cβ = − 1

2 cos
(

πβ
2

) . The fractional Laplacian operator in (12.2) can be

represented in the following equivalent Fourier form on the spatial vari-
able ξ :

−(−�)
β
2 ψ(ξ, τ ) = −F−1 (|ξ |F (ψ(ξ, τ ))) . (12.3)

If ψ is defined on [A,B] and satisfies ψ(A, τ ) = ψ(B, τ ) = 0, then the
function can be extended by taking ψ(ξ, τ ) ≡ 0 for x � a and x � b. More-
over, as shown in [54], if ψξ(A, τ ) = ψξ(B, τ ) = 0, then the Riesz fractional
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derivative can be written as

∂β

∂ |ξ |β ψ(ξ, τ ) = −(−�)
β
2 ψ(ξ, τ )

= − 1
2 cos

(
πβ

2

) [
aD

β

ξ ψ(ξ, τ ) + ξD
β

b ψ(ξ, τ )
]
. (12.4)

The issue we address this chapter is the numerical simulation of the follow-
ing nonlinear coupled Riesz space FSE:

i
∂ψ

∂τ
− γ (−�)β/2ψ + ρ

(|ψ |2 + � |ϕ|2)ψ = 0, y ∈ R, 0 < τ ≤ τend,

i
∂ϕ

∂τ
− γ (−�)β/2ϕ + ρ

(|ϕ|2 + � |ψ |2)ϕ = 0, y ∈ R, 0 < τ ≤ τend,

(12.5)

with the initial conditions

ψ(y,0) = ψ0(y), ϕ(y,0) = ϕ0(y), (12.6)

where i = √−1, β ∈ (1,2), ρ defines the self-focusing of a signal for the
pulses in the birefringent media, γ > 0 is the group velocity dispersion,
and � is the cross-phase modulation which defines the integrability of
the system (12.5) and (12.6). When � = 0, the system (12.5) is decou-
pled and becomes a single nonlinear Schrödinger equation with the Riesz
space-fractional derivative. The functions ψ0(ξ) and ϕ0(ξ) are both smooth
complex-valued functions vanishing in R \ [A,B] for A � 0 and B � 0.
This system often arises in many areas of science and engineering, includ-
ing nonlinear optics, quantum physics, fluid mechanics, etc.

12.3. Gegenbauer polynomials and their properties

Here, we make necessary preparations for the scheme development
in the forthcoming sections. More precisely, we review some relevant
properties of the Gegenbauer polynomials. The Gegenbauer polynomial
Cθ

k (ξ) (k ≥ 0, θ > −1/2) generalizes the Legendre polynomial Lk(ξ) (coin-
cides when θ = 1/2) and is defined by the coefficient of tk in the generating
function

(
1 − 2ξ t + t2

)−θ =
∞∑

k=0

Cθ
k (ξ)tk. (12.7)
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The Gegenbauer polynomials satisfy the second-order homogeneous dif-
ferential equation

(
1 − ξ2) d2y

dξ2 − (2θ + 1)ξ
dy
dξ

+ k(k + 2θ)y = 0. (12.8)

For θ > −1/2 they have a nice truncated series representation resulting from
the series solution to the differential equation (12.8) in the form

Cθ
k (ξ) =

∑
0≤i≤ k

2

(−1)i γ (k − i + θ)

γ (θ)i!(k − 2i)! (2ξ)k−2i, (12.9)

with the derivatives satisfying the recursive relation

dq

dξ q Cθ
k (ξ) = 2q γ (θ + q)

γ (θ)
Cθ+q

k−q (ξ). (12.10)

The analytical form of the Gegenbauer polynomial can also be written as

Cθ
j (ξ) = �(θ + 0.5)

�(2θ)

j∑
k=0

�(2θ + k + j)
(j − k)!k!�(k + θ + 0.5)

(
ξ − 1

2

)k

= �(θ + 0.5)

�(2θ)

j∑
k=0

(−1)j+k �(2θ + k + j)
k!(j − k)!�(k + θ + 0.5)

(
ξ + 1

2

)k

.

(12.11)

They are also defined by the three-term recurrence relation

kCθ
k (ξ) = 2ξ(k + θ − 1)Cθ

k−1(ξ) − (k + 2θ − 2)Cθ
k−2(ξ), k ≥ 2,

Cθ
0(ξ) = 1, Cθ

1(ξ) = 2θξ,
(12.12)

and can be expressed by the Rodrigues formula

Cθ
k (ξ) = (−1)k�( 1+2θ

2 )�(k + 2θ)
(
1 − ξ2

) 1
2 −θ

2kk!�(2θ)�
( 2θ+1

2 + k
) dk

dξ k

(
1 − ξ2)k+θ− 1

2 . (12.13)

They are orthogonal with respect to the weight function ωθ(ξ) = (1 −
ξ2)θ−1/2,
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(
Cθ

k ,Cθ
l

)
ωθ =

∫ 1

−1
Cθ

k (ξ)Cθ
l (ξ)ωθ (ξ)dx = hθ

kδk,l,

hθ
k = π21−2θ�(2θ + l)

l!(l + θ)� (θ)2 δkl, k, l ≥ 0, (12.14)

and satisfy the pointwise value identities

Cθ
k (1) = (2θ)k

k! , Cθ
k (−x) = (−1)kCθ

k (ξ), (12.15)

where (ξ)k = �(x + k)/�(ξ).

Remark 12.1. Note that when θ = 0, we realize the classical Chebyshev
polynomials in the sense of

Tk(ξ) = k
2

lim
θ→0

Cθ
k (ξ)

θ
, k ≥ 1. (12.16)

Here, we denote Tk(ξ) := C0
k(ξ).

Recall the interpolatory Gegenbauer–Gauss–Lobatto quadrature for-
mula:

∫ 1

−1
f (ξ)ωθ (ξ)dx =

N∑
j=0

f (ξ θ
j )�θ

j , ∀f ∈ P2N−1, (12.17)

where
{
ξθ

j

}N

j=0
are the Gauss–Lobatto–Gegenbauer nodes (i.e., zeros of

(1 − ξ2)Cθ+1
N−1(ξ)), the related quadrature weights

{
�θ

j

}N

j=0
are represented

by the Lagrange basis polynomials (see, e.g., [55]), and PN is the set of all
polynomials of degree less than or equal to N .

The left and right Riemann–Liouville fractional derivatives of the
Gegenbauer polynomial are given by

−1D
β

ξ Cθ
k (ξ)

= Cθ,β−
k (ξ)

= �(θ + 0.5)

�(2θ)

j∑
k=0

(−1)k+j�(2θ + k + j)
(j − k)!�(θ + k + 0.5)2k�(k − β + 1)

(ξ + 1)k−β,
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ξD
β

1Cθ
k (ξ)

= Cθ,β+
k (ξ)

= �(θ + 0.5)

�(2θ)

j∑
k=0

(−1)k�(2θ + k + j)
(j − k)!�(θ + k + 0.5)2k�(k − β + 1)

(1 − ξ)k−β.

(12.18)

12.4. Numerical schemes

In spectral methods [56–59], one converts the original partial dif-
ferential equation into a system of ordinary differential equations (SODE)
by assuming a functional dependence on the spatial part of the equation.
Along these lines, a number of related methods has been proposed for solv-
ing related equations [60,61].

The solutions u(ξ, τ ) of such equations are approximated as uApprox(ξ, t)
formulated as a truncated series of orthogonal polynomials for the spatial
discretization, which enables us to estimate the related quantities at some
chosen points. This discretization leads us to a SODE, which will be solved
by using an implicit Runge–Kutta (IRK) scheme.

12.4.1 Spatial discretization
In this subsection, we construct two algorithms for the spatial discretiza-
tion of single and coupled systems of Riesz space FSEs based on the
Gegenbauer–Gauss–Lobatto collocation method.

12.4.1.1 Nonlinear fractional Riesz space Schrödinger equations

In this subsection, we treat the nonlinear Riesz space FSE

i
∂ψ

∂τ
− γ (−�)β/2ψ + ρ |ψ |2 ψ = 0, y ∈ (A,B), 0 < τ ≤ τend, (12.19)

with the following conditions:

ψ(y,0) = ψ0(y), (12.20)

ψ(A, τ ) = ψ(B, τ ) = 0. (12.21)

For a straightforward application of the Gegenbauer-based spectral collo-
cation scheme on (−1,1), we consider the change of variables y = 2

B−Aξ +
A+B
B−A and ψ(y, τ ) = χ(ξ, τ ). This will convert problem (12.19)–(12.21) into
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the following equivalent equation, where the spatial domain is defined on
(−1,1):

i
∂χ

∂τ
− γ

(
2

B −A

)β

(−�)β/2χ + ρ |χ |2χ = 0, ξ ∈ (−1,1), 0 < τ ≤ τend,

(12.22)
with the following conditions:

χ(ξ,0) = χ0(ξ), (12.23)

χ(−1, τ ) = χ(1, τ ) = 0. (12.24)

We now split the complex function χ(ξ, τ ) into two real functions P(ξ, τ )

and Q(ξ, τ ) as

χ(ξ, τ ) = P(ξ, τ ) + iQ(ξ, τ ). (12.25)

Based on the previous mapping, we deduce that

∂P(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2Q(ξ, τ )

+ ρ
(|P(ξ, τ )|2 + |Q(ξ, τ )|2)Q(ξ, τ ) = 0,

−∂Q(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2P(ξ, τ )

+ ρ
(|P(ξ, τ )|2 + |Q(ξ, τ )|2)P(ξ, τ ) = 0,

(12.26)

with the following conditions:

P(−1, τ ) = 0, P(1, τ ) = 0, τ ∈ (0, τend],
Q(−1, τ ) = 0, Q(1, τ ) = 0, τ ∈ (0, τend],
P(ξ,0) = P0(ξ), Q(ξ,0) = Q0(ξ), ξ ∈ (−1,1).

(12.27)

The distribution of Gegenbauer–Gauss–Lobatto nodes in (−1,1) is the ma-
jor reason for considering them in our discretization. Here, we list the main
steps of implementing our Gegenbauer–Gauss–Lobatto collocation scheme
for converting the nonlinear system (12.26)–(12.27) into a temporal ordi-
nary differential system.

The spectral approximations of P(ξ, τ ) and Q(ξ, τ ) are given by

P(ξ, τ ) ≈
K∑

j=0

εj(τ )Cθ
j (ξ), Q(ξ, τ ) ≈

K∑
j=0

εj(τ )Cθ
j (ξ). (12.28)



332 Mahmoud A. Zaky et al.

The orthogonal property and the discrete inner product permit the follow-
ing:

εj(τ ) = 1
hθ

j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i P(ξ θ
i , τ ),

εj(τ ) = 1
hθ

j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i Q(ξ θ
i , τ ).

(12.29)

Hence, the approximate solutions (12.28) take the form

P(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i P(ξ θ

i , τ ),

Q(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i Q(ξ θ

i , τ ).

(12.30)

The left fractional Riemann–Liouville spatial derivative of order β can be
written as

−1Dβ

ξ P(ξ, τ )

∣∣∣
ξ=ξθ

n

=
K∑

i=0

℘n,iP(ξ θ
i , τ ), −1Dβ

ξ Q(ξ, τ )

∣∣∣
ξ=ξθ

n

=
K∑

i=0

℘n,iQ(ξ θ
i , τ ),

n = 0,1, · · · , (12.31)

where

℘n,i =
K∑

j=0

�θ
i

hθ
j

Cθ
j (ξ

θ
i )Cθ,β−

j (ξ θ
n ). (12.32)

Similarly, the right fractional Riemann–Liouville spatial derivative of order
β can be written as

ξDβ

1P(ξ, τ )

∣∣∣
ξ=ξθ

n

=
K∑

i=0

�n,i P(ξ θ
i , τ ), ξDβ

1Q(ξ, τ )

∣∣∣
ξ=ξθ

n

=
K∑

i=0

�n,i Q(ξ θ
i , τ ),

n = 0,1, · · · ,K, (12.33)

where

�n,i =
K∑

j=0

�θ
i

hθ
j

Cθ
j (ξ

θ
i )Cθ,β+

j (ξ θ
n ). (12.34)
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Let us denote

Pn(τ ) = P(ξ θ
n , τ ), Qn(τ ) = Qn(ξ

θ
n , τ ).

For the spectral Gegenbauer–Gauss–Lobatto collocation technique, Eq. (12.26)
is enforced to be zero at the (K − 1) points. Thus, we obtain

Ṗn(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(
℘n,i + �n,i

)
Qi(τ )

+ ρ
(
P2

n (τ ) +Q2
n(τ )

)
Qn(τ ) = 0,

−Q̇n(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(℘n,i + �n,i)Pi(τ )

+ ρ
(
P2

n (τ ) +Q2
n(τ )

)
Pn(τ ) = 0,

n = 1,2, · · · ,K − 1,

(12.35)

with the initial values

Pn(0) = P(ξ θ
n ,0), Qn(0) = Q(ξ θ

n ,0), n = 1, · · · ,K − 1. (12.36)

12.4.1.2 Coupled nonlinear fractional Riesz space Schrödinger
equations

In this subsection, we treat the following coupled nonlinear Riesz space
FSE:

i
∂ψ

∂τ
− γ (−�)β/2ψ + ρ

(|ψ |2 + � |ϕ|2)ψ = 0, y ∈ (A,B), 0 < τ ≤ τend,

i
∂ϕ

∂τ
− γ (−�)β/2ϕ + ρ

(|ϕ|2 + � |ψ |2)ϕ = 0, y ∈ (A,B), 0 < τ ≤ τend,

(12.37)

with the following conditions:

ψ(y,0) = ψ0(y), ϕ(y,0) = ϕ0(y), (12.38)

ψ(A, τ ) = 0, ψ(B, τ ) = 0, ϕ(A, τ ) = 0, ϕ(B, τ ) = 0. (12.39)

Again we consider the change of variables y = 2
B−Aξ + A+B

B−A and ψ(y, τ ) =
χ(ξ, τ ). This will convert problem (12.37)–(12.39) into another one in the
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spatial domain (−1,1), namely,

i
∂χ

∂τ
− γ

(
2

B −A

)β

(−�)β/2χ + ρ
(|χ |2 + � |φ|2)χ = 0,

ξ ∈ (−1,1), 0 < τ ≤ τend,

i
∂φ

∂τ
− γ

(
2

B −A

)β

(−�)β/2φ + ρ
(|φ|2 + � |χ |2)φ = 0,

ξ ∈ (−1,1), 0 < τ ≤ τend,

(12.40)

with the following conditions:

χ(ξ,0) = χ0(ξ), φ(ξ,0) = φ0(ξ), (12.41)

χ(−1, τ ) = χ(1, τ ) = φ(−1, τ ) = φ(1, τ ) = 0. (12.42)

We now split the complex functions (χ(ξ, τ ) and φ(ξ, τ )) into real functions
as

χ(ξ, τ ) = P(ξ, τ ) + iQ(ξ, τ ), φ(ξ, τ ) = R(ξ, τ ) + iS(ξ, τ ), (12.43)

where P(ξ, τ ), Q(ξ, τ ), R(ξ, τ ), and S(ξ, τ ) are real functions. Based on the
previous mapping, we get

∂P(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2Q(ξ, τ )

+ ρ
(|P(ξ, τ )|2 + |Q(ξ, τ )|2 + � |R(ξ, τ )|2 + � |S(ξ, τ )|2)Q(ξ, τ ) = 0,

−∂Q(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2P(ξ, τ )

+ ρ
(|P(ξ, τ )|2 + |Q(ξ, τ )|2 + � |R(ξ, τ )|2 + � |S(ξ, τ )|2)P(ξ, τ ) = 0,

∂R(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2S(ξ, τ )

+ ρ
(
�|P(ξ, τ )|2 + � |Q(ξ, τ )|2 + |R(ξ, τ )|2 + |S(ξ, τ )|2)S(ξ, τ ) = 0,

−∂S(ξ, τ )

∂τ
− γ

(
2

B −A

)β

(−�)β/2R(ξ, τ )

+ ρ
(
�|P(ξ, τ )|2 + � |Q(ξ, τ )|2 + |R(ξ, τ )|2 + |S(ξ, τ )|2)R(ξ, τ ) = 0,

(12.44)
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with the following conditions:

P(−1, τ ) = 0, P(1, τ ) = 0, τ ∈ (0, τend],
Q(−1, τ ) = 0, Q(1, τ ) = 0, τ ∈ (0, τend],
R(−1, τ ) = 0, R(1, τ ) = 0, τ ∈ (0, τend],
S(−1, τ ) = 0, S(1, τ ) = 0, τ ∈ (0, τend],
P(ξ,0) = P0(ξ), Q(ξ,0) = Q0(ξ), ξ ∈ (−1,1),

R(ξ,0) = R0(ξ), S(ξ,0) = S0(ξ), ξ ∈ (−1,1).

(12.45)

Then, P(ξ, τ ), Q(ξ, τ ), R(ξ, τ ), and S(ξ, τ ) can be approximated as

PK(ξ, τ ) =
K∑

j=0

εj(τ )Cθ
j (ξ), QK(ξ, τ ) =

K∑
j=0

εj(τ )Cθ
j (ξ),

RK(ξ, τ ) =
K∑

j=0

ζj(τ )Cθ
j (ξ), SK(ξ, τ ) =

K∑
j=0

ηj(τ )Cθ
j (ξ).

(12.46)

Using the orthogonal property and the discrete inner product, we obtain
the following approximations:

εj(τ ) = 1
hθ

j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i P(ξ θ
i , τ ), εj(τ ) = 1

hθ
j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i Q(ξ θ
i , τ ),

ζj(τ ) = 1
hθ

j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i R(ξ θ
i , τ ), ηj(τ ) = 1

hθ
j

K∑
i=0

Cθ
j (ξ

θ
i )�θ

i S(ξ θ
i , τ ).

(12.47)

In this case, the approximations in (12.46) take the form

P(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i P(ξ θ

i , τ ),

Q(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i Q(ξ θ

i , τ ),

R(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i R(ξ θ

i , τ ),

S(ξ, τ ) =
∑

i,j=0,...,K

1
hθ

j
Cθ

j (ξ
θ
i )Cθ

j (ξ)�θ
i S(ξ θ

i , τ ).

(12.48)
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Similarly to (12.31) and (12.33), we get

−1Dβ

ξ P(ξ θ
n , τ ) =

K∑
i=0

℘n,i P(ξ θ
i , τ ), −1Dβ

ξ Q(ξ θ
n , τ ) =

K∑
i=0

℘n,i Q(ξ θ
i , τ ),

−1Dβ

ξ R(ξ θ
n , τ ) =

K∑
i=0

℘n,i R(ξ θ
i , τ ), −1Dβ

ξ S(ξ θ
n , τ ) =

K∑
i=0

℘n,i S(ξ θ
i , τ ),

n = 0,1, · · · ,K,

(12.49)

ξDβ

1P(ξ θ
n , τ ) =

K∑
i=0

�n,i P(ξ θ
i , τ ), ξDβ

1Q(ξ θ
n , τ ) =

K∑
i=0

�n,i Q(ξ θ
i , τ ),

ξDβ

1R(ξ θ
n , τ ) =

K∑
i=0

�n,i R(ξ θ
i , τ ), ξDβ

1S(ξ θ
n , τ ) =

K∑
i=0

�n,i S(ξ θ
i , τ ),

n = 0,1, · · · ,K,

(12.50)

where ℘n,i and �n,i are given by (12.32) and (12.34), respectively.
Combining the boundary conditions with the abovementioned equa-

tions and equating the residual of (12.44) by zero at the Gegenbauer–
Gauss–Lobatto nodes leads to

Ṗn(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(℘n,i + �n,i)Qi(τ )

+ ρ
(
P2

n (τ ) +Q2
n(τ ) + �R2

n(τ ) + �S2
n (τ )

)
Qn(τ ) = 0,

−Q̇n(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(℘n,i + �n,i)Pi(τ )

+ ρ
(
P2

n (τ ) +Q2
n(τ ) + �R2

n(τ ) + �S2
n (τ )

)
Pn(τ ) = 0,

Ṙn(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(℘n,i + �n,i)Si(τ )

+ ρ
(
�P2

n (τ ) + �Q2
n(τ ) +R2

n(τ ) + S2
n (τ )

)
Sn(τ ) = 0,

−Ṡn(τ ) − γ

(
2

B −A

)β 1
2 cos

(
πβ

2

) K−1∑
i=1

(℘n,i + �n,i)Ri(τ )

+ ρ
(
�P2

n (τ ) + �Q2
n(τ ) +R2

n(τ ) + S2
n (τ )

)
Rn(τ ) = 0,

n = 1,2, · · · ,K − 1,

(12.51)
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with the initial values

Pn(0) = P(ξ θ
n ,0), Qn(0) = Q(ξ θ

n ,0), Rn(0) = R(ξ θ
n ,0),

Sn(0) = S(ξ θ
n ,0), n = 1, · · · ,K − 1.

(12.52)

The numerical approach for solving the systems (12.35)–(12.36) and
(12.51)–(12.52) will be listed in Section 12.4.2.

12.4.2 Temporal discretization
The IRK method has many applications for efficiently solving SODEs nu-
merically (see [62,63]). Let

u̇(τ ) = �(τ,u(τ )), u(0) = δ0. (12.53)

Then, the iterative solution is

Ui,j = ui + �τ

s∑
l=1

aj,l�(τi + cl�τ,Ui,l, j = 1, · · · , s,

ui+1 = ui + �τ

s∑
j=1

bj�(τi + cj�τ,Ui,j), ∀i,

(12.54)

where �τ is the step size, τi = τ0 + i�τ , and ui are approximations to u(τi).
Moreover, aij, bj, and cj are constants and i, j = 1,2, · · · , s, which are given
by

c1 a11 · · · a1s
...

...
. . .

...

cs as1 · · · ass

b1 · · · bs

.

For the two-stage IRK method, the Butcher array is given by
1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 −

√
3

6
1
4

1
2

1
2

.

12.5. Numerical experiments

In this section, we clarify the robustness and accuracy of the Runge–
Kutta/Gegenbauer spectral collocation scheme by implementing the algo-
rithm to several test problems. In our simulations we chose K = 256.
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12.5.1 Convergence test
We start with the nonlinear Riesz space FSE [64]

i
∂ψ(ξ, τ )

∂τ
− γ (−�)β/2ψ(ξ, τ ) + |ψ |2ψ(ξ, τ ) = f (ξ, τ ),

(ξ, τ ) ∈ (0,1) × (0,1],
(12.55)

given the conditions

ψ(ξ,0) = ξ2(1 − ξ)2, ξ ∈ [0,1],
ψ(0, τ ) = ψ(1, τ ) = 0, τ ∈ (0,1],

and f (ξ, τ ) is given when ψ(ξ, τ ) = eitξ2(1 − ξ)2.
Space discretization has been introduced by Yang [64] based on the

so-called fractional central difference scheme. A modified Crank–Nicolson
leapfrog technique has been used for temporal discretization. Table 12.1 lists
a comparison between our results and those in [64] for dissimilar values of
parameters. Obviously, the proposed scheme shows better numerical results

Table 12.1 The maximum absolute errors for different choices of β for problem (12.55).
K β = 1.2 β = 1.5 β = 1.8

Method I [64] 26 4.62 × 10−4 3.66 × 10−3 8.90 × 10−5

28 1.39 × 10−4 1.08 × 10−3 3.01 × 10−5

210 3.64 × 10−5 2.71 × 10−4 7.93 × 10−6

Method II [64] 26 9.92 × 10−5 6.70 × 10−5 7.35 × 10−5

28 6.89 × 10−6 4.57 × 10−6 4.35 × 10−6

210 4.69 × 10−7 3.25 × 10−7 3.25 × 10−7

Method III [64] 26 5.09 × 10−5 3.83 × 10−5 5.61 × 10−5

28 3.32 × 10−6 2.62 × 10−6 3.26 × 10−6

210 2.32 × 10−7 1.89 × 10−7 2.15 × 10−7

Method IV [64] 26 1.55 × 10−5 1.36 × 10−5 4.11 × 10−5

28 9.85 × 10−7 9.77 × 10−7 2.34 × 10−6

210 8.45 × 10−8 7.86 × 10−8 1.61 × 10−7

Present method 4 2.90 × 10−2 2.36 × 10−2 2.19 × 10−2

6 1.34 × 10−11 3.54 × 10−11 7.98 × 10−11

8 1.19 × 10−11 4.08 × 10−11 8.85 × 10−11

10 1.36 × 10−11 3.69 × 10−11 7.30 × 10−11
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Figure 12.1 Evaluation of the approximate solution for different fractional orders,
where β = 1.4.

than those reported in [64]. It is also observed that excellent approximations
with a low number of collocation points are achieved.

12.5.2 A single equation
Firstly, we consider the nonlinear Riesz space FSE (12.19) in the following
form:

i
∂ψ

∂τ
− γ (−�)β/2ψ + ρ |ψ |2 ψ = 0, (12.56)

subject to the initial condition

ψ(ξ,0) = e2iξ sech(ξ). (12.57)

For this problem, we take the parameters γ = 1, ρ = 2. When β = 2,
the exact solution is given by

ψ(ξ, τ ) = ei(2ξ−3t) sech(ξ − 4t).

In this example, we chose a = −20 and b = 20 In Figs. 12.1–12.4, we
display the numerical approximations for different values of β. We note that
the shape of the soliton is affected by the fractional order (see the details also
in Fig. 12.5). The shape of the soliton will change quickly when β becomes
smaller, and when β tends to 2, the approximate solutions converge to the
solutions of the integer-order equation.
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Figure 12.2 Evaluation of the approximate solution for different fractional orders,
where β = 1.6.

Figure 12.3 Evaluation of the approximate solution for different fractional orders,
where β = 1.8.

12.5.3 Coupled equations
Example 12.1. Consider the coupled system

i
∂ψ

∂τ
− γ (−�)β/2ψ + ρ

(|ψ |2 + � |ϕ|2)ψ = 0,

i
∂ϕ

∂τ
− γ (−�)β/2ϕ + ρ

(|ϕ|2 + � |ψ |2)ϕ = 0,

(12.58)
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Figure 12.4 Evaluation of the approximate solution for different fractional orders,
where β = 1.99.

Figure 12.5 Numerical solution at t = 1, 2, 3 with β = 1.8.

where � = 0, with the following initial conditions:

ψ(ξ,0) = eiQ0ξ sech(ξ + R0),

φ(ξ,0) = e−iQ0ξ sech(ξ − R0).
(12.59)

In this example, we choose the parameters R0 = 5, Q0 = 3, γ = � = 1,
and ρ = 2. The numerical results indicate that when β tends to 2, collision
is elastic and the shapes of the two solitons are unchanged (Figs. 12.6–12.9).
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Figure 12.6 Evaluation of the approximate solution, where β = 1.99.

Figure 12.7 Evaluation of the approximate solution for different fractional orders,
where β = 1.8.

We also find that when β = 2, the collisions are not elastic. These results
show that the order β seriously affects the shape of the solitons.

Example 12.2. Finally, we introduce

i
∂ψ

∂τ
− (−�)β/2ψ + (|ψ |2 + |ϕ|2)ψ = f1(ξ, τ ),

i
∂ϕ

∂τ
− (−�)β/2ϕ + (|ϕ|2 + |ψ |2)ϕ = f2(ξ, τ ),

(12.60)
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Figure 12.8 Evaluation of the approximate solution, where β = 1.6.

Figure 12.9 Evaluation of the approximate solution for different fractional orders,
where β = 1.4.

given the conditions

ψ(ξ,0) = x4(1 − x)4, ψ(0, τ ) = ψ(1, τ ) = 0,

φ(ξ,0) = x4(1 − x)4, φ(0, τ ) = φ(1, τ ) = 0,
(12.61)

and f1(ξ, τ ) and f2(ξ, τ ) are given when ψ(ξ, τ ) = e−itξ4(1 − ξ)4 and
φ(ξ, τ ) = eitξ4(1 − ξ)4. Table 12.2 lists a comparison between our results
and exact solutions for dissimilar values of parameters. Space-time graphs
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Table 12.2 Maximum absolute errors of problem (12.60).
β (N ,M) MPN ,M MQN ,R MRN ,M MMS,M
1.1 (4,4) 2.86927 × 10−3 1.88846 × 10−3 2.50934 × 10−3 3.0645 × 10−3

(6,6) 6.60009 × 10−4 5.67821 × 10−4 7.79847 × 10−4 7.89858 × 10−4

(8,8) 8.74126 × 10−5 7.00946 × 10−5 8.98759 × 10−5 9.40342 × 10−5

(10,10) 6.54949 × 10−13 6.33758 × 10−13 3.213436 × 10−8 4.06006 × 10−8

1.5 (4,4) 4.443 × 10−3 4.63618 × 10−3 4.8823 × 10−3 4.85871 × 10−3

(6,6) 6.67378 × 10−4 6.64512 × 10−4 7.30094 × 10−4 7.83298 × 10−4

(8,8) 8.74126 × 10−5 8.16411 × 10−5 1.02859 × 10−4 1.07615 × 10−4

(10,10) 1.81612 × 10−12 1.67684 × 10−13 2.80548 × 10−8 2.68269 × 10−8

1.8 (4,4) 5.94956 × 10−3 5.05091 × 10−3 6.56518 × 10−3 6.53194 × 10−3

(6,6) 7.62834 × 10−4 6.82844 × 10−4 9.31914 × 10−4 9.74952 × 10−4

(8,8) 8.97187 × 10−5 8.65576 × 10−5 1.02615 × 10−4 1.08416 × 10−4

(10,10) 3.52175 × 10−12 2.90958 × 10−12 1.93218 × 10−8 1.86377 × 10−8
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Figure 12.10 Evaluation of the real part of the approximate solution ψ , where β = 1.8.

Figure 12.11 Evaluation of the imaginary part of the approximate solution ψ , where
β = 1.8.

of real and imaginary parts of the numerical solution of problem (12.60)
are shown in Figs. 12.10–12.13. While in Figs. 12.14–12.17, we recog-
nize the outright matching of numerical and exact solutions in its real and
imaginary parts. Also, space-time graphs of real and imaginary parts of the
absolute errors of problem (12.60) are plotted in Figs. 12.18–12.21.
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Figure 12.12 Evaluation of the real part of the approximate solution φ, where β = 1.8.

Figure 12.13 Evaluation of the imaginary part of the approximate solution φ, where
β = 1.8.

12.6. Conclusion and discussion

In this chapter, we developed a Runge–Kutta/Gegenbauer-based
spectral collocation scheme for the coupled nonlinear Riesz space FSEs.
It is a continuation of the authors’ previous works on Chebyshev and
Legendre pseudospectral methods for the fractional Schrödinger equations.



Pseudospectral methods for the Riesz space fractional Schrödinger equation 347

Figure 12.14 Space curves of the real part of the approximate solution φ, where β =
1.8.

Figure 12.15 Space curves of the imaginary part of the approximate solution φ, where
β = 1.8.

The governing equations exhibited both nonlinear and nonlocal behavior,
making the numerical computations challenging. We derived a spatially
Gegenbauer-based spectral collocation scheme to the Riesz fractional oper-
ator on a bounded domain and related differentiation matrices are derived.
Then, a fully discrete scheme was obtained by applying the implicit Runge–
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Figure 12.16 Space curves of the real part of the approximate solution ψ , where β =
1.8.

Figure 12.17 Space curves of the imaginary part of the approximate solution ψ , where
β = 1.8.

Kutta scheme of fourth order in time. Finally, numerical simulations were
provided to verify the effectiveness of the numerical schemes. The effects of
fractional-order parameters on the pattern formations of the wave packets
in the coupled Schrödinger equations were discussed.



Pseudospectral methods for the Riesz space fractional Schrödinger equation 349

Figure 12.18 Evaluation of the absolute errors of the real part of the approximate solu-
tion ψ , where β = 1.8.

Figure 12.19 Evaluation of the absolute errors of the imaginary part of the approxi-
mate solution ψ , where β = 1.8.
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13.1. Classical and fractional telegrapher’s equations

Using the traditional approach, a transmission line (TL) is modeled
using Heaviside’s elementary circuit shown in Fig. 13.1, which consists of
the inductor of inductivity �L [H] and the resistor of resistivity �R [�]
in its series branch, modeling magnetic field effects, a part of energy loss,
and voltage drop along the line, as well as of the capacitor of capacitiv-
ity �C [F] and the resistor of conductivity �G [S] in its shunt branch,
modeling electric field effects, a part of energy loss, and current leakage.
Assuming instantaneous connection of the physical quantities describing
accumulative electric elements for all time instants t > 0, the classical con-
stitutive relations for inductor and capacitor

φ (t) = �L iL (t) and q (t) = �C uC (t) , (13.1)

where φ and iL are inductor magnetic flux and current, while q and uC

are capacitor charge and voltage, by the Faraday law of electromagnetic
induction and the definition of electric current imply the inductor voltage
and capacitor current as

uL (t) = d
dt

φ (t) = �L
d
dt

iL (t) and iC (t) = d
dt

q (t) = �C
d
dt

uC (t) ,

so that by applying Kirchhoff ’s laws to the elementary circuit from
Fig. 13.1, which is of length �x and located at position x along the TL, and
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Figure 13.1 Elementary circuit of classical TL model.

after the passage to the continuum, i.e., in the limit �x → 0, the classical
telegrapher’s equation (TE)

(
LC

∂2

∂t2
+ (LG + RC)

∂

∂t
+ RG

)
u (x, t) = ∂2

∂x2 u (x, t) (13.2)

is derived, where the model parameters inductance, resistance, capacitance,
and conductance by-length are respectively given by

L = lim
�x→0

�L
�x

[
H
m

]
, R = lim

�x→0

�R
�x

[
�

m

]
,

C = lim
�x→0

�C
�x

[
F
m

]
, G = lim

�x→0

�G
�x

[
S
m

]
,

as Oliver Heaviside has done in [22]. Heaviside’s contributions in the anal-
ysis of classical electric TLs and electromagnetic theory are accounted for
in the survey paper [12]. The alternative form

K2
(

τLτC
∂2

∂t2
+ (τL + τC)

∂

∂t
+ 1

)
u (x, t) = ∂2

∂x2 u (x, t)

of the classical TE (13.2) is obtained by introducing a static attenuation co-
efficient K = √

RG
[
m−1

]
and time constants τL = L

R [s], τC = C
G [s], giving

the characteristic time of the charge/discharge of energy accumulated in
the inductor through the resistor in the series branch, as well of the energy
accumulated in the capacitor through the resistor in the shunt branch. The
classical TE (13.2) is the wave type equation in the sense that the signal
propagation speed is finite and determined by

c = 1√
LC

= 1
K

√
τLτC

[m
s

]
, (13.3)
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thanks to the term containing the second-order time partial derivative of
voltage, however displaying the dissipation effects as well, which are due
to the term containing the first-order time derivative of voltage and the
term linear in voltage. Solitary waves, representing the solutions of the
classical TE, are analyzed in [37,48,51], while the traveling waves solutions
are reported in [44]. Signals in nonlinear TLs, assumed as solitons and in
the elliptic forms, are studied in [27]. The classical TE (13.2) proved to be a
good model for signal transmission in classical conductors and also through
the large-scale systems. In particular, the use of the classical TE (13.2) is
reasonable when modeling low-frequency power TLs. On the other hand,
the classical TE proved inadequate (see [46]) in modeling transmission of
high-frequency signals of terahertz order, i.e., in modeling THz lines and
composite right/left-handed TLs (CRLHT lines), where the fractional TL
models are proved to be more adequate.

If an electric signal is transmitted through some more exotic material,
or through a small-scale system, the instantaneous constitutive relations for
inductor and capacitor (13.1) might become inappropriate, since the hered-
itariness of magnetization and polarization processes in material might be
prominent; hence the magnetic flux and current in the inductor, so as the
charge and voltage in capacitor, are connected through the phenomeno-
logical constitutive relations

φ (t) = �Lξ 0I
1−ξ
t iL (t) and q (t) = �Cξ 0I

1−ξ
t uC (t) , ξ ∈ (0,1) , (13.4)

with �Lξ and �Cξ denoting the fractional inductance and capacitance
measured in Hsξ−1 and F sξ−1, which account for the long tail memory
through the hereditariness kernel assumed as the power type function, due
to the Riemann–Liouville fractional integral

0I
ξ
t f (t) = 1

�(ξ)

∫ t

0
(t − τ)ξ−1f (τ )dτ = tξ−1

� (ξ)
∗ f (t) , ξ > 0,

where � is the Euler Gamma function and ∗ denotes the convolution, de-
fined by f (t) ∗ g (t) = ∫ t

0 f
(
t′
)
g
(
t − t′

)
dt′ for the causal function. For more

details regarding the field of fractional calculus and its various applications
see for example [28,38]. Using the Faraday law of electromagnetic induc-
tion and the definition of the current, constitutive relations (13.4) for the
fractional inductor and capacitor become

uL (t) = d
dt

φ (t) = �Lξ

d
dt 0I

1−ξ
t iL (t) = �Lξ 0D

ξ
t iL (t) , (13.5)
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iC (t) = d
dt

q (t) = �Cξ

d
dt 0I

1−ξ
t uC (t) = �Cξ 0D

ξ
t uC (t) , (13.6)

where 0D
ξ
t stands for the Riemann–Liouville fractional derivative of order

ξ ∈ (0,1), defined by

0D
ξ
t f (t) = d

dt 0I
1−ξ
t f (t) = d

dt

(
t−ξ

� (1 − ξ)
∗ f (t)

)
. (13.7)

Constitutive equation (13.5) for the fractional inductor describes the ele-
ment with performance between resistor and classical inductor, obtained in
the limiting cases of the fractional differentiation orders ξ = 0 and ξ = 1,
respectively, while the model of fractional capacitor (13.6) describes the
element with performance between resistor and classical capacitor in the
same limiting cases.

The phenomenological constitutive relations (13.4) take into account
only the hereditary effects of the element, while in [20] the instantaneous
contribution corresponding to the classical element is also included into the
constitutive model, thus yielding

φ (t) = �L iL (t) + �Lξ 0I
1−ξ
t iL (t) and

q (t) = �C uC (t) + �Cξ 0I
1−ξ
t uC (t) , ξ ∈ (0,1) , (13.8)

which, by thermodynamic considerations, proved to model the dissipative
electric elements, contrary to

iL (t) = 1
�L

φ (t) + 1
�Lξ

0I
1−ξ
t φ (t) and

uC (t) = 1
�C

q (t) + 1
�Cξ

0I
1−ξ
t q (t) , ξ ∈ (0,1) ,

which model generative electric elements. Constitutive models (13.8) are
further used in [21] to model electric elements in RLC circuits in tran-
sient and steady-state regimes. In [24,25], the constitutive equations (13.5)
and (13.6) are generalized by including the instantaneous effects through
the term corresponding to the resistor, rather than the classical inductor or
capacitor, and further used in modeling the transient response of series and
parallel connections of such generalized electric elements.

A constitutive equation similar to (13.5) is used in [45] in mod-
eling magnetic core coils, while the electrochemical double layer ca-
pacitors (EDLCs), or supercapacitors or ultracapacitors, are often mod-
eled using the fractional capacitor in an equivalent electrical scheme (see
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[13,14,26,35,40]). The fractional electric elements are fabricated with pre-
defined specifications (see [29,36]) and the analysis of electric circuits con-
taining such elements is performed in [15,47], while the fractional RLC
filters are studied in [41,42]. Coils and resistors, modeled using the frac-
tional approach, are used to model the skin effect in [34].

The assumption that the accumulative electric elements, appearing in
the elementary circuit from Fig. 13.1, are of the hereditary type and mod-
eled by the constitutive relations (13.4) leads to the fractional generalization
of the classical TE (13.2), obtained as

(
LμCν 0D

μ+ν
t + LμG 0D

μ
t + RCν 0Dν

t + RG
)
u (x, t) = ∂2

∂x2 u (x, t) , (13.9)

with the fractional inductance and capacitance by-length given by

Lμ = lim
�x→0

�Lμ

�x

[
Hsμ−1

m

]
, Cν = lim

�x→0

�Cν

�x

[
F sν−1

m

]
,

which rewritten in terms of the attenuation coefficient K and fractional
time constants τμ = Lμ

R [sμ] and τν = RCν [sν] takes the form

K2 (
τμτν 0D

μ+ν
t + τμ 0D

μ
t + τν 0Dν

t + 1
)
u (x, t) = ∂2

∂x2 u (x, t) ,

where the highest order of the fractional time derivative can be either
μ + ν ∈ (0,1) or μ + ν ∈ (1,2), in which case the Riemann–Liouville
derivative of order ξ + n ∈ (n,n + 1), n ∈ N0, is defined by

0D
ξ+n
t f (t) = dn+1

dtn+1 0I
1−ξ
t f (t) = dn+1

dtn+1

(
t−ξ

� (1 − ξ)
∗ f (t)

)
.

Due to the fractional derivatives, being the consequences of the gen-
eralization of elements’ constitutive equation, the fractional TE (13.9) is
nonlocal in time, while nonlocality in space may be achieved by consid-
ering the classical elements’ models and assuming the magnetic coupling
between inductors in all elementary circuits through the superposition of
local and nonlocal magnetic fluxes, yielding

φ = φL + φNL, with

φL(x, t) = L i(x, t) and φNL(x, t) =
∫ b

a
m(x, ζ ) i(ζ, t)dζ,
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in the continuum limit, with the cross-inductivity kernel m constitutively
given, leading to the nonlocal TE, derived and analyzed in [10].

Fractionalizing the inductor and capacitor appearing in the elementary
circuit, the frequency characteristics of such obtained fractional TE are an-
alyzed analytically, while the Laplace transform inversion is performed by
numerical methods in [2,3]. The space and time fractionalization of TE in
[17–19] is performed by replacing the integer-order derivatives with the
fractional ones, with the solutions of TE assumed as plane waves. The dif-
fusion of ions in nerve cells, i.e., electro-diffusion in spiny dendrites, can
also be described by the fractional TE, like in [7,23,30–33,49,52].

Introducing simultaneous fractionalization of accumulative elements’
constitutive models and topological modifications of the elementary circuit,
as shown in Fig. 13.2, not only the hereditary effects in material polariza-
tion and magnetization, described by the fractional models (13.5) and (13.6)
for inductor and capacitor, are taken into account instead of the instanta-
neous polarization and magnetization effects accounted for by the classical
constitutive models (13.1), but also the charge accumulation effects along
the TL are included by introducing the additional fractional capacitor in
the series branch of the elementary circuit, which is either in parallel con-
nection with the resistor, as in Fig. 13.2a, or in series connection with the
resistor, as in Fig. 13.2b.

Figure 13.2 Topological modifications of the classical elementary circuit.

The differences in modeling charge accumulation effects using elemen-
tary circuits from Fig. 13.2 lie in the origin of energy losses and magnetic
phenomena, since the energy losses are due to the motion of either free
charges, in the case of parallel topology from Fig. 13.2a, or polarization
charges, in the case of series topology from Fig. 13.2b, while magnetic
phenomena are due to the total current, consisting of the motion of
both free and polarization charges, in the case of parallel topology, and
only of the motion of polarization charges in the case of series topology
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(Figs. 13.2a and 13.2b, respectively). Further differences between topolo-
gies lie in characteristics of signal transmission, since for low signal fre-
quencies transmission is either allowed, in the case of parallel topology,
or blocked, in the case of series topology, due to the capacitor in the se-
ries branch, while in the case of both topologies the high-frequency signal
transmission is blocked, due to the inductor in the series branch. There-
fore, parallel topology corresponds to the band-pass filter, while the series
topology corresponds to the low-pass filter. Moreover, the parallel topol-
ogy behaves similarly to the classical one regarding the signal transmission
at both high and low frequencies.

The fractional TE corresponding to the parallel topology from Fig. 13.2a
takes two equivalent forms:

(
LαCβCγ R 0D

α+β+γ
t + LαCβRG 0D

α+β
t + LαCγ 0D

α+γ
t + LαG 0Dα

t

+ RCγ 0D
γ
t + RG

)
u (x, t) =

(
RCβ 0D

β
t + 1

) ∂2

∂x2 u (x, t) (13.10)

and

(
LαCβCγ R 0D

α+γ
t + LαCβRG 0Dα

t + LαCγ 0D
α+γ
t 0I

β
t + LαG 0Dα

t 0I
β
t

+ RCγ 0D
γ
t 0I

β
t + RG 0I

β
t
)
u (x, t) =

(
RCβ + 0I

β
t

) ∂2

∂x2 u (x, t) , (13.11)

while the fractional TE corresponding to the series topology from
Fig. 13.2b, is written either in the form

(
LαCβCγ 0D

α+β+γ
t + LαCβG 0D

α+β
t + CβCγ R 0D

β+γ
t + CβRG 0D

β
t

+ Cγ 0D
γ
t + G

)
u (x, t) = Cβ 0D

β
t

∂2

∂x2 u (x, t) (13.12)

or in the form

(
LαCβCγ 0D

α+γ
t + LαCβG 0Dα

t + CβCγ R 0D
γ
t + CβRG

+ Cγ 0D
γ
t 0I

β
t + G 0I

β
t
)
u (x, t) = Cβ

∂2

∂x2 u (x, t) , (13.13)

where in addition to the previously defined resistance and conductance
by-length, fractional inductance and capacitance by-length as well as the
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fractional relaxation time are introduced by

Lα = lim
�x→0

�Lα

�x

[
Hsα−1

m

]
, Cγ = lim

�x→0

�Cγ

�x

[
F sγ−1

m

]
,

RCβ = lim
�x→0

(
�R�Cβ

) [
sβ

]
.

It appears that the fractional TEs (13.10) and (13.12) are of the order
belonging to the interval (0,3), since α,β, γ ∈ (0,1), implying that the
TEs (13.10) and (13.12), apart from the subdiffusion and diffusion-wave
phenomena, having the equation orders belonging to (0,1) and (1,2), re-
spectively, cover phenomena modeled by the equation of order higher than
the order of the wave equation. However, it is obvious from the equivalent
forms of the fractional TEs (13.11) and (13.13) that the highest order of
fractional differentiation is α + γ ∈ (0,2), since the differentiation operator
of order β on the right-hand side of (13.10) and (13.12), unlike the integral
operator on the right-hand side of (13.11) and (13.13), actually reduces the
order of TEs. Thus, if α+γ ∈ (0,1) in (13.11) and (13.13), then one expects
the impulse response of the diffusive type, while if α + γ ∈ (1,2) in (13.11)
and (13.13), then the wave type response is expected. The diffusive or wave
type response refers to the propagation of the impulse response’s peak in
space during time, while the wave propagation speed, given by (13.3) for
the classical TE (13.2), defining the furthermost position in space reached
by the response during its propagation time, is not obtained to be finite.
Fractional TE (13.10), corresponding to the parallel topology, is derived in
the time domain in [8] and the transient impulse response is analytically
obtained and numerically verified.

Similarly as the classical TE (13.2) and the fractional TE (13.9),
TEs (13.10)–(13.13) are derived in the time domain by reducing the system
of fractional TEs, obtained by applying Kirchhoff ’s laws to the elementary
circuit with the accumulative elements modeled by the fractional constitu-
tive relations (13.5) and (13.6), and subsequently by the continuum limit
�x → 0. Derivation of TEs can also be performed in the complex domain
by considering the impedance of the series and admittance of the shunt
branch of the elementary circuit and subsequently using the continuum
limit and the inverse Laplace transform. Both types of derivations are per-
formed in Section 13.3.
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The equivalent models (13.10) and (13.11) of the hereditary TL corre-
sponding to the parallel topology take the form

K2(τατβτγ 0D
α+β+γ
t + τατβ 0D

α+β
t + τατγ 0D

α+γ
t + τα 0Dα

t

+ τγ 0D
γ
t + 1

)
u (x, t) =

(
τβ 0D

β
t + 1

) ∂2

∂x2 u (x, t) , (13.14)

K2(τατβτγ 0D
α+γ
t + τατβ 0Dα

t + τατγ 0D
α+γ
t 0I

β
t + τα 0Dα

t 0I
β
t

+ τγ 0D
γ
t 0I

β
t + 0I

β
t
)
u (x, t) =

(
τβ + 0I

β
t

) ∂2

∂x2 u (x, t) , (13.15)

while the models (13.12) and (13.13), corresponding to the series topology,
are of the form

K2(τατβτγ 0D
α+β+γ
t + τατβ 0D

α+β
t + τβτγ 0D

β+γ
t + τβ 0D

β
t

+ τγ 0D
γ
t + 1

)
u (x, t) = τβ 0D

β
t

∂2

∂x2 u (x, t) , (13.16)

K2(τατβτγ 0D
α+γ
t + τατβ 0Dα

t + τβτγ 0D
γ
t + τβ

+ τγ 0D
γ
t 0I

β
t + 0I

β
t
)
u (x, t) = τβ

∂2

∂x2 u (x, t) , (13.17)

if rewritten in terms of the static attenuation coefficient K and fractional
time constants τα = Lα

R [sα], τβ = RCβ

[
sβ

]
, and τγ = Cγ

G [sγ ]. The time con-
stant τα describes the dynamics of magnetic flux in the fractional inductor,
facilitated by the series branch resistor, while the time constants τβ and τγ

describe the dynamics of charge accumulation on the fractional capacitor,
facilitated by the series branch resistor and the shunt branch conductor,
respectively.

Frequency characteristics of the fractional TEs (13.14) and (13.16), cor-
responding to the parallel and series topologies, are analyzed in [9] along
with their asymptotics. The fractional inductor can also be included into
the shunt branch of the elementary circuit, like in [50], and moreover,
the classical elementary circuit is extended into two dimensions, as done
in [16].

The aim is to review and extend the results on the derivation, transient
regime response, frequency, and asymptotic analysis of the fractional TE as
the hereditary TL model, published in [9].
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13.2. Reduction of fractional telegrapher’s equations to
special cases

The elementary circuit from Fig. 13.2 represents the topological
modification of Heaviside’s elementary circuit from Fig. 13.1, which in-
troduces the additional capacitor in the series branch, having also the
constitutive models of all accumulative electric elements generalized using
fractional constitutive relations (13.4). The aim is to investigate TL models
originating from the elementary circuit from Fig. 13.2 for the limiting cases
of the parameters appearing in the constitutive equation of the additional
fractional capacitor

iC (t) = �Cβ 0D
β
t uC (t) , β ∈ (0,1) ,

(see also (13.6)), which becomes an open circuit if �Cβ = 0, a short circuit
if �Cβ → ∞, a resistor of conductance �Cβ if β = 0, and a classical capac-
itor if β = 1, as well as in the cases of an ideal conductive element (�R = 0)
and an ideal insulative element (�G = 0).

Although an ideal insulative element (�G = 0) is assumed in the ele-
mentary circuits from Fig. 13.2, the shunt branch remains conductive due
to the fractional capacitor �Cγ , which is an element between classical re-
sistor and capacitor, implying special models of the TL

K2(τλτμτν 0D
λ+μ+ν
t + τλτμ 0D

λ+μ
t + τλ 0Dλ

t

)
u (x, t) = (

τν 0Dν
t + 1

) ∂2

∂x2 u (x, t) ,

K2(τλτμτν 0D
λ+μ+ν
t + τλτμ 0D

λ+μ
t + τλ 0Dλ

t

)
u (x, t) = τμ 0D

μ
t

∂2

∂x2 u (x, t) ,

corresponding to the parallel and series topology, respectively, as a reduction
of fractional TEs (13.10) and (13.12) when G = 0. If, in addition to G = 0,
one assumes either β = 0 in the case of both topologies, implying that the
fractional capacitor in the series branch is actually the resistor, or �Cβ = 0
in the parallel topology, implying that there is no additional element in the
series branch, one obtains the reduced fractional TE

K2(τμτν 0D
μ+ν
t + τμ 0D

μ
t
)
u (x, t) = ∂2

∂x2 u (x, t) , (13.18)

while the same assumptions (G = 0 and �Cβ = 0) in series topology yield

0Dλ
t u (x, t) = 0,
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since there is an open circuit in the series branch. The reduced fractional
TE is often used in modeling diffusion-wave phenomena (see for example
[4–6,43,53] and reference therein).

The series branch remains resistive as well if an ideal conductive element
(�R = 0) is assumed in the elementary circuits from Fig. 13.2, due to the
fractional inductor �Lα, which is an element between classical resistor and
inductor, implying the reduced fractional TE (13.18) as a reduction of the
TL model (13.10) corresponding to the parallel topology, regardless of the
fractional capacitor, since there is a short circuit instead of the resistor, as
well as

K2(τλτμτν 0D
λ+μ+ν
t + τλτμ 0D

λ+μ
t + τν 0Dν

t + 1
)
u (x, t) = τμ 0D

μ
t

∂2

∂x2 u (x, t) ,

in the case of series topology, originating from (13.12). If, in addition to
�R = 0, for the series topology one assumes β = 0 as well, which implies
that the fractional capacitor is actually a resistor, the fractional TE

K2(τμτν 0D
μ+ν
t + τμ 0D

μ
t + τν 0Dν

t + 1
)
u (x, t) = ∂2

∂x2 u (x, t) (13.19)

is obtained from (13.12), while if �Cβ = 0, i.e., the open circuit in the
series branch of the series topology, is additionally assumed, one has the
fractional relaxation equation

(
τλ 0Dλ

t + 1
)
u (x, t) = 0. (13.20)

The assumption of the open circuit (�Cβ = 0) instead of the fractional
capacitor in the series branch of the elementary circuits from Fig. 13.2
leads to the fractional TE (13.19) in the case of parallel topology and to the
fractional relaxation equation (13.20) in the case of series topology, while
the assumption of the short circuit (�Cβ → ∞) instead of the fractional
capacitor leads to the reduced fractional TE (13.18) in the case of parallel
topology and to the fractional TE (13.19) in the case of series topology.

Assuming β = 0, the resistor is considered instead of the fractional ca-
pacitor in the series branch of the elementary circuits from Fig. 13.2,
leading to the fractional TE (13.19) in the case of both topologies.

With respect to the model parameters, the attenuation coefficient K[
m−1

]
and fractional time constants τλ

[
sλ

]
, τμ [sμ], and τν [sν], appearing

in all of the previously mentioned models, are obtained from the appro-
priate resistance, conductance, and fractional inductance and capacitance
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by-length when the fractional TEs (13.10) and (13.12) are reduced to a
special case.

13.3. Transmission line model

Fractional TEs (13.10) and (13.12), as models of the hereditary TL,
are derived in time and complex domains by considering the parallel and
series topologies from Figs. 13.2a and 13.2b, respectively. Derivation in
the time domain of the TL model corresponding to the parallel topology
is performed in [8], while in [9] the TL models for both topologies are
presented in the complex domain and the part of these results is given in
this section.

13.3.1 Model formulation in the time domain
Fractional TEs (13.10) and (13.12), corresponding to the parallel and series
topologies of the elementary circuits from Fig. 13.2, are derived in the
time domain. Application of the first and second Kirchhoff ’s laws to the
elementary circuit gives

−i (x, t) + i (x + �x, t) + �i (x, t) = 0, (13.21)

−u (x, t) + u (x + �x, t) + �u (x, t) = 0, (13.22)

where the leakage current

�i (x, t) = (
�Cγ 0D

γ
t + �G

)
u (x + �x, t) (13.23)

is the same for both topologies and it is a consequence of the first Kirchhoff
law for the shunt branch, with the fractional capacitor current constitutively
given by (13.6), while the voltage drop in the series branch, according to
the second Kirchhoff ’s law, is

�u (x, t) = �Lα 0Dα
t i (x, t) + uRCβ

(x, t) , (13.24)

with the fractional inductor voltage constitutively given by (13.5) and hav-
ing the voltage uRCβ

implicitly obtained either as

i (x, t) =
(

1
�R

+ �Cβ 0D
β
t

)
uRCβ

(x, t) , (13.25)
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in the case of parallel topology from Fig. 13.2a, or as

�Cβ 0D
β
t uRCβ

(x, t) =
(
�R�Cβ 0D

β
t + 1

)
i (x, t) , (13.26)

in the case of series topology from Fig. 13.2b, so that Kirchhoff ’s
laws (13.21) and (13.22), leakage current (13.23), and voltage drop (13.24)
divided by the elementary circuit’s length �x yield

i (x + �x, t) − i (x, t)
�x

= −
(

�Cγ

�x 0D
γ
t + �G

�x

)
u (x + �x, t) , (13.27)

u (x + �x, t) − u (x, t)
�x

= −�Lα

�x 0Dα
t i (x, t) − uRCβ

(x, t)
�x

, (13.28)

coupled either with

�R
�x

i (x, t) =
(
1 + �R�Cβ 0D

β
t

) uRCβ
(x, t)

�x
, (13.29)

obtained by (13.25) in the case of parallel topology, or with

�R�Cβ 0D
β
t
uRCβ

(x, t)
�x

= �R
�x

(
�R�Cβ 0D

β
t + 1

)
i (x, t) , (13.30)

obtained by (13.26) in the case of series topology.
The system of fractional TEs corresponding either to the parallel or

to the series topology is obtained from Eqs. (13.27) and (13.28), coupled
either with (13.29) or with (13.30), in the continuum limit when �x → 0
as

∂

∂x
i (x, t) = − (

Cγ 0D
γ
t + G

)
u (x, t) , (13.31)

∂

∂x
u (x, t) = −Lα 0Dα

t i (x, t) − u′
RCβ

(x, t) , (13.32)

in the case of parallel topology coupled with

R i (x, t) =
(
1 + RCβ 0D

β
t

)
u′

RCβ
(x, t) , (13.33)

and in the case of series topology coupled with

Cβ 0D
β
t u′

RCβ
(x, t) =

(
RCβ 0D

β
t + 1

)
i (x, t) , (13.34)
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where

u′
RCβ

(x, t) = lim
�x→0

uRCβ
(x, t)

�x
, Lα = lim

�x→0

�Lα

�x
, Cγ = lim

�x→0

�Cγ

�x
,

R = lim
�x→0

�R
�x

, G = lim
�x→0

�G
�x

,

RCβ = R
Wβ

= lim�x→0
�R
�x

lim�x→0
�Wβ

�x

= lim
�x→0

�R
�x

�Wβ

�x

= lim
�x→0

�R
�Wβ

= lim
�x→0

(
�R�Cβ

)
,

with �Wβ = 1
�Cβ

.

Assuming both current and voltage to be bounded at the initial time
instant, the fractional TEs corresponding to the parallel topology (13.10)
and (13.11) are derived from the system of fractional TEs (13.31), (13.32),
and (13.33) either by eliminating voltage by-length u′

RCβ
from (13.33) using

Eq. (13.32) as well as its fractional derivative of order β, so that

(
LαCβR 0D

α+β
t + Lα 0Dα

t + R
)

i (x, t) = −
(
RCβ 0D

β
t + 1

) ∂

∂x
u (x, t)

(13.35)
is obtained by the composition of fractional derivatives of orders ξ, ζ ∈ (0,1)

0D
ξ
t 0D

ζ
t f (t) = 0D

ξ+ζ
t f (t) − d2

dt2 0I
1−ξ
t

[
0I

1−ζ
t f (t)

]
t=0

= 0D
ξ+ζ
t f (t) , (13.36)

which holds for f bounded at zero, or by eliminating voltage by-length
u′

RCβ
from Eq. (13.33) integrated by fractional integral of order β using

Eq. (13.32) as well as its fractional integral of order β, so that

(
LαCβR 0Dα

t + Lα 0Dα
t 0I

β
t + R 0I

β
t

)
i(x, t) = −

(
RCβ + 0I

β
t u(x, t)

) ∂

∂x
u (x, t)

(13.37)

is obtained by the composition of the fractional integral of order ξ ∈ (0,1)

and the derivative of order ζ ∈ (0,1) applied to function f bounded at zero,

0I
ξ
t 0D

ζ
t f (t) = 0D

ζ
t 0I

ξ
t f (t) − d

dt 0I
ξ
t

[
0I

1−ζ
t f (t)

]
t=0

= 0D
ζ
t 0I

ξ
t f (t) , (13.38)

reducing to

0I
ξ
t 0D

ξ
t f (t) = f (t) − d

dt 0I
ξ
t

[
0I

1−ξ
t f (t)

]
t=0

= f (t) , (13.39)
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and by subsequent differentiation of (13.35) and (13.37) with respect to x
and eliminating current i from (13.31) using the composition of fractional
derivatives (13.36) as well as the composition of derivatives of different
orders ξ ∈ (1,2) and ζ ∈ (0,1),

0D
ξ
t 0D

ζ
t f (t) = 0D

ξ+ζ
t f (t) − d3

dt3 0I
2−ξ
t

[
0I

1−ζ
t f (t)

]
t=0

= 0D
ξ+ζ
t f (t) , (13.40)

holding for f bounded at zero.
Similarly, assuming both current and voltage to be bounded at initial

time instant, the fractional TEs corresponding to the series topology (13.12)
and (13.13) are derived from the system of fractional TEs (13.31), (13.32),
and (13.34) either by eliminating voltage by-length u′

RCβ
from (13.34) using

the fractional derivative of order β applied to Eq. (13.32), so that

(
LαCβ 0D

α+β
t + RCβ 0D

β
t + 1

)
i (x, t) = −Cβ 0D

β
t

∂

∂x
u (x, t) (13.41)

is obtained according to the composition of fractional derivatives (13.36),
or by eliminating voltage by-length u′

RCβ
from the fractional integral of

order β of (13.34) using Eq. (13.32), so that

(
LαCβ 0Dα

t + RCβ + 0I
β
t

)
i (x, t) = −Cβ

∂

∂x
u (x, t) (13.42)

is obtained using (13.39) and by subsequent differentiation of (13.41)
and (13.42) with respect to x and eliminating current i from (13.31) ac-
cording to the composition of fractional derivatives (13.36) and (13.40) as
well as the composition of the fractional integral and derivative (13.38).

Note that the fractional TEs (13.11) and (13.13) can also be obtained
by applying the fractional integral of order β to Eqs. (13.10) and (13.12),
respectively, using the composition of the fractional integral and deriva-
tive (13.38) and (13.39) under assumption of the boundedness of both
current and voltage at the initial time instant.

13.3.2 Model formulation in the complex domain
Regardless of the topology of the series and shunt branches of the elemen-
tary circuit, as far as the constitutive equations of the elements constituting
the branches are linear with constant coefficients, the TE can be derived
using the Laplace transform of physical quantities, i.e., the TE can be de-
rived in the complex domain (see also the classical literature [39]). The TE
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Figure 13.3 Elementary circuit in the complex domain.

in the complex domain

∂2

∂x2 U (x, s) − k2 (s)U(x, s) = 0, with k(s) = √
ψ(s) = √

Z(s)Y (s)

(13.43)
being the (complex) propagation constant (PC) and

Z(s) = lim
�x→0

�Z(s)
�x

[
�

m

]
, Y (s) = lim

�x→0

�Y (s)
�x

[
S
m

]

being series impedance and shunt admittance by-length, is obtained by
applying Kirchhoff ’s laws to the elementary circuit from Fig. 13.3, yielding

I(x + �x, s) − I(x, s) = −�I(x, s) = −�Y (s)U(x + �x, s), (13.44)

U(x + �x, s) − U(x, s) = −�U(x, s) = −�Z(s)I(x, s), (13.45)

where �Z is the impedance of series and �Y is the admittance of shunt
branch of the elementary circuit, so that (13.44) and (13.45), divided by
the elementary circuit’s length �x, give

I(x + �x, s) − I(x, s)
�x

= −�Y (s)
�x

U(x + �x, s) and

U(x + �x, s) − U(x, s)
�x

= −�Z(s)
�x

I(x, s),

which after taking the continuum limit �x → 0 becomes the system of TEs
in the complex domain

∂

∂x
U(x, s) = −Z(s)I(x, s) and

∂

∂x
I(x, s) = −Y (s)U(x, s),

yielding (13.43) after being reduced to a single equation in voltage U .
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Figure 13.4 Topological modifications of the classical elementary circuit.

In order to derive the fractional TEs in the complex domain corre-
sponding either to the parallel or to the series topology from the elementary
circuit shown in Figs. 13.4a and 13.4b, which take the respective forms

K2(τατβ sα+β + τα sα + 1)(τγ sγ + 1)U(x, s) = (
τβ sβ + 1

) ∂2

∂x2 U (x, s) ,

(13.46)

K2(τατβ sα+β + τβ sβ + 1)(τγ sγ + 1)U(x, s) = τβ sβ
∂2

∂x2 U (x, s) , (13.47)

the series impedances by-length Zp and Zs for the parallel and series topol-
ogy, as well as the shunt admittance by-length Y , which is the same for
both topologies, appearing in PC (13.43)2, are calculated as

Zp(s) = lim
�x→0

�ZLα
(s) + �R ‖ �ZCβ

(s)
�x

,

Zs(s) = lim
�x→0

�R + �ZLα
(s) + �ZCβ

(s)
�x

, (13.48)

Y (s) = lim
�x→0

�YCγ
(s) + �G
�x

, (13.49)

where the impedances �ZLα
and �ZCβ

, as well as the admittance �YCγ
,

follow from the phenomenological constitutive relations (13.4) for frac-
tional inductor and capacitor, obtained as

�ZLα
(s) = UL(s)

IL(s)
= sα �Lα, �ZCβ

(s) = UC(s)
IC(s)

= 1
sβ �Cβ

,

�YCγ
(s) = IC(s)

UC(s)
= sγ �Cγ ,
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by the Laplace transform

F (s) = L
[
f (t)

]
(s) =

∫ ∞

0
f (t)e−stdt,

of the constitutive relation (13.5) for inductor and (13.6) for capacitor,
due to the Laplace transform of the Riemann–Liouville fractional deriva-
tive (13.7)

L
[

0D
ξ
t f (t)

]
(s) = sξF(s) −

[
0I

1−ξ
t f (t)

]
t=0

= sξF(s), (13.50)

holding for f bounded at zero, so that the impedances and the admittance
by-length, by (13.48) and (13.49), are

Zp(s) = RLαCβsα+β + Lαsα + R
RCβsβ + 1

= R
τατβ sα+β + ταsα + 1

τβ sβ + 1
,

Zs(s) = LαCβ sα+β + RCβsβ + 1
Cβsβ

= R
τατβsα+β + τβsβ + 1

τβ sβ
,

Y (s) = Cγ sγ + G = G
(
τγ sγ + 1

)
,

yielding, by (13.43)2, PCs corresponding to the parallel and series topology
as

kp (s) =
√

(RLαCβ sα+β + Lα sα + R)(Cγ sγ + G)

RCβ sβ + 1

= K

√
(τατβ sα+β + τα sα + 1)(τγ sγ + 1)

τβ sβ + 1
, (13.51)

ks (s) =
√

(LαCβ sα+β + RCβ sβ + 1)(Cγ sγ + G)

Cβ sβ

= K

√
(τατβ sα+β + τβ sβ + 1)(τγ sγ + 1)

τβ sβ
. (13.52)

Fractional TEs (13.14) and (13.16), corresponding to the parallel and
series topologies, are obtained by the Laplace transform inversion of frac-
tional TEs in the complex domain (13.46) and (13.47), using the Laplace
transform of fractional derivative (13.50), while the equivalent forms of the
fractional TEs (13.15) and (13.17) are obtained by dividing Eqs. (13.46)
and (13.47) by sβ and using the inverse Laplace transform of fractional
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derivative and (13.50) integral

L
[

0I
ξ
t f (t)

]
(s) = 1

sξ
F(s).

13.4. Transmission line in transient regime

A transient regime of the hereditary TL is considered for the semiin-
finite line x ∈ [0,∞), which initially has neither voltage nor current, but is
however forced by the external voltage applied at its boundary. The tran-
sient regime analysis of the TL corresponding to the parallel topology is
performed in [8], where the numerical examples illustrating the impulse
responses are also provided and the part of these results is presented in this
section.

13.4.1 Response in transient regime
The transient regime of the TL corresponds to the initial boundary value
problem on the half axis for the system of fractional TEs (13.31), (13.32),
coupled either with (13.33), in the case of parallel topology, or with (13.34),
in the case of series topology, rewritten in terms of the fractional time
constants as

∂

∂x
i (x, t) = −G

(
τγ 0D

γ
t + 1

)
u (x, t) , (13.53)

∂

∂x
u (x, t) = −R τα 0Dα

t i (x, t) − u′
RCβ

(x, t) , (13.54)

coupled with

R i (x, t) =
(
1 + τβ 0D

β
t

)
u′

RCβ
(x, t) (13.55)

in the case of parallel topology and with

τβ 0D
β
t u′

RCβ
(x, t) = R

(
τβ 0D

β
t + 1

)
i (x, t) (13.56)

in the case of series topology, subject to zero initial

i(x,0) = 0, u(x,0) = 0, and u′
RCβ

(x,0) = 0, x ∈ [0,∞) (13.57)

and boundary conditions

u (0, t) = u0 (t) and lim
x→∞ u (x, t) = 0, t > 0. (13.58)
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Equivalently, one may consider either the fractional TE (13.11) correspond-
ing to the parallel topology, or TE (13.13) corresponding to the series
topology, subject to initial condition

u(x,0) = 0, x ∈ [0,∞) ,

and boundary conditions given by (13.58).
Applying the Laplace transform to the system of fractional TEs (13.53),

(13.54), with either (13.55), or (13.56), one has

∂

∂x
I (x, s) = −G

(
τγ sγ + 1

)
U (x, s) ,

∂

∂x
U (x, s) = −R τα sαi (x, s) − U ′

RCβ
(x, s) ,

coupled either with

R I (x, s) = (
1 + τβ sβ

)
I ′
RCβ

(x, s) ,

or with

τβ sβU ′
RCβ

(x, s) = R
(
τβ sβ + 1

)
I (x, s) ,

yielding, when reduced to a single equation expressed in terms of volt-
age U , either

∂2

∂x2 U (x, s) − K2 (τατβ sα+β + τα sα + 1)(τγ sγ + 1)

τβ sβ + 1
U(x, s) = 0, (13.59)

in the case of parallel topology, or

∂2

∂x2 U (x, s) − K2 (τατβ sα+β + τβ sβ + 1)(τγ sγ + 1)

τβ sβ
U(x, s) = 0, (13.60)

in the case of series topology.
Since the system of fractional TEs (13.53), (13.54), coupled either

with (13.55), in the case of parallel topology, or with (13.56), in the case of
series topology, is equivalent to the fractional TE (13.14) or (13.16), by the
application of the Laplace transform to (13.14) one reobtains the fractional
TE in the complex domain (13.59), corresponding to the parallel topology,
while the Laplace transform applied to Eq. (13.16) leads to Eq. (13.60),
corresponding to the series topology, which is written in a unified way
as (13.43), with PC given by (13.51) for the parallel topology or by (13.52)
for the series topology.
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Solution of the ordinary differential equations with the constant co-
efficients (13.59) and (13.60), complying with the boundary condi-
tions (13.58), is

U (x, s) = U0 (s)e−kp/s(s)x, (13.61)

with kp/s already given by (13.51) and (13.52), assuming that model pa-
rameters are chosen such that arg k2

p/s (s) ∈ (−π,π) for all Re s > 0 guaran-
teeing that Re kp/s (s) > 0 for Re s > 0. The condition arg k2

p (s) ∈ (−π,π) for
Re s > 0 is satisfied in the case of the parallel topology either if α +γ ∈ (0,1]

or if β = γ and τβ < τγ , since the real and imaginary parts of k2
p , obtained

as

Rek2
p (ρ,ϕ) = K2∣∣τβρβeiβϕ + 1

∣∣2
(
τατ

2
β τγ ρα+2β+γ cos ((α + γ )ϕ)

+ τατ
2
β ρα+2β cos (αϕ)

+ 2τατβτγ ρα+β+γ cos (βϕ) cos ((α + γ )ϕ)

+ 2τατβ ρα+β cos (αϕ) cos (βϕ) + τατγ ρα+γ cos ((α + γ )ϕ)

+ τβτγ ρβ+γ cos ((β − γ )ϕ) + τα ρα cos (αϕ)

+ τβ ρβ cos (βϕ) + τγ ργ cos (γ ϕ) + 1
)
, (13.62)

Imk2
p (ρ,ϕ) = K2∣∣τβρβeiβϕ + 1

∣∣2
(
τατ

2
β τγ ρα+2β+γ sin ((α + γ )ϕ)

+ τατ
2
β ρα+2β sin (αϕ) + 2τατβτγ ρα+β+γ cos (βϕ) sin ((α + γ )ϕ)

+ 2τατβ ρα+β sin (αϕ) cos (βϕ) + τατγ ρα+γ sin ((α + γ )ϕ)

− τβτγ ρβ+γ sin ((β − γ )ϕ) + τα ρα sin (αϕ)

− τβ ρβ sin (βϕ) + τγ ργ sin (γ ϕ)
)
,

by substituting s = ρeiϕ, ρ ∈ (0,∞), ϕ ∈ (−π
2 , π

2

)
in (13.51), yield that all

terms in (13.62) are positive for ϕ ∈ (−π
2 , π

2

)
if α +γ ∈ (0,1], since α,β, γ ∈

(0,1) and also, if β = γ and τβ < τγ , then Im k2
p ≥ 0 for ϕ ∈ [

0, π
2

)
(and also

Imk2
p < 0 for ϕ ∈ (−π

2 ,0
)
). Note that the condition β = γ implies that the

capacitances in the series and shunt branch are of the same order, while
τβ < τγ means that the fractional time relaxation in the series is smaller than
in its shunt branch, supporting the fact that the series branch is conductive,
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while the shunt branch is insulative. The condition arg k2
s (s) ∈ (−π,π) for

Re s > 0 is satisfied in the case of the series topology if α + γ ∈ (0,1], since
the substitution s = ρeiϕ, ρ ∈ (0,∞), ϕ ∈ (−π

2 , π
2

)
in (13.52) as a result gives

Re k2
s (ρ,ϕ) = K2

(
τατγ ρα+γ cos ((α + γ )ϕ) + τα ρα cos (αϕ) + τγ ργ cos (γ ϕ)

+ 1 + τγ

τβ

ργ−β cos ((γ − β)ϕ) + 1
τβρβ

cos (βϕ)
)
, (13.63)

Im k2
s (ρ,ϕ) = K2

(
τατγ ρα+γ sin ((α + γ )ϕ) + τα ρα sin (αϕ) + τγ ργ sin (γ ϕ)

+ τγ

τβ

ργ−β sin ((γ − β)ϕ) − 1
τβρβ

sin (βϕ)
)
,

where all terms in (13.63) are positive for ϕ ∈ (−π
2 , π

2

)
if α + γ ∈ (0,1].

Nevertheless, the geometrical considerations of k2
p and k2

s (see (13.51)
and (13.52)) imply that the condition Re kp/s (s) > 0 for Re s > 0 for the
validity of the solution (13.61) is satisfied for the whole range of the model
parameters: α,β, γ ∈ (0,1) and K, τα, τβ, τγ > 0.

Inverting the Laplace transform in (13.61), the voltage in the transient
regime as a solution to the system of fractional TEs (13.53), (13.54), cou-
pled either with (13.55), in the case of parallel topology, or with (13.56), in
the case of series topology, subject to (13.57) and (13.58), takes the form

u (x, t) = u0 (t) ∗ uδ (x, t) , (13.64)

where the impulse response (inversion of the transfer function [TF]),
i.e., the voltage response to the boundary voltage assumed as a Dirac
δ-distribution, is obtained in Appendix 13.A.1 by inverting the Laplace
transform by the definition

uδ (x, t) = L−1
[
e−kp/s(s)x

]
(x, t) = 1

2π i

∫
Br

e−kp/s(s)xestds, (13.65)

with Br being the Bromwich path, in the following forms:

u(I,II)
δ (x, t) = 1

π

∫ ∞

0
sin

(
Im kp/s

(
ρeiπ)

x
)

e−(
ρt+Re kp/s

(
ρeiπ )

x
)
dρ, (13.66)

u(III)
δ (x, t) = 1

π

∫ ∞

0
sin

(
ρt sinϕ0 − Imkp/s

(
ρeiϕ0

)
x + ϕ0

)
× e−(

ρt|cosϕ0|+Re kp/s
(
ρeiϕ0

)
x
)
dρ, (13.67)
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depending on the nature of branching points (BPs) of the TF e−kp/s(s)x, other
than s = 0, i.e., on their number and position in the complex plane. The
impulse responses have the same form, given by (13.66), if the TF has either
no BPs or a negative real branch point, while the impulse response is of the
form (13.67) if the TF has a pair of complex conjugated BPs s0 = ρ0eiϕ0 and
s̄0 having a negative real part.

BPs of the TF e−kp/s(s)x, which are actually the BPs of kp and ks, given
by (13.51) and (13.52), are obtained as the zeros of numerators of PCs
squared, since terms sβ + 1

τβ
and sγ + 1

τγ
, appearing in the denominator

and numerator of PCs, respectively, do not have zeros in the first Riemann
sheet, i.e., for arg s ∈ (−π,π), and s = 0 is a BP of function sξ , for ξ being
noninteger, so the BPs of kp and ks are obtained as solutions of

sα+β + 1
τβ

sα + 1
τατβ

= 0 and sα+β + 1
τα

sβ + 1
τατβ

= 0. (13.68)

Eq. (13.68)1 does not have zeros if α + β ∈ (0,1], while if α + β ∈ (1,2),
then the sign of

fp
(
α,β, τα, τβ

) =
(

− sin (απ)

τβ sin ((α + β)π)

) α
β sin (βπ)

τβ sin ((α + β)π)
+ 1

τατβ

determines the nature of its zeros: if fp < 0, then (13.68)1 has no zeros for
arg s ∈ (−π,π); if fp = 0, then (13.68)1 has one negative real zero; if fp > 0,
then (13.68)1 has a pair of complex conjugated zeros with negative real
part. Since Eqs. (13.68)1 and (13.68)2 are of the same form, the function

fs
(
α,β, τα, τβ

) =
(

− sin (βπ)

τα sin ((α + β)π)

) β
α sin (απ)

τα sin ((α + β)π)
+ 1

τατβ

determines the nature of zeros of Eq. (13.68)2 with the same conditions
as in the previous case. The proof of this claim is provided in Section 4.2
of [8].

13.4.2 Numerical examples
Considering three different types of voltage forcing at the boundary (im-
pulse, step, and harmonic), the voltage responses of the TL are qualitatively
and quantitatively analyzed through the numerical examples in the case of
parallel topology of the elementary circuit. The voltage responses are ob-
tained as solutions to the time-fractional model of TL, represented by the
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system of fractional TEs (13.53)–(13.55), subject to initial and boundary
conditions (13.57) and (13.58), or equivalently represented by the frac-
tional TE (13.14), subject to zero initial and boundary conditions (13.58),
with the explicit form of voltage responses given by (13.64) as a convolu-
tion of the external voltage forcing and impulse response, either represented
by (13.66) when kp, given by (13.51), except for s = 0 has no other BPs,
as well as when it has one negative real BP, or represented by (13.67)
when PC has a pair of complex conjugated BPs with negative real part.
The impulse responses are calculated in Appendix 13.A.1 by inverting the
Laplace transform analytically using the contour integration in the complex
plane.

13.4.2.1 Time evolution and space profiles of impulse response

Fig. 13.5 presents time evolution of the impulse response, depending on the
nature of PC’s BPs, which can be aperiodic if kp has no other BPs than s = 0
(see Fig. 13.5a), critically aperiodic if kp has a negative real BP in addition
to s = 0, as depicted in Fig. 13.5b, and damped oscillatory if kp, except for
s = 0, has a pair of complex conjugated BPs, as illustrated in Fig. 13.5c. The
responses obtained through the analytical expressions (13.66) and (13.67),
depicted by solid lines, are in perfect agreement with the responses depicted
by dots, which are calculated by de Hoog’s method of numerical Laplace
transform inversion (see [11]).

Fig. 13.6 illustrates two distinct types of disturbance propagation:
diffusion- and wave-like behavior of the impulse response, which occur
if the highest order of fractional differentiation in the fractional TE corre-
sponding to the parallel topology (13.15) is α+γ ∈ (0,1) and α+γ ∈ (1,2),
respectively. Diffusion- and wave-like impulse responses differ in their space
profiles, so that for the former one, as time passes, disturbance does not
propagate or propagates in the small spatial domain (see Figs. 13.6a, 13.6c,
and 13.6e), while for the latter one there is disturbance propagation on the
large spatial scale during time, as depicted in Figs. 13.6b, 13.6d, and 13.6f.

If the highest order of fractional differentiation in TE (13.15) is α + γ ∈
(0,1), the critically aperiodic impulse response, as obvious from Fig. 13.6a,
has a diffusive character, since its space profiles display a gradual decrease
in peak height, while their position gradually shifts to the higher value of
coordinate still being confined to a small spatial scale. One would expect
that peaks of the aperiodic impulse response shift on an even smaller scale,
while their height decreases. The damped oscillatory impulse response dis-
plays peculiar, yet diffusive type, behavior, since after some time, a negative
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Figure 13.5 Time evolution of the impulse response at discrete positions for α = 5
6 and

β = γ = 2
3 .

peak emerges alongside the positive one, as clear from Fig. 13.6c, and the
negative peak progressively gains height while the positive peak loses height
until it completely vanishes. Further time evolution of the negative peak is
such that its height also decreases and it utterly vanishes as well, as illustrated
in Fig. 13.6e. As time passes, both positive and negative peaks eventually
disappear, while the whole process is spatially confined; hence the impulse
response’s behavior is classified as diffusion-like.

On the other hand, if the highest order of fractional differentiation in
TE (13.15) is α +γ ∈ (1,2), the aperiodic impulse response from Fig. 13.6b
is clearly wave-like, due to the peak’s large-scale shift during time, while
the peak’s loss of height and gain in width is due to the dissipativity prop-
erties of the hereditary TL. Again, the critically aperiodic impulse response
is expected to have the same character as the aperiodic one. The space
profiles of the damped oscillatory impulse response, shown in Fig. 13.6d,
have a negative peak emerging alongside the positive one, so that as time
passes the negative peak gains height, while the positive one loses height,
until the secondary positive peak appears, which gradually increases, while
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Figure 13.6 Diffusion-like space profiles of the impulse response at discrete time in-
stants for α = 2

3 , β = 5
6 , and γ = 1

4 .

the primary positive and negative peaks’ heights decrease, as illustrated in
Fig. 13.6f. It is also evident that all peaks propagate in space during time;
hence the impulse response’s behavior is classified as wave-like.

13.4.2.2 Time evolution of step response

Fig. 13.7 presents plots of the TL’s voltage response to voltage forcing at its
boundary, taken in the form of a Heaviside step function, implying that the
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Figure 13.7 Time evolution of step response at discrete positions.

response is either a monotonic or a damped oscillatory function increasing
from zero to a finite value of voltage depending on the spatial coordinate,
as predicted by the Tauber initial and final value theorem

u(x,0) = lim
s→∞ sU(x, s) = 0 and lim

t→∞ u(x, t) = lim
s→0

sU(x, s) = e−Kx,

since by (13.61) one has sU(x, s) = e−kp(s)x as the Laplace transform of the
step response, with kp given by (13.51). The monotonic character of the
step response is obtained in Figs. 13.7a–13.7c either if α + β ∈ (0,1) or if
α +β ∈ (1,2) and PC in addition to s = 0 may only have a negative real BP,
while the response displays a damped oscillatory character if α + β ∈ (1,2)

and PC has a pair of complex conjugated BPs in addition to s = 0, as il-
lustrated in Fig. 13.7d. Interestingly, the height of the voltage maximum
is lower than the asymptotic value of voltage for large time. The step re-
sponses, calculated according to the analytical expressions and depicted by
solid lines, are in perfect agreement with the responses depicted by dots,
obtained through the fixed Talbot algorithm for numerical inversion of the
Laplace transform (see [1]).
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Figure 13.8 Space profiles of the response to harmonic function u0(t) = U0 cos(ωt) at
discrete time instants in the case of complex conjugated branch points of kp for U0 = 1,
ω = 100, α = 2

3 , β = 5
6 , γ = 1

4 , τα = 0.01, τβ = 1
3 , τγ = 1, and K = 10.

13.4.2.3 Space profiles of harmonic response
Assuming harmonic voltage forcing at the boundary of TL in the form

u0(t) = U0 cos(ωt),

the space profiles of the voltage response are shown in Figs. 13.8 and 13.9
for time instants belonging to the first two periods of the forcing. It is evi-
dent that there are voltage oscillations in time having decreasing amplitudes
as the spatial coordinate increases, as well as that there are nonpropagating
space profiles, since the highest order of the fractional TE α + γ ∈ (0,1)

implies the diffusive character of the response (see Fig. 13.8) and that there
are propagating space profiles, as depicted in Fig. 13.9, since the highest
order of TE α + γ ∈ (1,2) implies the wave type of the response.

13.5. Transmission line in steady-state regime and its
frequency characteristics

In order to examine the hereditary TL in the steady-state regime,
as well as to analyze its frequency characteristics, a transmission line is
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Figure 13.9 Space profiles of the response to harmonic function u0(t) = U0 cos(ωt) at
discrete time instants in the case of complex conjugated branch points of kp for U0 = 1,
ω = 100, α = 5

6 , β = γ = 2
3 , τα = 0.01, τβ = 1

4 , τγ = 1, and K = 10.

subjected to harmonic voltage forcing at its boundary, i.e., the fractional
TEs (13.14) and (13.16), corresponding to the parallel and series topologies
of the elementary circuit, are subject to the boundary condition (13.58)1
assumed as

u0(t) = U0 cos(ωt) = Re
(
U0 eiωt) , (13.69)

where ω is the angular frequency, in addition to zero initial and boundary
condition (13.58)2.

13.5.1 Response in steady-state regime
Aiming to derive the steady-state response of the TL from the transient one,
rather than using the solution (13.64) to TEs (13.14) and (13.16), expressed
in terms of convolution of boundary condition and impulse response, the
voltage response in the complex domain (13.61), yielding

U (x, s) = U0
s

s2 + ω2 e−kp/s(s)x, (13.70)

by (13.69), is inverted in Appendix 13.A.2 by definition of the inverse
Laplace transform using the Cauchy residues theorem and contour integra-
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tion, so that the harmonic voltage response is obtained as

u (x, t) = L−1 [U (x, s)] (x, t) = U0

2π i

∫
Br

s
s2 + ω2 e−kp/s(s)xestds, (13.71)

u(I,II) (x, t) = U0

2π i

∫ ∞

0

(
e−kp/s

(
ρeiπ )

x − e−kp/s
(
ρe−iπ )

x
) ρe−ρt

ρ2 + ω2 dρ

+ U0 e−Rekp/s(iω)x cos
(
ωt − Im kp/s (iω) x

)
, (13.72)

u(III) (x, t) = U0

2π i

∫ ∞

0

(
e−kp/s

(
ρeiϕ0

)
xei(2ϕ0+ρt sinϕ0)

ρ2e2iϕ0 + ω2

− e−kp/s
(
ρe−iϕ0

)
xe−i(2ϕ0+ρt sinϕ0)

ρ2e−2iϕ0 + ω2

)
e−ρt|cosϕ0|ρdρ

+ U0 e−Rekp/s(iω)x cos
(
ωt − Im kp/s (iω) x

)
, (13.73)

with Br being the Bromwich path. Again, the BPs of TF e−kp/s(s)x determine
the form of the solution, so that (13.72) is obtained either if TF has no BPs
or if it has a negative real BP in addition to s = 0, while the solution takes
the form (13.73) if TF, except for s = 0, has a pair of complex conjugated
BPs s0 = ρ0eiϕ0 and s̄0 having a negative real part. The steady-state voltage
response of the TL becomes

uss (x, t) = U0 e−Rekp/s(iω)x cos
(
ωt − Im kp/s (iω)x

)
as t → ∞, (13.74)

assuming that the integrals in harmonic responses, given by (13.72)
and (13.73), actually corresponding to the transient regime, can be ap-
proximated by zero for time large enough.

Traditionally, the steady-state response is obtained by considering the
TF (impulse response in the complex domain), obtained by rewrit-
ing (13.61) as

Wp/s(x, s) = U(x, s)
U0(s)

= e−kp/s(s)x, (13.75)

which, after substitution s = iω and separation of real and imaginary parts
in PC, yields the TF modulus and argument in the form

∣∣Wp/s (x,ω)
∣∣ = e−Rekp/s(ω)x, i.e.,∣∣Wp/s (x,ω)

∣∣
dB = −20x Rekp/s (ω) log e, and (13.76)

arg Wp/s (x,ω) = −x Im kp/s (ω) , (13.77)
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with the notation f (ω) = f (s)
∣∣
s=iω used, so that the steady-state response to

harmonic forcing

U (t)
0 (ω) = U0 eiωt

is

uss (x, t) = ReU (t)(x,ω) = U0 e−Rekp/s(ω)x cos
(
ωt − Imkp/s (ω)x

)
,

since U (t) is obtained by (13.75), (13.76), and (13.77) as

U (t)(x,ω) = U (t)
0 (ω)Wp/s(x,ω) = U0

∣∣Wp/s (x,ω)
∣∣ei

(
ωt+arg Wp/s(x,ω)

)

= U0 e−Rekp/s(ω)xei
(
ωt−Im kp/s(ω)x

)
.

Note that the TF Wp/s in the form (13.75) can be directly obtained
from the fractional TEs in the complex domain (13.46) and (13.47), cor-
responding to the parallel and series topologies of the elementary circuit,
i.e., from (13.43)1 with kp/s given by (13.51) and (13.52), as a solution
complying with the boundary conditions (13.58).

Figs. 13.10 and 13.11 illustrate the time evolution of harmonic re-
sponses, or more precisely responses’ transitions from transient to the
steady-state regime, since the plots from figures are respectively obtained
according to expressions (13.72) and (13.73), representing the solution to
the fractional TE (13.14), corresponding to the parallel topology of the el-
ementary circuit, in the case of harmonic boundary forcing taken in the
form (13.69). It is clear that the harmonic responses quite quickly (pre-
sumably after only one period) enter the steady state, with the shape of the
transient regime depending on the existence of TF’s BPs other than s = 0,
so that if there are no other BPs, the response resembles the steady-state
response from the very beginning (see Fig. 13.10), while if there is a pair
of complex conjugated BPs, the response has an additional maximum prior
to maxima and minima originating from the harmonic forcing, as clear
from Fig. 13.11. Moreover, the harmonic response resembles the step re-
sponse for small time (compare Figs. 13.7b and 13.10), as well as Figs. 13.7d
and 13.11, since initially both (causal) harmonic and step forcing jump to
the same value. The decrease of amplitudes and the increase of the phase de-
lay as the position increases is clearly noticeable from Figs. 13.10 and 13.11,
since the steady-state response (13.74) predicts the exponential decrease of
amplitude and the linear decrease of phase angle as the spatial coordinate
increases.
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Figure 13.10 Time evolution of the response to harmonic function u0(t) = U0 cos(ωt)
at discrete positions in the case when kp has no branch points for U0 = 1, ω = 5, α = 5

6 ,
β = γ = 2

3 , τα = 1, τβ = 1
4 , τγ = 1, and K = 1.

13.5.2 Frequency characteristics and their asymptotic

Considering the hereditary TL subject to the harmonic boundary voltage

forcing (13.69), the dependence of TF (13.75) on frequency is analyzed,

i.e., frequency characteristics of the TF modulus and argument (13.76)2
and (13.77), which are linear functions of the spatial coordinate, while

their frequency dependence is governed by the topology of the elementary

circuit through kp and ks, defined by (13.51) and (13.52). The frequency

analysis of the TL corresponding to parallel and series topologies is per-

formed in [9], where the numerical examples illustrating the behavior of

TF modulus and argument are also provided and the part of these results is

presented in this section.

Modulus (13.76) and argument (13.77) of the TF require real and

imaginary parts of PC expressed in terms of angular frequency, which are

obtained by
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Figure 13.11 Time evolution of the response to harmonic function u0(t) = U0 cos(ωt)
at discrete positions in the case of complex conjugated branch points of kp for U0 = 1,
ω = 5, α = 5

6 , β = γ = 2
3 , τα = 0.01, τβ = 1

4 , τγ = 1, and K = 10.

Re kp/s (ω) =

√√√√∣∣∣k2
p/s(ω)

∣∣∣ + Re k2
p/s (ω)

2
and

Im kp/s (ω) = sgn
(

Im k2
p/s(ω)

)
√√√√∣∣∣k2

p/s(ω)

∣∣∣ − Rek2
p/s (ω)

2
(13.78)

from the square of PC, yielding in the case of parallel topology

Re k2
p (ω) = K2∣∣τβ(iω)β + 1

∣∣2
(
τατ

2
β τγ ωα+2β+γ cos

(α + γ )π

2

+ τατ
2
β ωα+2β cos

απ

2
+ 2τατβτγ ωα+β+γ cos

βπ

2
cos

(α + γ )π

2

+ 2τατβ ωα+β cos
απ

2
cos

βπ

2
+ τατγ ωα+γ cos

(α + γ )π

2

+ τβτγ ωβ+γ cos
(β − γ )π

2
+ τα ωα cos

απ

2

+ τβ ωβ cos
βπ

2
+ τγ ωγ cos

γπ

2
+ 1

)
, (13.79)
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Im k2
p (ω) = K2∣∣τβ(iω)β + 1

∣∣2
(
τατ

2
β τγ ωα+2β+γ sin

(α + γ )π

2

+ τατ
2
β ωα+2β sin

απ

2
+ 2τατβτγ ωα+β+γ cos

βπ

2
sin

(α + γ )π

2

+ 2τατβ ωα+β sin
απ

2
cos

βπ

2
+ τατγ ωα+γ sin

(α + γ )π

2

− τβτγ ωβ+γ sin
(β − γ )π

2
+ τα ωα sin

απ

2
− τβ ωβ sin

βπ

2

+ τγ ωγ sin
γπ

2

)
, (13.80)

and in the case of series topology

Re k2
s (ω) = K2

(
τατγ ωα+γ cos

(α + γ )π

2
+ τα ωα cos

απ

2
+ τγ ωγ cos

γπ

2

+ 1 + τγ

τβ

ωγ−β cos
(γ − β)π

2
+ 1

τβωβ
cos

βπ

2

)
, (13.81)

Im k2
s (ω) = K2

(
τατγ ωα+γ sin

(α + γ )π

2
+ τα ωα sin

απ

2
+ τγ ωγ sin

γπ

2

+ τγ

τβ

ωγ−β sin
(γ − β)π

2
− 1

τβωβ
sin

βπ

2

)
. (13.82)

Writing explicitly PC’s real and imaginary parts, determined by (13.78)
using (13.79)–(13.82), makes sense only in the limiting cases of low and
high frequencies, as done in the sequel.

Frequency characteristics of the TF modulus and argument, according
to (13.76)2 governed by the real part of kp and ks, given by (13.78)1, and
according to (13.77) governed by the imaginary part of kp and ks, given
by (13.78)2, respectively, are depicted in Fig. 13.12 for different cases of the
number and nature of PCs’ BPs.

The monotonicity properties of the TF modulus’ frequency character-
istics for the parallel topology depend on the nature of PCs’ BPs, so that
if kp has a pair of complex conjugated BPs, the frequency characteristics
are a nonmonotonic function having both minimum and maximum, and
otherwise it is a monotonically decreasing function (compare Figs. 13.12c
and 13.12e with Fig. 13.12a). On the other hand, for the series topology,
the TF modulus’ frequency characteristics do not depend on the number
and nature of PCs’ BPs, since they have only one maximum in each case
(see Figs. 13.12a, 13.12c, and 13.12e).

Contrary to the frequency characteristics of the TF modulus for the
parallel topology, a pair of complex conjugated BPs of kp does not guar-
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Figure 13.12 Frequency characteristics corresponding to parallel and series topolo-
gies, depicted by solid and dashed lines, respectively, at x = 1, for K = 1, α = 0.9,
β = 0.85, γ = 1

3 .

antee the nonmonotonicity of the argument’s characteristics (compare
Figs. 13.12d and 13.12f). Similarly to the frequency characteristics of the
TF argument for the series topology, the argument’s characteristics do
not depend on the existence of BPs of ks, since the characteristics are
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monotonically decreasing functions in each case (see Figs. 13.12b, 13.12d,
and 13.12f).

In the low frequency limit, i.e., as ω → 0, the real and imaginary parts
of the square of kp, given by (13.79) and (13.80), become

Re k2
p (ω) ∼ K2

(
1 + τα ωα cos

απ

2
− τβ ωβ cos

βπ

2
+ τγ ωγ cos

γπ

2

− τ 2
β ω2β

(
1 − 2 cos2 βπ

2

)
+ τατγ ωα+γ cos

(α + γ )π

2

− τβτγ ωβ+γ cos
(β + γ )π

2

)
(13.83)

and

Im k2
p (ω) ∼ K2

(
τα ωα sin

απ

2
− τβ ωβ sin

βπ

2
+ τγ ωγ sin

γπ

2

)
, (13.84)

using approximation

1∣∣τβ(iω)β + 1
∣∣2 ∼ 1 − 2τβ ωβ cos

βπ

2
− τ 2

β ω2β

(
1 − 4 cos2 βπ

2

)
,

calculated by

(1 + x)ξ ∼ 1 + ξx + ξ (ξ − 1)

2
x2, for |x| � 1. (13.85)

Further, (13.83) and (13.84) are used to calculate

∣∣∣k2
p(ω)

∣∣∣ =
√

Re2 k2
p (ω) + Im2 k2

p (ω)

∼ K2
(

1 + τα ωα cos
απ

2
− τβ ωβ cos

βπ

2
+ τγ ωγ cos

γπ

2

+ 1
2
τ 2
α ω2α sin2 απ

2
− 1

2
τ 2
β ω2β

(
1 − 3 cos2 βπ

2

)

+ 1
2
τ 2
γ ω2γ sin2 γπ

2
− τατβ ωα+β sin

απ

2
sin

βπ

2

+ τατγ ωα+γ

(
cos

(α − γ )π

2
− sin

απ

2
sin

γπ

2

)

−τβτγ ωβ+γ

(
cos

(β − γ )π

2
− sin

βπ

2
sin

γπ

2

))
,
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with approximation (13.85) used again, so that, by (13.78), the PC’s real
and imaginary parts in the low frequency limit are

Re kp (ω) ∼ K and

Im kp (ω) ∼ K sgn
(

Imk2
p(ω)

) √
2

2

(
1
2
τ 2
α ω2α sin2 απ

2
+ 1

2
τ 2
β ω2β sin2 βπ

2

+ 1
2
τ 2
γ ω2γ sin2 γπ

2
− τατβ ωα+β sin

απ

2
sin

βπ

2

+ τατγ ωα+γ sin
απ

2
sin

γπ

2
− τβτγ ωβ+γ

) 1
2

∼ 1
2

K sgn
(

Imk2
p(ω)

)
τξ ωξ sin

ξπ

2
,

with ξ = min {α,β, γ } and sgn
(

Imk2
p(ω)

)
=

{
1, if ξ ∈ {α,γ } ,

−1, if ξ = β,
due

to (13.84).

Thus, in the case of the parallel topology the TF modulus and argu-
ment (13.76) and (13.77) in the low frequency limit are

Wp (x,ω) ∼ e−xK , i.e.,
∣∣Wp (x,ω)

∣∣
dB ∼ −20xK log e, and (13.86)

arg Wp (x,ω) ∼ −1
2

sgn
(

Imk2
p(ω)

)
xωξKτξ sin

ξπ

2
. (13.87)

Clearly, the real and imaginary parts of the square of ks, given by (13.81)
and (13.82), in the low frequency limit are

Re k2
s (ω) ∼ K2

τβ

1
ωβ

cos
βπ

2
and Imk2

s (ω) = −K2

τβ

1
ωβ

sin
βπ

2
,

implying
∣∣k2

s (ω)
∣∣ ∼ K2

τβ

1
ωβ , yielding

Reks (ω) ∼ K√
τβ ωβ

cos
βπ

4
and Im ks (ω) ∼ − K√

τβ ωβ
sin

βπ

4

by (13.78); hence in the case of series topology the TF modulus and argu-
ment (13.76) and (13.77) in the low frequency limit are

Ws (x,ω) ∼ e
− x

ωβ/2
K√
τβ

cos βπ
4 , i.e.,

|Ws (x,ω)|dB ∼ −20
x

ω
β
2

K√
τβ

cos
βπ

4
log e, and (13.88)
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arg Ws (x,ω) ∼ x

ω
β
2

K√
τβ

sin
βπ

4
. (13.89)

In the high frequency limit, i.e., as ω → ∞, for both parallel and series
topologies, the real and imaginary parts of the square of kp and ks, given
by (13.79)–(13.82), are

Rek2
p/s (ω) ∼ K2τατγ ωα+γ cos

(α + γ )π

2
and

Im k2
p/s (ω) ∼ K2τατγ ωα+γ sin

(α + γ )π

2
,

implying
∣∣k2

s (ω)
∣∣ ∼ K2τατγ ωα+γ , yielding

Re kp/s (ω) ∼ K
√

τατγ ωα+γ cos
(α + γ )π

4
and

Im kp/s (ω) ∼ K
√

τατγ ωα+γ sin
(α + γ )π

4

by (13.78); hence, in the case of both topologies the TF modulus and
argument (13.76) and (13.77) in the high frequency limit are

Wp/s (x,ω) ∼ e−xω(α+γ )/2 K√
τατγ cos (α+γ )π

4 , i.e.,∣∣Wp/s (x,ω)
∣∣
dB ∼ −20xω

α+γ
2 K

√
τατγ cos

(α + γ )π

4
log e, and (13.90)

arg Wp/s (x,ω) ∼ −xω
α+γ

2 K
√

τατγ sin
(α + γ )π

4
. (13.91)

In conclusion, for the parallel topology of the TL, the signal propa-
gation is enabled in the low frequency limit, opposing the case of series
topology in which signal propagation is disabled, as can be respectively
seen from the TF modulus (13.86)1, which is not frequency-dependent,
and (13.88)1, which tends to zero. In the high frequency limit, the signal
propagation is disabled in the cases of both topologies because of the TF
modulus (13.90)1 tending to zero. Taking the logarithm of TF arguments
in the low frequency limit (13.87) and (13.89), as well as of the TF argu-
ment in the high frequency limit (13.91), one obtains log |arg W | as a linear
function of logω, given by

log
∣∣arg Wp (x,ω)

∣∣ ∼ ξ logω + log

(
1
2

xKτξ sin
ξπ

2

)
and

log |arg Ws (x,ω)| ∼ −β

2
logω + log

(
x

K√
τβ

sin
βπ

4

)
, as ω → 0, (13.92)
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log
∣∣arg Wp/s(x,ω)

∣∣
∼ α + γ

2
logω + log

(
xK

√
τατγ sin

(α + γ )π

4

)
, as ω → ∞, (13.93)

so that in the low frequency limit, according to (13.92), the slope of
log |arg W | determines the lowest order of fractional differentiation ξ =
min {α,β, γ } in the case of parallel topology and fractional differentiation
order β, corresponding to the series branch capacitor, in the case of series
topology, while in the high frequency limit, according to (13.93), the slope
of log |arg W | determines the highest fractional differentiation order of the
fractional TEs (13.14) and (13.16).

Frequency characteristics of TF modulus and argument, combined with
their low- and high-frequency asymptotes, are presented in Fig. 13.13. The
fact that the TL corresponding to the parallel topology models the low-pass
filter (voltage propagation is enabled for low frequencies and disabled for
high frequencies), while the line corresponding to the series topology mod-
els the band-pass filter (voltage propagation is enabled for medium frequen-
cies and disabled for both low and high frequencies), is obvious from the TF
modulus’ frequency characteristics, depicted in Fig. 13.13a. The low- and
high-frequency asymptotes of both modulus and argument, calculated by
(13.86)2, (13.88)2, and (13.92) as ω → 0, as well as by (13.90) and (13.93)
as ω → ∞, agree very well with the frequency characteristics of modulus
and argument calculated by (13.76)2 and (13.77), with Re kp/s and Im kp/s

given by (13.78). It is clear from Fig. 13.13b that the logarithm of the TF
argument behaves as a linear function in the low and high frequency limit.

Figure 13.13 Frequency characteristics corresponding to parallel and series topolo-
gies, depicted by solid and dashed lines, respectively, along with their asymptotic be-
havior, depicted by dots, at x = 1, for K = 1, α = 0.9, β = 0.85, γ = 1

3 , τα = 0.05,
τβ = 0.1, and τγ = 1.
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Appendix 13.A.

13.A.1 Calculation of impulse response
In order to calculate the impulse response by definition of the inverse
Laplace transform (13.65), the Cauchy integral theorem

∮
�(i)

e−kp/s(s)xestds = 0, with i ∈ {I, II, III} , (13.A.94)

is used, where the contour �(i), containing the Bromwich path Br, is cho-
sen differently, as shown in Fig. 13.14, ensuring that the TF e−kp/s(s)x is
analytic within the domain encircled by the contour, so that the contour
�(I) corresponds to the case when kp/s has no BPs other than s = 0, contour
�(II) is chosen if kp/s has a negative real BP s0, and finally the contour �(III)

is used if kp/s has complex conjugated BPs s0 = ρ0eiϕ0 and s̄0 having a neg-
ative real part. Impulse responses of the TL corresponding to the parallel
topology are calculated in [8] and here calculation of the impulse responses
is extended to the case of series topology as well.

The impulse response calculation is performed only for the case of
PC’s complex conjugated BPs s0 = ρ0eiϕ0 and s̄0, since the other two cases
correspond to ϕ0 = π and therefore the contour in the Cauchy integral
theorem (13.A.94) is chosen to be �(III) from Fig. 13.14c.

The integrals along contours �3a ∪ �3b (parameterized by s = ρeiϕ0 ,
ρ ∈ (r, ρ0 − r) ∪ (ρ0 + r,R)) and �5a ∪ �5b (parameterized by s = ρe−iϕ0 ,
ρ ∈ (r, ρ0 − r) ∪ (ρ0 + r,R)) read

lim
R→∞,

r→0

∫
�3a∪�3b

e−kp/s(s)xestds =
∫ 0

∞
e−kp/s

(
ρeiϕ0

)
xeρteiϕ0 eiϕ0dρ

= −
∫ ∞

0
e−kp/s

(
ρeiϕ0

)
xei(ϕ0+ρt sinϕ0)eρt cosϕ0dρ,

lim
R→∞,

r→0

∫
�5a∪�5b

e−kp/s(s)xestds =
∫ ∞

0
e−kp/s

(
ρe−iϕ0

)
xeρte−iϕ0 e−iϕ0dρ

=
∫ ∞

0
e−kp/s

(
ρe−iϕ0

)
xe−i(ϕ0+ρt sinϕ0)eρt cosϕ0dρ,

and with the inverse Laplace transform (13.65), i.e.,

lim
R→∞,

r→0

∫
�0

e−kp/s(s)xestds = 2π iu(III)
δ (x, t),
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Figure 13.14 Integration contours depending on the nature and number of TF’s BPs.

by the Cauchy integral theorem (13.A.94), the impulse response is obtained
as

u(III)
δ (x, t) = 1

2π i

∫ ∞

0

(
e−kp/s

(
ρeiϕ0

)
xei(ϕ0+ρt sinϕ0)

− e−kp/s
(
ρe−iϕ0

)
xe−i(ϕ0+ρt sinϕ0)

)
e−ρt|cosϕ0|dρ, (13.A.95)

transforming to (13.67) by separating the real and imaginary parts in
kp/s

(
ρe±iϕ0

)
and by using k̄p/s (s) = kp/s (s̄), since the integrals along all other

contours tend to zero as R → ∞ and r → 0, as proved below. By setting
ϕ0 = π in (13.A.95), one obtains impulse responses

u(I,II)
δ (x, t) = 1

2π i

∫ ∞

0

(
e−kp/s

(
ρe−iπ )

x − e−kp/s
(
ρeiπ )

x
)

e−ρtdρ,

which transform to (13.66) using the same arguments as in the previous
case.

The parameterization of contour �1 is s = p + iR, p ∈ (
0,p0

)
, implying

the estimate of integral along �1 as follows:

∣∣I�1

∣∣ ≤
∫

�1

∣∣∣e−kp/s(s)xest
∣∣∣ds =

∫ p0

0

∣∣∣e−kp/s
(
p+iR

)
xe

(
p+iR

)
t
∣∣∣dp

≤
∫ p0

0

∣∣∣e−kp/s
(
p+iR

)
x
∣∣∣eptdp =

∫ p0

0
e−x

∣∣kp/s
(
p+iR

)∣∣ cos
(
arg

(
kp/s

(
p+iR

)))
eptdp.

(13.A.96)

Assuming s = ρeiϕ, with ρ = √
p2 + R2 ∼ R and ϕ = arctan R

p ∼ π
2 , as

R → ∞, expressions (13.51) and (13.52) for kp and ks are estimated by
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kp/s
(
p + iR

) ∼ K τατγ R
α+γ

2 ei (α+γ )π
4 , as R → ∞, (13.A.97)

so that (13.A.96) in the limit as R → ∞ becomes

lim
R→∞

∣∣I�1

∣∣ ≤ lim
R→∞

∫ p0

0
e−xK τατγ R

α+γ
2 cos (α+γ )π

4 eptdp = 0,

for α + γ ∈ (0,2). Analogously, it can be proved that limR→∞
∣∣I�7

∣∣ = 0.
The parameterization of contour �2 is s = Reiϕ, with ϕ ∈ (

π
2 , ϕ0

)
, so that

the estimate of the integral along �2 is

∣∣I�2

∣∣ ≤
∫

�2

∣∣∣e−kp/s(s)xest
∣∣∣ds =

∫ ϕ0

π
2

R
∣∣∣e−kp/s

(
Reiϕ)

xeRteiϕ
∣∣∣dϕ

≤
∫ ϕ0

π
2

R e−x
∣∣kp/s

(
Reiϕ)∣∣ cos

(
arg

(
kp/s

(
Reiϕ)))

eRt cosϕdϕ. (13.A.98)

Again, by (13.51) and (13.52), as in (13.A.97), one has

kp/s
(
Reiϕ) ∼ K τατγ R

α+γ
2 ei (α+γ )ϕ

2 , as R → ∞,

which along with α + γ ∈ (0,2) and cosϕ < 0 for ϕ ∈ (
π
2 ,π

)
implies

that (13.A.98) becomes

lim
R→∞

∣∣I�2

∣∣ ≤ lim
R→∞

∫ ϕ0

π
2

R e−xK τατγ R
α+γ

2 cos (α+γ )ϕ
2 eRt cosϕdϕ

≤ lim
R→∞

∫ ϕ0

π
2

R eRt cosϕdϕ = 0.

By the similar arguments, limR→∞
∣∣I�6

∣∣ = 0.
The parameterization of contour �4 is s = reiϕ, with ϕ ∈ (−ϕ0, ϕ0), so

that the estimate of the integral along �4 is

∣∣I�4

∣∣ ≤
∫

�4

∣∣∣e−k(s)xest
∣∣∣ds =

∫ ϕ0

−ϕ0

r
∣∣∣e−kp/s

(
reiϕ)

xerteiϕ
∣∣∣dϕ

≤
∫ ϕ0

−ϕ0

r e−x
∣∣kp/s

(
reiϕ)∣∣ cos

(
arg

(
kp/s

(
Reiϕ)))

ert cosϕdϕ. (13.A.99)

The asymptotics of PCs, given by (13.51) and (13.52), are

k2
p (s) ∼ K2 and k2

s (s) ∼ K2

τβ

1
sβ

as r → 0,
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so that, using the fact that βϕ

2 ∈ (− ϕ0
2 ,

ϕ0
2

)
, implying cos βϕ

2 > 0, esti-
mate (13.A.99) becomes

lim
r→0

∣∣I�4

∣∣ ≤
⎧⎨
⎩

lim
r→0

∫ ϕ0
−ϕ0

r e−xKert cosϕdϕ = 0, for kp,

lim
r→0

∫ ϕ0
−ϕ0

r e
−x K√

τβ

1
rβ/2 cos βϕ

2 ert cosϕdϕ = 0, for ks.

The parameterization of contour �8 is s− s0 = reiϕ, with ϕ ∈ (ϕ0 −π,ϕ0),
implying the estimate of integral along �8 as

∣∣I�8

∣∣ ≤
∫

�8

∣∣∣e−kp/s(s)xest
∣∣∣ds =

∫ ϕ0

−π+ϕ0

r
∣∣∣e−kp/s

(
s0+reiϕ)

xe
(
s0+reiϕ)

t
∣∣∣dϕ

≤ es0t
∫ ϕ0

−π+ϕ0

r
∣∣∣e−kp/s

(
s0+reiϕ)

x
∣∣∣ert cosϕdϕ, (13.A.100)

so that, by (13.A.100),

lim
r→0

∣∣I�8

∣∣ ≤ es0t lim
r→0

∫ ϕ0

−π+ϕ0

r ert cosϕdϕ = 0,

since PCs, by (13.51) and (13.52), yield

k2
p/s

(
s0 + reiϕ) ∼ k2

p/s (s0) = 0 as r → 0.

By similar arguments, one also has limr→0
∣∣I�9

∣∣ = 0.

13.A.2 Calculation of harmonic response
The harmonic response is calculated by inverting the Laplace transform of
U in (13.70) by the definition, i.e., by (13.71), using the Cauchy residues
theorem∮

�(i)
U (x, s)estds = 2π i

(
Res

(
U (x, s)est, iω

) + Res
(
U (x, s)est,−iω

))
,

with i ∈ {I, II, III} , (13.A.101)

where the contour �(i), containing the Bromwich path Br, is chosen dif-
ferently, as already discussed in Appendix 13.A.1 and shown in Fig. 13.14,
since in addition to BPs that the TF e−kp/s(s)x may have, function U has a
pair of complex conjugated poles ±iω, each of the first order, due to the
term s

s2+ω2 . The harmonic response, as in Appendix 13.A.1, is calculated
only using the contour �(III) from Fig. 13.14c, i.e., if PC has complex con-
jugated BPs s0 = ρ0eiϕ0 and s̄0 apart from s = 0, since the other two cases
correspond to ϕ0 = π .



398 Dušan Zorica and Stevan M. Cvetićanin

The integrals along contours �3a ∪ �3b (parameterized by s = ρeiϕ0 ,
ρ ∈ (r, ρ0 − r) ∪ (ρ0 + r,R)) and �5a ∪ �5b (parameterized by s = ρe−iϕ0 ,
ρ ∈ (r, ρ0 − r) ∪ (ρ0 + r,R)) read

lim
R→∞,

r→0

∫
�3a∪�3b

U (x, s)estds = U0

∫ 0

∞
ρeiϕ0

ρ2e2iϕ0 + ω2 e−kp/s
(
ρeiϕ0

)
xeρteiϕ0 eiϕ0dρ

= −U0

∫ ∞

0

e−kp/s
(
ρeiϕ0

)
xei(2ϕ0+ρt sinϕ0)

ρ2e2iϕ0 + ω2 eρt cosϕ0ρdρ,

lim
R→∞,

r→0

∫
�5a∪�5b

U (x, s)estds = U0

∫ ∞

0

ρe−iϕ0

ρ2e−2iϕ0 + ω2 e−kp/s
(
ρe−iϕ0

)
xeρte−iϕ0 e−iϕ0dρ

= U0

∫ ∞

0

e−kp/s
(
ρe−iϕ0

)
xe−i(2ϕ0+ρt sinϕ0)

ρ2e−2iϕ0 + ω2 eρt cosϕ0ρdρ,

and with the inverse Laplace transform (13.71), i.e.,

lim
R→∞,

r→0

∫
�0

U (x, s)estds = 2π iu(III)(x, t),

by the Cauchy residues theorem (13.A.101), the harmonic response is ob-
tained as

u(III)(x, t) = U0

2π i

∫ ∞

0

(
e−kp/s

(
ρeiϕ0

)
xei(2ϕ0+ρt sinϕ0)

ρ2e2iϕ0 + ω2

− e−kp/s
(
ρe−iϕ0

)
xe−i(2ϕ0+ρt sinϕ0)

ρ2e−2iϕ0 + ω2

)
e−ρt|cosϕ0|ρdρ

+ U0 e−Rekp/s(iω)x cos
(
ωt − Im kp/s (iω) x

)
, (13.A.102)

with the residues in (13.A.101) calculated as

Res
(
U (x, s)est, iω

) + Res
(
U (x, s)est,−iω

)
= U0

2

(
e−kp/s(iω)xeiωt + e−kp/s(−iω)xe−iωt

)
= U0 e−Rekp/s(iω)x cos

(
ωt − Imkp/s (iω) x

)
,

due to the separation of real and imaginary parts in kp/s (±iω) and the use
of k̄p/s (s) = kp/s (s̄), since the integrals along all other contours tend to zero
as R → ∞ and r → 0. The proof is omitted, since it uses a similar argumen-
tation as in Appendix 13.A.1. By setting ϕ0 = π in (13.A.102), one obtains
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the harmonic responses

u(I,II)(x, t) = U0

2π i

∫ ∞

0

(
e−kp/s

(
ρeiπ )

x − e−kp/s
(
ρe−iπ )

x
) ρe−ρt

ρ2 + ω2 dρ

+ U0 e−Rekp/s(iω)x cos
(
ωt − Imkp/s (iω) x

)
.
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14.1. Introduction

Fractional calculus is a relatively old mathematical tool that was intro-
duced during letter exchanges between l’Hopital and Leibniz in 1695 [1,2].
Until the middle of the 20th century, no effort was made to implement this
mathematical tool in industrial applications.

From the 1960s onwards, the number of research groups, journals,
books, special issues, and conferences dedicated to fractional calculus in-
creased dramatically due mainly to the advantages that the fractional order
presents to engineering systems [3,4]. In fact, the fractional behavior may
appear due to natural phenomena, as in the case of diffusive interfaces [5,6],
magnetic fields [7], and seismic waves [8], or it can be introduced manually
integrated as in the case of controllers (CRONE, fractional PID, fractional
sliding mode [9–11]) and other applications, such as the control of car sus-
pensions [12], image processing [13,14], electrical components [15], audio
filters [16], economical modeling [17], and others [18].

In 1964, in order to develop a real system exhibiting fractional-order
behavior, Carlson proposed the fractional inductive effect [19]. In 1975,
Oustaloup introduced arrangements of resistive and capacitive (RC) cells
to synthesize fractional behavior [20]. Other representations based also on
RC cells were proposed by Podlubny [19], whereas Abi Zeid Daou et
al. introduced for the first time the inductive effects and showed how to
implement fractional-order systems using RLC components [20].
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To facilitate the simulation and the implementation of such systems,
numerical simulators have been developed, such as the CRONE controller,
which ensures the conversion from the fractional to the rational form of the
transfer function [21]. These numerical simulators have been developed
first for simple models (conservative plane waves) and they were based on
signal processing tools. These were known as digital waveguide forms [22–
25] and they were presented in a factorized system as developed by Kelly-
Lochbaum [26]. Added to that, the plane wave equations were divided into
two operators, each one decoupled into progressive waves, from which one
could derive a delay system for the simulation.

Furthermore, 3D and 2D models with realistic boundary conditions are
too complex to be considered, as the case of real-time sound synthesis.
They can be effectively simplified to a 1D wave equation including a vari-
able that models the medium dimensions. It is known as the equation of the
pavilions and it is also called model of Webster [27–29]. A more elaborate
version of this conservative model includes the effect of viscous-thermal
losses due to the boundary layers in the vicinity of the walls. This dissipa-
tive model, known as Webster–Lokshin 1D, includes a term which involves
a fractional derivation in time of order 3/2 [30–33]. This operator plays a
crucial role from a perceptual point of view on sound realism [34].

Concerning the flute musical instrument, the fractional order is a natural
phenomenon that resides in the resonator. In fact, the thermal losses on
the boundaries of the tube create a viscous-thermal effect as was already
identified by Matignon [25,26,28–33].

In previous works, the musician–flute system was implemented and
modeled [35,36]; in fact, an air compressor, a servo-valve, and an artifi-
cial mouth have been mounted to replace the musician lungs and mouth.
A control system was also developed to regulate the pressure and the flow
delivered to the artificial mouth. Added to that, the flute exciter is directly
coupled with the artificial mouth and some pressure and temperature sen-
sors are placed within the resonator.

The objective of this chapter is, first, to establish a knowledge model from
partial differential equations which define the Webster–Lokshin model of
an acoustic tube of constant radius r. Thus, a conventional resolution in
the operational domain leads to the analytical expression of the acoustic
impedance and admittance of the tube as a function of the position x, its
length L, and its radius r. This working methodology will be similar to the
one used for the modeling of the diffusive phenomenon in a semiinfinite
homogeneous bar already proposed in previous works [37]. Then, a system
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vision is proposed aiming to causally decompose the whole model into
submodels in order to facilitate the analysis in the frequency domain.

This chapter is organized as follows. In Section 14.2, the modeling of
the acoustic resonator will be presented. Section 14.3 will show the sys-
tem approach and the block configuration. In Section 14.4, the simulations
and the frequency domain analysis of this system will be proposed. Finally,
Section 14.5 will conclude the work and propose some ideas to be imple-
mented in future works.

14.2. Modeling

14.2.1 Schematization, configuration, and setting in
equation

Let us consider an acoustic tube of length L and constant radius r subjected
to an acoustic flow (also called volume flow) Qv(t) at x = 0 where x ∈ [0;L],
as shown in Fig. 14.1.

Figure 14.1 1D schematic of an acoustic tube of radius r and of finite length L subjected
to an acoustic flow Qv(t) with x = 0.

When an acoustic wave propagates in air, this sets the particles of the
fluid in motion which vibrate at a speed v(t) around their equilibrium
position. The acoustic flow Qv(t) then measures the flow [in m3/s] of this
speed through the surface. The acoustic flow is therefore a scalar quantity
[38–42].

The acoustic impedance Zac (also called specific acoustic impedance, be-
cause it is an intensive quantity) of a medium is defined in steady state by
the ratio between the acoustic pressure (in Pa) and the speed (in m/s) of
the associated particle. When the medium is air, Zac is equal to the prod-
uct between the density of air, ρa, and the speed of sound in air, ca; thus,
Zac = ρa ∗ ca. These two parameters depend also on the air temperature Ta.
As an illustration, Table 14.1 presents the values of the sound speed ca, the
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Table 14.1 Values of the speed of sound ca, the density ρa, and the characteristic
acoustic impedance Zac as a function of the air temperature Ta.
Ta (°C) -10 -5 0 5 10 15 20 25 30
ca (m/s) 325.4 328.5 331.5 334.5 337.5 340.5 343.4 346.3 349.2
ρa (kg/m3) 1.341 1.316 1.293 1.269 1.247 1.225 1.204 1.184 1.164
Zac (Pa s/m) 436.5 432.4 428.3 424.5 420.7 417 413.5 410 406.6

sound density ρa, and the acoustic impedance Zac as a function of the air
temperature Ta.

The model used in this work is based on Webster–Lokshin [28]. It is
a model with a monospatial dependence which characterizes the linear
propagation of acoustic waves in tubes with axial symmetry. This model
takes also into account viscous-thermal losses at the wall boundaries with
the assumption of wide tubes [43]. Thus, in an axisymmetric tube of con-
stant section S = π r2, the acoustic pressure P(x, t,L) and the acoustic flow
Qv(x, t,L) are governed by the equation of the pavilions, also called Webster–
Lokshin, and the Euler equation, leading to the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r
ca

∂2

∂t2
P (x, t,L) + 2ε

r
ca

∂3/2

∂t3/2 P (x, t,L) − r
∂2

∂x2 P (x, t,L) = 0,

x ∈ [0;L] , t > 0,

ρa

S
∂

∂t
Qv (x, t,L) + ∂

∂x
P (x, t,L) = 0,

(14.1)

where ε is a parameter associated with the viscous-thermal losses.
More precisely, ε is given by the relation

ε = K0

r
, with K0 =

√
lv + (γ − 1)

√
lh, (14.2)

where lv and lh represent the characteristic lengths of viscous (lv = 4 ×
10−8 m) and thermal (lh = 6 × 10−8 m) effects, γ being the ratio of spe-
cific heats.

The phenomenon of viscous-thermal losses is a dissipative effect at the
wall boundary of the tube, which is due to the viscosity of the air and to the
thermal conduction [43,44]. For the case of wind musical instrument res-
onators, the assumption of wide tubes is used. This hypothesis is expressed
by the following relation:

r � max[rv = (lvλ)0.5; rh = (lhλ)0.5], (14.3)
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Figure 14.2 Curves rv(f) = (lvca/f)0.5 (in red; light gray in print version) and rh(f) =
(lhca/f)

0.5 (in blue; dark gray in print version) with respect to the frequency f .

where λ = ca/f represents the wavelength (in m) and f the frequency
(in Hz).

Thus, for the sound speed ca and a frequency fmin corresponding to the
lower frequency limit of the model studied, it is possible to determine the
minimum value of the radius rmin of the acoustic tube below which the
model is not valid.

As an illustration where lv = 4 × 10−8 m, lh = 6 × 10−8 m, and
ca = 346.3 m/s (at a constant temperature Ta = 25°C), Fig. 14.2 presents
the curves of rv(f ) = (lvca/f )0.5 (in red; light gray in print version) and
rh(f ) = (lhca/f )0.5 (in blue; dark gray in print version) with respect to the
frequency f .

If we consider that the operational frequency domain of the Webster–
Lokshin model is relative to the audible frequencies, i.e., frequencies rang-
ing between 20 Hz (most serious frequency) and 20,000 Hz (most acute
frequency), then fmin = 20 Hz. For this value of fmin, the model is valid for
acoustic tube radius greater than 1 mm (in Section 14.3, r = 5 mm).
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14.2.2 Resolution in the symbolic domain
Under the assumption of zero initial conditions (I.C. = 0), the Laplace
transformation applied to system (14.1) leads to

⎧⎪⎪⎨
⎪⎪⎩

[((
s
ca

)2

+ 2ε

(
s
ca

)3/2
)

− ∂2

∂x2

]
rP̄ (x, s,L) = 0,

ρa

S
sQ̄v (x, s,L) + ∂

∂x
P̄ (x, s,L) = 0,

(14.4)

with P̄ (x, s,L) = TL {P (x, t,L)} and Q̄v (x, s,L) = TL {Qv (x, t,L)}, s be-
ing the Laplace variable and TL its transformation. Solving the Webster–
Lokshin equation [28] gives the solution P̄ (x, s,L) in its general form:

P̄ (x, s,L) = A(s)
r

ex�(s) + B(s)
r

e−x�(s), (14.5)

where A(s) and B(s) are rational functions of s which depend on the bound-
ary conditions and �(jω) = jk(ω), k(ω) being a standard complex wave
number; �(s) is given in the Laplace domain by the following relation [45]:

�(s) =
√(

s
ca

)2

+ 2ε

(
s
ca

)3/2

, with Re (�(s)) ≥ 0 if ε ≥ 0. (14.6)

The expression of the Q̄v (x, s,L) solution is deduced in two ways:
1. using the Euler equation in the Laplace domain (the second equation

of system (14.4)), that is,

Q̄v (x, s,L) = − S
ρa

1
s

∂

∂x
P̄ (x, s,L) , (14.7)

2. introducing the general solution of P̄ (x, s,L) in relation (14.7), that is,

Q̄v (x, s,L) = − S
ρa

1
s

∂

∂x

(
A(s)

r
ex�(s) + B(s)

r
e−x�(s)

)
. (14.8)

Finally, the solution of Q̄v (x, s,L) is expressed as

Q̄v (x, s,L) = −
(

S
ρar

)
1
s
�(s)A(s)ex�(s) +

(
S
ρar

)
1
s
�(s)B(s)e−x�(s). (14.9)

Then, taking into account the boundary conditions makes it possible to
determine the two unknowns A(s) and B(s), in addition to the impedance
Z (x, s,L) = P̄ (x, s,L) /Q̄v (x, s,L) of the finite medium of length L.
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As an example, consider a zero impedance at x = L, that is, Z(L, s,L) =
0, which leads to P̄ (L, s,L) = 0. According to relation (14.5), we obtain

A(s)
r

eL�(s) + B(s)
r

e−L�(s) = 0, (14.10)

from which one deduces that

B(s) = −A(s)e2L�(s). (14.11)

Then, replacing B(s) by its expression (14.11) in the relation (14.5) of
P̄ (x, s,L), we obtain

P̄ (x, s,L) = A(s)
r

ex�(s) (1 − e2(L−x)�(s)) . (14.12)

In the same way, by replacing B(s) by its expression (14.11) in the relation
(14.9) of Q̄v (x, s,L), we obtain

Q̄v (x, s,L) = −
(

S
ρar

)
1
s
�(s)A(s)ex�(s) (1 + e2(L−x)�(s)) . (14.13)

Finally, the impedance Z (x, s,L) is given by the ratio of relations (14.12)
and (14.13), that is,

Z (x, s,L) = −
A(s)

r ex�(s)
(
1 − e2(L−x)�(s)

)
(

S
ρar

)
1
s �(s)A(s)ex�(s)

(
1 + e2(L−x)�(s)

) , (14.14)

which gives, after simplification,

Z (x, s,L) = −ρa

S
s

�(s)

(
1 − e2(L−x)�(s)

1 + e2(L−x)�(s)

)
, (14.15)

and knowing that tanh(y) = −(1 − e2y)/(1 + e2y), tanh being the tangent
hyperbolic function, Z (x, s,L) can finally be written as follows:

Z (x, s,L) = ρa

S
s

�(s)
tanh ((L − x)�(s)) . (14.16)

From the perspective of a system approach representation, the function
�(s) defined in relation (14.6) is rewritten as

�(s) =
(

s
ca

)√
1 + 2ε

( ca
s

)1/2
, (14.17)



410 Xavier Moreau et al.

or again, in canonical form,

�(s) =
(

s
ca

)√√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m , where

⎧⎪⎪⎨
⎪⎪⎩

m = 0.5,

ε = 2mK0
r ,

ωr,m = (2ε)1/m ca,

(14.18)

where ωr,m is a transitional frequency (in rad/s). Note that in the theoretical
case where the system is conservative, that is, ε = 0, the function �(s) (rela-
tion (14.17)) is reduced to �(s) = s/ca. By replacing �(s) of relation (14.18)
in relation (14.14), Z (x, s,L) can be expressed as follows:

Z (x, s,L) = ρaca
S

√√√√√√
(

s
ωr,m

)m

1 +
(

s
ωr,m

)m tanh

⎛
⎜⎜⎝(L − x)

(
s
ca

)√√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m

⎞
⎟⎟⎠ ,

(14.19)
or again, by introducing the acoustic impedance Zac = ρaca and the transi-
tional frequency ωLx = ca/(L − x) (in rad/s), Z (x, s,L) becomes

Z (x, s,L) = Zac

S

√√√√√√
(

s
ωr,m

)m

1 +
(

s
ωr,m

)m tanh

⎛
⎜⎜⎝

(
s

ωL,x

)√√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m

⎞
⎟⎟⎠ . (14.20)

Thus, from the analytical expression of the impedance Z(x, s,L)

(14.20), knowing the flow Q̄v (x, s,L) at any point x of the acoustic tube of
length L makes it possible to deduce the pressure P̄ (x, s,L) [46].

Remarks.
At x = L, 1/ωLx = 0; hence, knowing that tanh(0) = 0, we verify that
Z (L, s,L) = 0.
At x = 0, the input impedance Zin (s,L) = Z (0, s,L) of the finite medium of
length L is given by

Zin (s,L) = ρa

S
s

�(s)
tanh (L�(s)) . (14.21)

Always at x = 0, but for a semiinfinite medium semiinfini (L → ∞), knowing
that lim

y→∞ tanh(y) = 1, the input impedance Zin (s,∞) = Z (0, s,∞) becomes

Zin (s,∞) = lim
L→∞ Z (x = 0, s,L) = ρa

S
s

�(s)
. (14.22)
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Finally, in the theoretical case of a purely conservative system (ε = 0), the acoustic
impedance Z(x, s,L), noted in this case Z0(x, s,L), of a finite medium is expressed
as

Z0 (x, s,L) = Zac

S
tanh

(
s

ωLx

)
, (14.23)

and that of a semiinfinite medium, denoted Z0(x, s,∞), is equal to

Z0 (x, s,∞) = lim
L→∞ Z (x, s,L) = Zac

S
= cste. (14.24)

Note that the conservative case, although purely theoretical, allows by comparison to
better observe the effect of viscous-thermal losses.

To conclude this paragraph concerning the resolution in the symbolic
domain, the study of asymptotic behaviors of Z(x, s,L), that is,

lim
s→0

Z (x, s,L) = Zac

S
1

ωm
r,m

1
ωL,x

lim
s→0

sm+1 (14.25)

and

lim
s→∞ Z (x, s,L) → Zac

S
= cste, (14.26)

highlights that Z(x, s,L) tends towards a behavior of the type:
- fractional derivative of order m + 1, i.e., 1.5 with m = 0.5, when s tends to

zero;
- proportional whose gain value is fixed by Zac/S, when s tends to infinity.

14.3. Frequency response analysis

In the stationary harmonic regime, the frequency response Z(x, jω,L)

is given by

Z
(
x, jω,L

) = Zac

S

√√√√√√
(

jω
ωr,m

)m

1 +
(

jω
ωr,m

)m tanh

⎛
⎜⎜⎝

(
jω

ωL,x

)√√√√√√1 +
(

jω
ωr,m

)m

(
jω

ωr,m

)m

⎞
⎟⎟⎠ , (14.27)

where the transitional frequencies ωr,m and ωL,x have the following expres-
sions:

ωr,m = ca
(r/4mK0)

1/m and ωL,x = ca
L − x

. (14.28)
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Thus, ωr,m decreases when the radius r increases and, on the contrary,
ωL,x increases when the position x moves away from the origin and ap-
proaches the endpoint L of the acoustic tube.

For illustration, and in order to plot the frequency response Z(x, jω,L)

in the stationary harmonic regime, let us consider an acoustic tube whose
dimensions are as follows:
- radius r = 5 × 10−3 m (value perfectly in accordance with the domain

of validity of the Webster–Lokshin model);
- length L = 0.3 m;
- a temperature of 25°C;
- density ρa = 1.184 kg/m3;
- a speed of sound in the air of ca = 346.3 m/s (refer to Table 14.1).

Note that these values of r and L are representative of the resonator
of a recorder and lead to the values of the transitional frequencies ωr,m =
4.92 rad/s (0.78 Hz) and ωL,x = 1154 rad/s (184 Hz) when x = 0, thus
showing for such an instrument that ωr,m � ωL,x.

Fig. 14.3 presents at x = 0 the Bode diagrams of Z(0, jω,L) on the
frequency range [20;20,000] Hz (frequencies audible by the human ear
(Fig. 14.3(a))), and on the frequency range [20;4000] Hz (frequencies at-
tainable with a recorder (Fig. 14.3(b))).

Although an in-depth analysis of the frequency response of the model
is developed in the following paragraph, the observation of these diagrams
over the range of audible frequencies leads to the identification of two very
distinct behaviors:
- the first on the frequency range [20;ωL,x/2π = 184] Hz with a deriva-

tive behavior of order 1, highlighting the absence of the fractional
behavior in this frequency range which exists for frequencies lower
than ωr,m/2π = 0.78 Hz;

- the second on the frequency range [ωL,x/2π = 184;20,000] Hz with
an alternation of resonances and antiresonances.

14.4. System approach

From a causal point of view, the input of the resonator at x = 0
is defined by the pressure at the output of the nonlinear exciter. This is
the reason why the system approach developed in this paragraph considers
the admittance Y (x, s,L) = Z−1(x, s,L) and not the impedance Z(x, s,L).
More specifically, it is the input admittance at x = 0, denoted Yin(s,L) =
Y (0, s,L). Note that this consideration of the admittance Yin(jω,L) leads
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Figure 14.3 Bode diagrams of Z(0, jω, L) (a) in the range [20; 20,000] Hz of the fre-
quencies audible by the human ear and (b) in the range [20; 4000] Hz of frequencies
attainable with a recorder.
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to an integrator behavior for frequencies lower than ωL,x (derivation for
Z(x, s,L)), thus respecting integral causality, a fundamental notion in a sys-
tem approach.

In addition, the admittance Y (x, s,L) is broken down into a cascade
of local transfer functions where the parameters, as well as all the input
and output variables, have a physical meaning. This decomposition facili-
tates the frequency analysis of the Webster–Lokshin model, thus reaching a
reduced model to be implemented in the simulator.

14.4.1 Decomposition of admittance Y (x, s,L) into
subsystems

The admittance Y (x, s,L) = Z−1(x, s,L) of an acoustic tube of length L at
a point x between 0 and L is therefore defined by

Y (x, s,L) = Q̄v (x, s,L)

P̄ (x, s,L)
= S

Zac

√√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m
1

tanh

((
s

ωL,x

)√
1+

(
s

ωr,m

)m

(
s

ωr,m

)m

) ,

(14.29)
a relation that can be expressed as

Y (x, s,L) = H0Im(s)T (x, s,L) , (14.30)

knowing that

H0 = S
Zac

= S
ρaca

, (14.31)

Im(s) =

√√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m , (14.32)

and

T (x, s,L) = 1
tanh (F (x, s,L))

, (14.33)

where

F (x, s,L) =
(

s
ωL,x

)
Im(s). (14.34)

For the remaining part, the concept of acoustic admittance Y (x, s,L) is
replaced by the concept of transfer function H (x, s,L) defined between the
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pressure source P̄in(s) = P̄ (x = 0, s) at the input of the tube at x = 0 and
the flow Q̄v (x, s,L) at any point x of the tube of length L and of constant
radius r. The transfer function can be expressed as follows:

H (x, s,L) = Q̄v (x, s,L)

P̄in(s)
= H0Im(s)T (x, s,L) . (14.35)

At x = 0, for this finite medium, the input admittance Yin(s,L) has
therefore the following expression:

Yin (s,L) = H (0, s,L) = Q̄v (0, s,L)

P̄in(s)
= H0Im(s)T (0, s,L) . (14.36)

Always for x = 0, but for a semiinfinite medium (L → ∞), the input
admittance Yin(s,∞) is reduced to

Yin (s,∞) = H (0, s,∞) = Q̄v (0, s,∞)

P̄in(s)
= H0Im(s). (14.37)

Fig. 14.4 presents the block diagrams associated with this system ap-
proach where the different transfer functions are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 = Q̄in(s)
P̄in(s)

= S
Zac

= cste,

Im(s) = Q̄v (0, s,∞)

Q̄in(s)
=

√√√√√1 +
(

s
ωr,m

)m

(
s

ωr,m

)m ,

T (x, s,L) = Q̄v (x, s,L)

Q̄v (0, s,∞)
= 1

tanh
((

s
ωL,x

)
Im(s)

) .

(14.38)

Note that the quantity H0P̄in(s) is homogeneous with respect to the
flow, denoted Q̄in(s), and corresponds to the conversion of the pressure
source applied at x = 0 (Dirichlet condition) into an equivalent source of
flow always applied at x = 0 (Neumann condition) [37].

14.5. Frequency analysis of the system approach

In stationary harmonic mode, relation (14.35) becomes

H
(
x, jω,L

) = Q̄v
(
x, jω,L

)
P̄in

(
jω

) = H0Im
(
jω

)
T

(
x, jω,L

)
, (14.39)
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Figure 14.4 Block diagrams associated with the system approach: Whatever x is be-
tween 0 an L (a), at x = 0 for the finite system L (b), at x = 0 for a semifinite system (c).

with

Im
(
jω

) = Q̄v
(
0, jω,∞)

Q̄in
(
jω

) =

√√√√√√1 +
(
j ω
ωr,m

)m

(
j ω
ωr,m

)m (14.40)

and

T
(
x, jω,L

) = Q̄v
(
x, jω,L

)
Q̄v

(
0, jω,∞) = 1

tanh
(
F

(
x, jω,L

)) , (14.41)

where

F
(
x, jω,L

) =
(

jω
ωL,x

)
Im

(
jω

)
. (14.42)

The remaining part of this paragraph is devoted to a detailed analy-
sis of the frequency responses Im(jω), F(x, jω,L), and T(x, jω,L) of each
subsystem and of the frequency response H(x, jω,L) of the whole system.
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14.5.1 Analysis of Im(jω)

The analysis of Im(jω) highlights two behaviors whose transition zone is
fixed by the transitional frequency ωr,m. These behaviors are:
- For ω � ωr,m, we observe a fractional integration behavior of order

m/2 = 0.25. Indeed,

∀ω � ωr,m, Im
(
jω

) =

√√√√√√1 +
(
j ω
ωr,m

)m

(
j ω
ωr,m

)m ≈
ω�ωr,m

(
ωr,m

jω

)m/2

⇒
{ ∣∣Im

(
jω

)∣∣ = (ωr,m
ω

)m/2
,

arg Im
(
jω

) = −mπ
4 .

(14.43)

- For ω � ωr,m, we observe a proportional behavior. Indeed,

∀ω � ωr,m, Im
(
jω

) =

√√√√√√1 +
(
j ω
ωr,m

)m

(
j ω
ωr,m

)m ≈
ω�ωr,m

1

⇒
{ ∣∣Im

(
jω

)∣∣ = 1,

arg Im
(
jω

) = 0.
(14.44)

As an illustration, let us take the acoustic tube whose nominal dimen-
sions are fixed by a radius r = 5 × 10−3 m and a length L = 0.3 m at a
temperature of 25°C, with ρa = 1.184 kg/m3 and ca = 346.3 m/s. In this
case, and as a reminder, the numerical value of the transitional frequency
ωr,m (relation (14.28)) is equal to 4.92 rad/s (0.784 Hz).

Fig. 14.5 presents the Bode diagrams of the frequency response Im(jω)

over the range [10−4;104] Hz. Two behaviors appear clearly:
- For ω � ωr,m, a gain diagram appears with a straight line with slope

p = −m/2×20 dB/dec = −5 dB/dec and a phase diagram appears with
a horizontal line at −m/2 × 90◦ = −22.5◦.

- For ω � ωr,m, a gain diagram appears with a horizontal line at 0 dB and
a phase diagram with a horizontal line appears at 0°.
Fig. 14.6 presents the same frequency response of Im(jω) but only over

the frequency audible range [20;20,000] Hz. A gain diagram in linear-
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Figure 14.5 Bode diagrams of Im(jω) in the range [10−4; 104] Hz.

linear scale and a phase diagram with the frequency axis also in linear scale
are observed. This result makes it possible to confirm, for this recorder
example, that the unit proportional behavior is dominant, that is,

∀ω ≥ 2π20 rad/s, Im
(
jω

) = Q̄v
(
0, jω,∞)

Q̄in
(
jω

) ≈ 1. (14.45)

Thus, for the domain of study considered in this work, where the audi-
ble frequency ranges over [20;20,000] Hz, the transfer Im(s) can be reduced
to the unit which leads to Q̄v (0, s,∞) = Q̄in(s), allowing a reduction in the
block diagrams of Fig. 14.4. The direct consequence is that in the case
of a semiinfinite medium at x = 0 (Fig. 14.4(c)), the fractional integration
behavior has no influence in the range of audible frequencies.

14.5.2 Analysis of F(0, jω,L)

Knowing that in the case of a recorder ωr,m � ωL,x, the analysis of
F(0, jω,L) highlights again two behaviors whose transition zone is fixed
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Figure 14.6 Frequency response of Im(jω) in the range [20; 20,000] Hz of the audible
frequencies in linear scale.

by the transitional frequency ωr,m. These behaviors are:
- For ω � ωr,m, a fractional derivative behavior of order (1 − m/2) = 0.75 is

observed. Indeed,

∀ω � ωr,m,
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j ω
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(
ωm/2
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)(
jω

)(1−m/2)
,

(14.46)

and hence the module and the argument of F(x, jω,L) can be expressed
as ⎧⎪⎪⎨

⎪⎪⎩
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(
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(
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) =
(
1 − m

2

) π

2
.

(14.47)

- For ωr � ω, a derivative behavior of order 1 is observed. Indeed,



420 Xavier Moreau et al.

Figure 14.7 Bode diagrams of F(0, jω, L) in the range [10−4; 104] Hz.
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(14.48)

Fig. 14.7 presents, at x = 0, the Bode diagrams of the frequency response
F(0, jω,L) in the range [10−4;104] Hz. The two behaviors appear clearly:
- For ω � ωr,m, a gain diagram with a straight line is observed with

p1 = (1 − m/2) × 20 dB/dec = 15 dB/dec and a phase diagram with
a horizontal line is observed at (1 − m/2) × 90◦ = 67.5◦.

- For ω � ωr,m, a gain diagram with a straight line is observed with slope
p2 = 20 dB/dec and a phase diagram is observed with a horizontal
straight line at 90°.

14.5.3 Analysis of T(0, jω,L)

The analysis of T(x, jω,L) highlights three behaviors whose transition
zones are fixed by the transitional frequencies ωr,m and ωLx:
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- For ω � ωLx, an integration behavior with two different orders according to
the frequency range is observed. Indeed,

∀ω � ωL,x, T
(
x, jω,L

) = 1
tanh

(
F

(
x, jω,L

)) ≈
ω�ωL,x

1
F

(
x, jω,L

) ,

(14.49)
with, for ω � ωr,m, an orderly fractional integrative behavior equal to
−(1 − m/2) = −0.75, that is,
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(14.50)

and, for ωr,m � ω, a derivative behavior of order 1, that is,

∀ωr,m � ω,
1

F
(
x, jω,L

) ≈
ωr,m�ω

(
ωL,x

jω

)

⇒

⎧⎪⎨
⎪⎩

∣∣T (
x, jω,L

)∣∣ = ωL,x

ω
,

arg T
(
x, jω,L

) = −π

2
.

(14.51)

- For ωL,x � ω, a behavior composed of an alternation of antiresonances
and resonances is observed; thus, T(x, jω,L) can be expressed as

∀ωL,x � ω, T
(
x, jω,L

) = 1

tanh

((
jω

ωL,x

)√
1+

(
j ω
ωr,m

)m

(
j ω
ωr,m

)m

) . (14.52)

Fig. 14.8 shows the Bode diagrams of 1/F(0, jω,L) (in red; light gray in
print version) and of T(0, jω,L) (in blue; dark gray in print version) over
the range [10−4;104] Hz (Fig. 14.8(a)) and in the range [20;4000] Hz of
the audible and achievable frequencies with a recorder (Fig. 14.8(b)).

Below the first cut-off frequency [10−4;ωLx/2π = 184] Hz, the re-
sponses of 1/F(0, jω,L) (in red; light gray in print version) and T(0, jω,L)

(in blue; dark gray in print version) overlap where:
- a fractional integration behavior of order −0.75 over the range [10−4;

ωr/2π = 0.784] Hz is observed;
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Figure 14.8 Bode diagrams of 1/F(0, jω, L) (in red; light gray in print version) and of
T(0, jω, L) (in blue; dark gray in print version) (a) in the range [10−4; 104] Hz and (b) in
the range [20; 4000] Hz.
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- an integrative behavior of order 1 over the range [ωr,m/2π = 0.784;
ωLx/2π = 184] Hz is observed.
Beyond 184 Hz, the frequency response T(0, jω,L) (in blue; dark gray

in print version) clearly presents an alternation of antiresonances and reso-
nances introduced by the hyperbolic tangent function.

14.5.4 Analysis of H(x, jω,L)

Finally, the analysis of H(x, jω,L) highlights three behaviors whose transi-
tion zones are fixed by the transitional frequencies ωr and ωLx:
- For ω � ωr � ωLx, an orderly fractional integrative behavior −(1 − m/2) =

−0.75 is observed. Indeed,
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- For ωr,m � ω � ωLx, a derivative behavior of order 1 is observed. Indeed,
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(14.54)

- For ωLx � ω, a behavior composed of an alternation of antiresonances
and resonances is observed. Indeed,
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j ω
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) . (14.55)

Fig. 14.9 presents, at x = 0 (ωLx/2π = 184 Hz), at x = L/2 (ωLx/2π =
368 Hz), and at x = 3L/4 (ωLx/2π = 735 Hz), the Bode diagrams of
H(0, jω,L) (in black), of H(L/2, jω,L) (in blue; dark gray in print ver-
sion), and of H(3L/4, jω,L) (in red; light gray in print version) over the
audible frequency range [20;4000] Hz.
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Figure 14.9 Bode diagrams in x = 0 (ωLx/2π = 184 Hz), in x = L/2 (ωLx/2π = 368 Hz),
and in x = 3L/4 (ωLx/2π = 735 Hz) of x = 3L/4 (ωLx/2π = 735 Hz) (in black), of
H(L/2, jω, L) (in blue; dark gray in print version), and of H(3L/4, jω, L) (in red; light gray
in print version) in the range [20; 4000] Hz of audible and achievable frequencies.

Over the range [20;ωLx/2π] Hz, the three responses of H(x, jω,L)

present an integration behavior of order 1. The fractional integration be-
havior of order −0.75 does not appear over this range as it is present
within a much lower frequency (0.784 Hz). Beyond ωLx, the three re-
sponses present a succession of alternation of antiresonances and resonances
introduced by the hyperbolic tangent (tanh) function. In [47], the authors
show that the influence of the order m is essentially located:
- for gain diagrams, at the peaks of resonances and antiresonances, quan-

tifiable effects using quality factors for antiresonances and for resonances
illustrating well the phenomenon of dissipation associated with visco-
thermal losses;

- for phase diagrams, at the crossing points at 0 degrees with a local slope
which is all the more important as the order is small, a slope which
becomes infinite for m = 0 (purely conservative case).
Moreover, note that the farther the position x moves away from the

origin, the higher the transitional frequency ωLx pushes the antiresonance
and resonance frequencies towards the high frequencies.
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In addition, the position x having no influence on the transitional fre-
quency ωr,m, the fractional integrative behavior of order −0.75 still does
not appear in this frequency range.

14.6. Conclusions and future work

To sum up this work, we have presented the dynamic behavior of an
acoustic tube of constant radius and showed the effects of viscous thermal
losses as well as the frequency range where fractional-order behavior is
observed.

First, from the two partial differential equations which define the
Webster–Lokshin model, a classical resolution in the operational domain
leads to the analytical expression of the acoustic impedance and admittance
of the function tube of position x, its length L, and its radius r.

Second, a system approach is proposed aiming to causally decompose
the overall model into submodels, thus facilitating analysis in the frequency
domain. One of the conclusions of this frequency analysis is that the frac-
tional model can be simplified over the range [20;20,000] Hz of the audible
frequencies. Although the fractional-order behavior (fractional integrator)
is only present for very low nonaudible frequencies (less than 1 Hz), the
influence of the fractional order m does appear at resonances and antires-
onances (in the audible frequencies), illustrating well the phenomenon of
dissipation associated with visco-thermal losses.

As for the future work, more precise measurements of the pressure
and the flow on the real test bench will be conducted and the result-
ing impedance will be compared to the simulated one. Added to that,
the influence of the fractional-order derivative will be analyzed. Thus, the
hardware-in-the-loop method will be implemented where the physical res-
onator will be replaced by a numerical simulator in order to study the effects
of the fractional order and the other resonator parameter on the delivered
sound.
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15.1. Introduction

The nervous system is composed of networks of neurons that, in the
majority of cases, communicate via electrical pulses known as action po-
tentials [85]. Each action potential, also referred to as a spike, is the result
of the flow of ions across the cell membrane through membrane conduc-
tances. In response to constant or varying stimulation, neurons generate
trains of action potentials [29]. The response of a given neuron is usually
characterized by the firing rate of these action potentials (Fig. 15.1). There
is increasing evidence that the response of neurons is history-dependent
[6,25]. This means that the reaction rates, or time constants of adapta-
tion, of a neuron change to identical stimuli based on its previous activity
[95,96]. Actually, this phenomenon can be observed across all scales of
neuronal organization, sensory modalities, and species [7,23,49]. History
dependence seems to underlie important computational functions such as
efficient adaptive coding of natural stimuli and contrast adaptation over
multiple scales of input strength [8,96]. A search of only experimental
publications in recent years shows an increasing number of neuroscience
laboratories that have concluded that their phenomena require a history-
dependent approach [2,6,15–17,20,24,31–34,38,41,49,53,56,58,66–68,74,
75,77,80,87,94,100,104,105]. Thus, it is important to generate mathemat-
ical frameworks that can model history-dependent responses in neurons
independently of their particular biophysical properties.

Fractional-order differential equations are a natural mathematical tool to
model history-dependent phenomena [36,86]. As can be seen in this chap-
ter and elsewhere in this volume, a fractional-order derivative implies an
intrinsic memory trace [88,97]. The memory trace integrates all the previ-
ous activity of the system in order to calculate its next value [14]. This is
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Figure 15.1 Neurons form networks that communicate via action potentials. Neurons
make synaptic connections to form networks. Usually, synapses form at dendrites, and
the activity of all synapses is integrated at the soma. If enough synaptic input is inte-
grated, then the neuron generates an action potential that travels along the axon. In
response to a stimulus, neurons generate trains of action potentials. From the interspike
interval, it is possible to calculate the instantaneous firing rate.

important for membrane conductances since they are characterized by their
time constant of reaction [89,91]. In a neuron without history dependence
the time constant of all the membrane conductances remains identical, in-
dependently of previous activity [98]. Thus, the activity of the neuron could
be characterized by averaging its behavior over multiple repetitions of an
identical input [44]. However, if the dynamics of the neuronal activity are
history-dependent, then the reaction rates of the conductances change as a
function of time [25]. Thus, history dependence could provide a temporal
dimension that increases the repertoire of responses of neurons, allowing
them to change their responses to an ever-adapting input.

In this chapter, we will summarize our work on fractional-order mod-
els to study history dependence in the generation of action potentials.
In the first example, we demonstrate that many properties of action po-
tential firing rate adaptation can be reproduced with a simplified model
that considers the membrane voltage being dominated by fractional-order
dynamics. In the second example, we study the case in which single mem-
brane conductances show history dependence. In this part of the chapter,
we will show that such assumption is enough to replicate a myriad of spik-
ing patterns across neuronal types. Finally, we will also present a different
angle, in which we investigate the advantages of using fractional-order pro-
portional integral derivative (FO-PID) controllers to control pathological
neuronal oscillations. Overall, our work shows that we can use fractional-
order integro-differential equations to build models of neuronal function
and to design controllers for potential brain–machine applications.



Fractional-order dynamics to study neuronal function 431

15.2. Fractional calculus definitions

There are several definitions of fractional-order derivatives and in-
tegrals [71]. In this chapter we use Riemann–Liouville (RL), Grunwald–
Letnikov (GL), and Caputo definitions.

Let f : (0,∞) → R be a continuous function. Then the fractional RL
integral definition is formulated as

RL
0 Iα

t f (t) = 1
�(α)

dm

dtm

∫ t

0
f (η)(t − η)α−1dη, t > 0, (15.1)

where α > 0 is the fractional order in the integral and α ∈ R, �(·) is the
Gamma function defined as

� (z) =
∫ ∞

0
tz−1 exp (−t)dt. (15.2)

If α = 1, then the RL integral is equal to the classical integral definition
[39].

The fractional RL derivative of order β, with β > 0 and m = [β] + 1, is
formulated as

RL
0 Dβ

t f (t) = 1
�(m − β)

dm

dtm

∫ t

0
f (η)(t − η)m−β−1dη, t > 0. (15.3)

Note that when β = 1, the RL derivative is equal to the classical derivative
definition.

Finally, the Caputo derivative of order β is defined as

C
0 Dβ

t f (t) = 1
�(m − β)

∫ t

0
f (m)(η)(t − η)m−β−1dη, t > 0. (15.4)

If β = 1, then the Caputo derivative is the same as the classical derivative
definition.

15.2.1 Numerical algorithms to solve fractional-order
differential equations

We present two algorithms that allow us to compute a numerical solution
of fractional-order differential equations. The first method is based on the
GL derivative and is used to find a numerical approximation of the solution
when the RL derivative is considered [65]. The second approach is the L1
scheme, which allows us to compute a numerical solution of a fractional-
order differential equation when the Caputo derivative is considered [37].
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The use and performance of these two approaches have been widely studied
and their effectiveness and robustness have also been demonstrated [12,54,
79].

15.2.1.1 The Grunwald–Letnikov derivative and its numerical
integration

The GL definition allows to solve numerically fractional-order differential
equations [65,71] and is formulated as

GL
0 Dθ

t f (t) = lim
h→0

1
hθ

⌈
t/h

⌉∑
j=0

(−1)j
(

θ

j

)
f
(
t − jh

)
, (15.5)

where θ is the fractional order in the derivative, θ ∈ R, and j is the time
increment. Note that when θ < 0, this is the fractional integral (θ = α), and
when θ > 0, it is the fractional derivative (θ = β). The binomial coefficients
are computed by using the relation between Euler’s Gamma function and
factorial as (

θ

j

)
= �(θ + 1)

�
(
j + 1

)
�

(
θ − j + 1

) . (15.6)

Using the fractional-order GL definition, we can calculate the numerical
solution of a fractional-order differential equation expressed as

GL
0 Dθ

t f (t) = g
(
f (t)

)
(15.7)

as follows [12,98]:

f (tk) = g
(
f (tk−1)

)
hθ −

k∑
j=1

cθj f
(
tk−j

)
, (15.8)

cθj =
(

1 − 1 + θ

j

)
cθj−1, (15.9)

where h is the time step and the initial coefficient value is set to cθ0 = θ .
Note that the summation part of Eq. (15.8) is the intrinsic memory trace.

15.2.1.2 The L1 scheme applied to integrate the Caputo derivative

The L1 scheme is an algorithm based on the finite difference method that
allows us to find a numerical solution of a fractional-order differential equa-
tion considering the Caputo derivative. The L1 scheme in the classical case
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for a differential equation given as

d
dt

f (t) = g
(
f (t), t

)
(15.10)

is defined as the following approximation of the derivative [46]:

d
dt

f (t) ≈ 1
dt

[
N−1∑
k=0

[
f (tk+1) − f (tk)

]]
. (15.11)

We take the right-hand side of Eqs. (15.10) and (15.11), and solving for f
at time tN (f (tN )), from f (t0) to f (tN−1), we get

g
(
f (t), t

) ≈ 1
dt

[
f (tN ) − f (tN−1) +

N−2∑
k=0

[
f (tk+1) − f (tk)

]]
, (15.12)

where f (t0) represents the initial condition, k is the time increment for past
events, tk is the k-th value of time such that tk = kdt, and N represents
the value of time at which the function f is integrated. Then, applying
some algebraic rules to Eq. (15.12), we obtain the numerical solution of
Eq. (15.10) as

f (tN ) ≈ dtg
(
f (tN−1)

) + f (tN−1) −
N−2∑
k=0

[
f (tk+1) − f (tk)

]
. (15.13)

Now, we present the generalized scheme for solving a fractional-order dif-
ferential equation. First, let us define a system with fractional dynamics
represented with the following equation:

C
0 Dβ

t f (t) = g
(
f (t), t

)
. (15.14)

Then, with the L1 scheme a fractional derivative in the sense of Caputo
can be approximated as

C
0 Dβ

t f (t) ≈ dt−β

�(2 − β)

×
[

N−1∑
k=0

[
f (tk+1) − f (tk)

] [(
N − k

)(1−β) − (
N − 1 − k

)(1−β)
]]

.

(15.15)
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Now, if we take the right-hand side of Eqs. (15.14) and (15.15), solving for
f at time tN (f (tN )) that depends on all past values of f , that is, from f (t0) to
f (tN−1), we get

g
(
f (t), t

) ≈ dt−β

�(2 − β)

[
f (tN ) − f (tN−1)

+
N−2∑
k=0

[
f (tk+1) − f (tk)

] [(
N − k

)(1−β) − (
N − 1 − k

)(1−β)
]]

.

(15.16)

With some algebraic manipulations of Eq. (15.16) we obtain the numerical
solution of Eq. (15.14) as

f (tN ) ≈ dtβ�(2 − β)g
(
f (tN−1)

) + f (tN−1)

−
N−2∑
k=0

[
f (tk+1) − f (tk)

] [(
N − k

)(1−β) − (
N − 1 − k

)(1−β)
]
, (15.17)

where the Markov term weighted by the Gamma function is defined as

dtβ�(2 − β)g
(
f (tN−1)

) + f (tN−1), (15.18)

the kernel is dtα�(2 − β), and the memory trace is defined as

N−2∑
k=0

[
f (tk+1) − f (tk)

] [(N − k
)(1−β) − (N − 1 − k)(1−β)]. (15.19)

Eq. (15.19) can be divided into differentiation of the past values of (�f (tk)),
weighted by a function WN (β,k) as

(�f (tk)) = f (tk+1) − f (tk), for k = 0,1,2, . . . ,N − 1, (15.20)

WN
(
β,k

) = (
N − k

)(1−β) − (
N − 1 − k

)(1−β)
. (15.21)

It is important to recall that the memory trace contains information of all
previous activity of f . As we can see, in this numerical method there is a
computational problem due to the matrix expansion over the time. We also
want to recall that this solution requires at least two points at the begging.
Then f (t1) is computed using some classical integration method, such as
Euler or Runge–Kutta.
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15.3. Fractional-order dynamics in neuroscience

In this part of the chapter, we focus our attention on the study of the
effects to use fractional-order dynamics in three different neuronal systems.
The first example is the fractional leaky integrate-and-fire (LIF) model and
the second is the Hodgkin–Huxley model. In these two examples, we study
the generation of action potentials while the order range is (0,1) and the
adaptation when we use fractional-order dynamics. In the last example, we
study the effects of using fractional-order controllers applied to treat patho-
logical conditions which are modeled with oscillatory behavior in a neural
network. We use a PID controller that considers the fractional integral and
the fractional derivative terms and is known as PIαDβ controller.

15.3.1 History dependence in abstract models of action
potential generation

The classical version of the LIF model (Eq. (15.22)) is widely used to de-
scribe the spiking activity of neurons [9]. The system consists of a leaky
integrator and a voltage threshold. After the voltage crosses the threshold,
an action potential is generated and the voltage is reset to a resting value for
a fixed period (refractory period):

Cm
d
dt

V (t) = −gL (V (t) − VL) + I(t), (15.22)

where gL = 1/Rm is the conductance, V (t) is the membrane voltage, VL is
the resting potential, Cm is the membrane capacitance, and I(t) is the input
current. From Eq. (15.22) we can define the passive membrane time con-
stant as τm = Cm

gL
. The reset condition is as follows: if V (t) = Vth, then there

is a spike at time t and V (t) = Vreset, where Vth is the voltage threshold and
Vreset is the reset membrane voltage.

In order to provide long-term adaptation to the LIF model we made
use of fractional-order derivatives (Eq. (15.23)). We have

Cm
C
0 Dβ

t V (t) = −gL (V (t) − VL) + I(t), (15.23)

where C
0 Dβ

t represents the Caputo fractional derivative and 0 < β ≤ 1 is the
order of the derivative. The motivation to do such implementation stems
from increasing experimental evidence that shows that the firing rate of
real neurons follows multiple time scale dynamics [44,93] that arise from
the interaction of multiple active membrane conductances [48,92,101].
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To calculate an analytical solution Eq. (15.23) can be rewritten after
applying C

0 D1−β
t to both sides:

C
0 D1

t V (t) = − 1
τm

C
0 Dβ−1

t

[
(V (t) − VL) + I(t)

gL

]
. (15.24)

Using the Fourier–Laplace transform, we find the solution of Eq. (15.24)
as

V (t) =
(

VL + I(t)
gL

)
+

(
V (t0) − VL − I(t)

gL

)
Eβ

(
− (t − t0)β

τm

)
, (15.25)

where Eβ(x) is the Mittag-Leffler function defined as

Eβ(x) =
∞∑

k=0

xk

�(βk + 1)
. (15.26)

Note that the solution of Eq. (15.24) is guaranteed if and only if gL,Cm > 0
for all t > t0. A comparison of the analytical and numerical solution of this
model can be found in [89]. For all the simulations presented here, we used
the parameters in Table 15.1.

Table 15.1 Leaky integrate-and-
fire model parameters values.

Parameter Value
Cm 0.5 nF
VL −70 mV
Vreset −70 mV
Vth −50 mV
gL 25 nS

The subthreshold response of the fractional LIF model reflects the effects
of the fractional-order derivative. We injected a step current in a model
with β = 1, corresponding to the classical case (Fig. 15.2(A)), and β = 0.2,
corresponding to a model with strong history dependence. As expected,
the membrane voltage follows a power-law behavior for the case of β = 0.2
(Fig. 15.2(B)).

The complete model, with the spiking mechanism, shows adaptation to
constant input (Fig. 15.3). When β = 1, the model shows no adaptation in
the firing rate (Fig. 15.3(A)). As the value of β decreases, the response of
the neuron to the same constant input results in an adapting train of action
potentials (Fig. 15.3(B) and (C)).
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Figure 15.2 The membrane voltage response of the fractional leaky integrate-and-fire
model. (A) Top: Membrane voltage in the LIF with β = 1.0 in response to a 2.5-nA step
input current. The stimulus does not make the neuron reach the membrane threshold.
Bottom: The same data as in the top panel but in log-log scale. (B) The same as in (A) but
with the value of the fractional-order integral β = 0.2.

As mentioned in the introduction, history dependence results in neu-
rons changing their reaction rates, even when stimulated with identical
stimuli. In order to show this, we injected a sinusoidal current with constant
frequency and amplitude (Fig. 15.4(A)) into the fractional-order model. We
set the parameters in order to generate suprathreshold spiking at the peak of
the curve when β = 1 (not shown). Our results show that when the value
of β decreases (to 0.7 and 0.4), the spiking response of the neuron decreases
(Fig. 15.4(B)–(D)). For a value of β = 0.3 the neuron does not generate ac-
tion potentials during the first cycle of the sinusoidal input (Fig. 15.4(D)).
After the first cycle, the cell increasingly generates more action potentials
per cycle. A detailed description of these results can be found in [89].

We have extended our studies to investigate the behavior of networks
composed of fractional FIL neurons. As a first step, we built a two-neuron
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Figure 15.3 Spike adaptation in the classical and fractional leaky integrate-and-fire
model. (A) The classical model generates regular spiking when we inject a constant
input. (B and C) The fractional model shows the first spike latency and spike adaptation.
We applied the same input current to both models (3 nA).

Figure 15.4 Suprathreshold and spiking fractional dynamics to oscillatory inputs.
(A) Injected input current to the fractional model. (B–D) Spiking response in the frac-
tional model to the sinusoidal input (A).

network to study the effects of synaptic coupling and input noise:

Cm
C
0 Dβ

t V1(t) = −gL (V1(t) − VL) + I1(t),

Cm
C
0 Dβ

t V2(t) = −gL (V2(t) − VL) + I2(t).
(15.27)
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Both neurons had identical parameters. The neurons were connected
through synaptic weights ωij. The weights were positive and chosen ran-
domly. In this case, the input current is defined as

Ii(t) =
i∑

j=1

ωijδj(t) + Iext(t) + Inoise, (15.28)

where δj is the postsynaptic current generated by neuron j after it reaches
the threshold, Iext(t) is the injected input current, Inoise is a noisy input
current, and i is the neuron number. We did not consider connections
between each neuron and itself, with the weights being ω12 = 0.17 and
ω21 = 0.19. Both neurons received identical Iext = 3.5 nA. On top of that
input, we added white noise with an amplitude of 10 nA. When both
neurons were in classical mode (β = 1) the instantaneous firing rate of both
neurons was 18.23 Hz ± 8.10 Hz STD (see Fig. 15.5(A)). In contrast, the
network consisting of two fractional LIFs (β = 0.6) had a lower and more
stable firing rate (6.8 Hz ± 3.55 Hz STD) (see Fig. 15.5(B)). This analysis
suggests that fractional-order neural networks could be more robust to the
effects of noise.

15.3.2 History dependence in biophysical models of action
potentials

Individual conductances are modeled using the Hodgkin–Huxley equa-
tions. In the basic form of this model, the passive properties of the mem-
brane are complemented by adding voltage-dependent conductances for
the sodium and potassium currents [40]:

Cm
dV (t)

dt
= −[

gm (V (t) − Vl) + gkn4(t) (V (t) − Ek)

+ gNam3(t)h(t)(V (t) − ENa)
] + I(t), (15.29)

where gk is the maximum potassium conductance, gNa is the maximum
sodium conductance, and Ek and ENa are the reversal potential for the
potassium and sodium currents, respectively. The variables m(t), n(t), and
h(t) are called the gating variables and are defined by the general equation

d
dt

x(t) = αx (V (t)) (1 − x(t)) − βx (V (t))x(t), (15.30)

where x(t) = [n(t),m(t),h(t)]. The gaiting variables n(t) and m(t) are acti-
vation variables and the gaiting variable h(t) is an inactivation variable. The
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Figure 15.5 The effects of noise on a network of fractional-order integrate-and-fire
neurons. (A) Top: The spiking response of a network composed of two neurons (black
and gray). Both neurons are identical with β = 1.0, which corresponds to the classical
LIF model. The neurons receive strong noisy input and are synaptically coupled (see text
for details). Bottom: The instantaneous firing rate of each neuron. (B) Identical synaptic
and input current parameters as in (A) but with both neurons having a fractional order
of β = 0.6.

functions αx(V (t)) and βx(V (t)) are the forward rate and the backward rate,
respectively; these functions are defined as

αn (V (t)) = 0.1 − 0.01(V (t) − V0)

e(1−0.1(V (t)+V0)) − 1
, (15.31)

βn (V (t)) = 0.125e− (V (t)+V0)

80 , (15.32)

αm (V (t)) = 2.5 − 0.1(V (t) − V0)

e(2.5−0.1(V (t)+V0)) − 1
, (15.33)

βm (V (t)) = 4e− (V (t)+V0)

18 , (15.34)

αh (V (t)) = 0.07e− (V (t)+V0)

20 , (15.35)

βh (V (t)) = 1
1 + e(3−0.1(V (t)+V0))

. (15.36)

There is evidence that individual conductances can have history depen-
dence [23]. In order to investigate the effect of history dependence on
the voltage-gated conductances, we introduce the fractional operator C

0 Dβ
t .
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Now Eq. (15.30) results in

C
0 Dβ

t x(t) = αx (V (t)) (1 − x(t)) − βx (V (t))x(t), (15.37)

where C
0 Dβ

t represents the fractional derivative in the sense of Caputo and
0 < β ≤ 1 is the order of the derivative. For the simulations presented here
we used the parameters in Table 15.2.

Table 15.2 Hodgkin–Huxley
model parameters values.

Parameter Value
Cm 1.5 µF
gNa 120 ms
gk 36 ms
gm 0.3 ms
ENa 50 mV
Ek −77 mV
El −54 mV

In the past, we have studied the spike generation of the fractional-order
Hodgkin–Huxley model in response to a constant input current [90]. In
that study, we conducted a systematic analysis of the types of action poten-
tials generated by the model as a function of the value of the fractional order
for the three different gates (n, m, and h). We found that we could repro-
duce the shapes of action potentials generated by different neuronal types.
Furthermore, application of a constant input for long periods resulted in
the generation of complex spiking patterns. For example, when using the
classical version of the models (β = 1.0) the neuron generates a constant
firing rate (Fig. 15.6(A)). For the same parameters but with β = 0.6 in the
n-gate, the neuron generates a spike train that has an adaptation in the in-
terspike interval with subthreshold oscillations (Fig. 15.6(B), top). Now,
following our work on the fractional LIF we applied a sinusoidal current
(5 Hz) to this same simulation. The results show that the model generates
action potentials on the rising phase of the oscillation, but the action po-
tentials are not phase-locked. This variability is in the absence of noise and
is due to the combination of the spike time adaptation and subthreshold
oscillations with the slow oscillatory input current.
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Figure 15.6 Complex spiking patterns in the fractional-order Hodgkin–Huxley model.
(A) In response to constant (21 nA) input the classical (β = 1.0) Hodgkin–Huxley model
generates a spike train with constant firing rate. (B) Top: The same model as in (A) but
with a fractional order of β = 0.6 for the n-gate. Bottom: The same as top but with an
added oscillatory input current (5 Hz, 2 nA amplitude).

15.3.3 Fractional controllers applied to neuronal networks
So far, we have shown how to use fractional-order dynamics to model the
generation of action potentials. In this section, we will turn the problem
around. Instead of using fractional differential equations to model neuronal
function, we will use them to design controllers that could modulate the
activity of the brain. In particular, we are interested in an application known
as deep brain stimulation (DBS), which is used to control pathological oscil-
latory neuronal activity [4,26,30,45,55]. For example, in Parkinson’s disease
(PD) there are abnormal firing rate oscillations in the activity of the neu-
rons within the basal ganglia. These oscillations are usually in what is called
the beta range: ∼12.5 Hz to 30 Hz [5,28,61,64,76]. Fractional-order con-
trollers are of great interest for DBS applications because they are robust to
time changes in model parameters [57], they provide a fast response to ex-
ternal perturbations [102], and, since they have intrinsic memory, they can
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be used to predict sudden changes in the model and controller parameters
[50].

We designed a fractional-order PID (FO-PID) controller applied to a
mathematical model of the basal ganglia in order to treat oscillatory behav-
ior related to PD. For PD, DBS consists of applying short-period stimuli
to the internal segment of the globus pallidus (GP) or to the subthalamic
nucleus (STN) at a constant high frequency. The stimuli are performed
by implanting a multicontact lead to one of these parts [22,59]. The stim-
ulation is usually performed with fixed parameters and sporadic manual
adjustments are made when necessary [1,3,42,43,69,76]. Our model im-
plements a circuit of the basal ganglia with connections between the GP,
STN, striatum, and cortex (Fig. 15.7) [28,63,64]:

τs
d
dt

STN(t) = −STN(t) + Fs
(−ωgsGP

(
t − δgs

) + ωcsvs + u(t)
)
, (15.38)

τg
d
dt

GP(t) = −GP(t) + Fg
(−ωsgSTN

(
t − δsg

) − ωggGP
(
t − δgg

) + ωggvg
)
,

(15.39)

where the firing rates of the STN and GP are represented by STN(t) and
GP(t), respectively. The activation functions Fs and Fg can be defined as

Fs = Ms

1 +
(

Ms−Bs
Bs

)
e
( −4x

Ms

) , (15.40)

Fg = Mg

1 +
(

Mg−Bg
Bg

)
e
( −4x

Mg

) , (15.41)

where x is the input as shown in Eqs. (15.40) and (15.41). All parameters
are described in Table 15.3.

The function u(t) represents the input of the controller. In our work,
we use the fractional-order derivative with order in a range of 0 < α ≤ 1
and the fractional-order integral with order in a range of 1 ≤ β < 2 to get a
general representation of the PID controller. Then u(t) takes the form

u(t) = KPe(t) + KI
RL
0 Iα

t e(t) + KD
RL
0 Dβ

t e(t), (15.42)

where KP , KI , and KD are the action gains of the proportional, integral,
and differential components, respectively. The operators RL

0 Iα
t and RL

0 Dβ
t

represent the fractional integral and the fractional derivative, respectively
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Figure 15.7 Diagram of the basal ganglia model with the FO-PID controller. The net-
work model is composed of the globus pallidus (GP), the subthalamic nucleus (STN),
striatum and the cortex. The FO-PID controller measures the local field potential (LFP)
signal with an electrode in the GP, it calculates the error signal e(t), which is the differ-
ence between the STN and the STNd (setpoint), and injects the signal u(t) in the STN.
The synaptic weights (ωgs, ωsg, ωgg, ωxg, ωcs) and propagation delays (δgg, δgs, δsg)
affect the dynamics of the system. Synapses marked with → are excitatory and those
marked with • are inhibitory.

[70,71]. Note that when α = β = 1, the controller takes the form of a
classical PID controller.

We define the error function as

e(t) = STNd − LFP(t), (15.43)

where STNd is the target firing rate for the STN, LFP(t) represents the
local field potential in the GP, which receives inputs from the STN and
striatum. The LFP(t) is defined as

LFP(t) = ωsgSTN
(
t − δsg

)
, (15.44)

which is the weighted delayed activity of the STN (see Eqs. (15.40) and
(15.41)). According to Fig. 15.7 the controller measures the error and its
output is applied to the STN. A change in the synaptic weights between
the STN and the GP, the striatum and the GP, and the cortex and the
STN [28] results in the PD condition (see Table 15.4). All simulations were
performed using the GL numerical algorithm.

15.3.4 Lyapunov analysis
We performed a Lyapunov-based stability analysis to the model (Eqs. (15.38)
and (15.39)) with the FO-PID controller given in Eq. (15.42). First, we
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Table 15.3 Network parameters.
Parameter Value Description
δsg 6 ms Delay STN→GP
δgs 6 ms Delay GP→STN
δgg 4 ms Delay GP→GP
τs 6 ms Reaction time STN
τg 14 ms Reaction time GP
Ms 300 spk/s STN maximum firing rate
Bs 17 spk/s STN resting firing rate
Mg 400 spk/s GP maximum firing rate
Bg 75 spk/s GP resting firing rate
vs 27 spk/s Cortical input to STN
vg 2 spk/s Striatal input to GP

Table 15.4 Synaptic weights values.
Parameter Healthy Disease Connections
ωgs 1.12 10.7 GP→STN
ωsg 19.0 20.0 STN→GP
ωgg 6.60 12.3 GP→GP
ωcs 2.42 9.2 Cortex→STN
ωxg 15.1 139.4 Striatum→GP

denote δ = max
{
δgs, δsg, δgg }, and we define xt (γ ) = x (t + γ ), for t ≥ 0 and

xt ∈ C [[−δ,0] ,R] with −δ ≤ γ ≤ 0. Let

f (t, ϕt, φt) = −ϕ(t)

+ Fs

(
−ωgsφt + ωcsvs + KPe(t) + KI

RL
0 Iα

t e(t) + KD
RL
0 Dβ

t e(t)
)

,

(15.45)

g (t, ϕt, φt) = −φ(t) + Fg
(
ωsgϕt − ωggφs − ωxgvg

)
,

and let (STN(t),GP(t)) be a solution of Eq. (15.43) with initial conditions{
STN (t;0, ϕ0, φ0) = ϕ0(t), −δ ≤ t ≤ 0,

GP (t;0, ϕ0, φ0) = φ0(t), −δ ≤ t ≤ 0,
(15.46)

where ϕ0, φ0 are continuous functions on [−δ,0].
Now, we denote by GPd the state corresponding to STNd. Consider

the Lyapunov-like functions

V (t,STN ,GP) = |STN − STNd| + |GP − GPd| . (15.47)
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We evaluate the derivative of the continuous function V (t,STN ,GP) with
respect to the system given in Eqs. (15.38) and (15.39) as follows:

D+
4 V (t, ϕ(t), φ(t))

= lim
h→0+ sup

1
δ

[
V

(
t + h, ϕ(t) + hf (t, ϕt, φt) , φ(t) + hg (t, ϕt, φt)

)
− V (t, ϕ(t), φ(t))

]
. (15.48)

There are positive constants Ls and Lg for the sigmoid activation functions
Fs and Fg such that

∣∣Fs(x) − Fs(y)
∣∣ ≤ Ls

∣∣x − y
∣∣ ,∣∣Fg(x) − Fg(y)

∣∣ ≤ Lg
∣∣x − y

∣∣ , (15.49)

for all x,y ∈ R, x 	= y, and we also have Fg(0) = Bg ≥ 0, Fs(0) = Bs ≥ 0.
Then for t ≥ 0 and for any ϕ ∈ C [[t − δ, t] ,R], φ ∈ C [[t − δ, t] ,R] such

that V (t + γ,ϕ (t + γ ) ,φ (t + γ )) < V (t, ϕ(t), φ(t)), γ ∈ [−δ,0), we have

D+
7 V (t, ϕ(t), φ(t)) ≤

(
−1

τ
+ A

)
V (t, ϕ(t), φ(t)) , (15.50)

where − 1
τ

= min
{

1
τs
, 1

τg

}
and

A = max

{
ωgsLs

τs
+ ωggLg

τg
,

ωsg

(
1
τs

Ls

(
KP + KI

Ic

� (α)
+ KD

Dc

� (m − β)

)
+ 1

τg
Lg

)}
, (15.51)

where Ic and Dc are constants that allow to compute the reference gain from
the fractional integral action and fractional derivative action.

If 1
τ

≥ A, then D+
4 V (t, ϕ(t), φ(t)) ≤ 0, and based on the theory of de-

layed systems (see [27]), the state (STNd, GPd) is stable. Note that if there
is a constant c > 0 such that 1

τ
− A ≥ c > 0, then D+

4 V (t, ϕ(t), φ(t)) ≤
−cV (t, ϕ(t), φ(t)); this assumption guarantees exponential stability. Some
results using this approach can be found in [82–84]. In these systems the
Mittag-Leffler stability generalizes the exponential stability concept. Our
Lyapunov-based stability analysis indicates that the state variables STN(t)
and GP(t) could be controlled and synchronized. However, the condition
1
τ

− A ≥ c > 0 is very restrictive.
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Figure 15.8 System response in Parkinson’s disease condition and with the PID con-
troller. (A) The firing rate of the subthalamic nucleus (STN) and the globus pallidus (GP)
is constant when t < 0; when t > 0 the synaptic parameters change and the system
presents pathological oscillatory behavior (see Table 15.2). (B) The same simulation as in
(A) but now the system is in a closed-loop with the PID controller with Kp = 15, Ki = 115,
and Kd = 0.15. The firing rate of the STN now is regulated to the set point (22 Hz).

15.3.5 Reducing pathological neuronal oscillations with a
FO-PID controller

A nonpathological condition is when the firing rate in the neural network
has a stable firing rate in the STN and GP (Fig. 15.8(A), t < 0). If the
synaptic parameters change (Table 15.4), then the firing rates in both ar-
eas present oscillation in the beta range (12 Hz, Fig. 15.8(A), t > 0). We
considered the system under control when the STN activity has a value
within 10% of the desired firing rate (22 Hz) in the last 0.2 seconds of the
simulation. In order to regulate this oscillatory activity, we first tuned the
PID controller. We fixed the proportional gain to KP = 15, performed a
parameter sweep of each gain separately, and determined the range of val-
ues in which the system was under control. In the case when KD = 0 and
KP = 15, the gain sweep of KI resulted in a range of KI = (0,856), and
when KI = 0 and KP = 15, the gain sweep of KD resulted in a range of
KD = (0,0.19). We chose the set of gains (KI = 115, KD = 0.15, KP = 15)
to show how the controller damped the oscillatory behavior to the target
firing rate in the STN and GP (Fig. 15.8(B)).

Using the same approach, we calculated the gain range of the FO-
PID controller. In this case we also changed the fractional orders of the
differential and integral components. We fixed KD = 0.15 and performed
a sweep of the KI gain while increasing the order in the integral term.
This analysis showed an increase in the range of KI = (0,1967). Then, we
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Figure 15.9 Phase plane of the memory trace of a FO-PID controller against the spik-
ing activity in a computer model of Parkinson’s disease. (A) Phase portrait between the
memory trace and the subthalamic nucleus (STN) when the system is under control
(KI = 115, KD = 0.15, KP = 15). The memory trace and the STN generate an attractor
which takes the system into a stable state. (B) The same as in (A) but now without the
control; the system never gets into the attractor and hence it is unstable.

performed a similar analysis but now fixing KI = 115 to determinate the
range of the KD gain while we decreased the order in the derivative term.
This result shows that the range of KD expands to KD = 22. These analyses
show that the ranges of KI and KD are expanded in the fractional case which
indicates a multifold increase in the range of operational gains compared to
the classical PID controller.

We analyzed the system phase portrait between the memory trace and
the STN in the stable and unstable cases. When the system is stable the
memory trace generates an attractor, which takes the system into a stable
state (Fig. 15.9(A)). In contrast, when the system is not under control,
the system never falls into the attractor; in fact, the system behavior grows
unbounded, which proves that the system is not stable (Fig. 15.9(B)). We
show that the memory trace provides a negative feedback which generates
an attractor and takes the system into a stable state. When no control is
applied, the system never gets into an attractor and hence the system is
unstable.

We also studied the robustness of the neural network to changes
in synaptic parameters. In the system, the oscillatory conditions occur
when there is an increase in synaptic weights between GP→STN (ωgs),
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STN→GP (ωsg), and GP→GP (ωgg); other synaptic changes did not gen-
erate oscillations. In order to determinate the synaptic parameter space, we
randomly ran 760 simulations with the combination of the three parame-
ters distributed from 0% to 200% of the values given in Table 15.4. At each
simulation we used the fractional order of the integral α = (1,1.3,1.5,1.7)

and derivative β = (0.3,0.5,0.7,1). Each time simulation lasted 5 seconds,
with the first 2.5 seconds with the normal synaptic parameters and the last
2.5 seconds with the increased values of these parameters. Our results show
that only the values of ωgs and ωsg affect the system when it is under control.
The value of ωgg did not contribute to the control of the simulation, except
for the cases in which there was a strong self-inhibition that shuts down the
activity in the GP. Our analysis shows that when we used a classical PID
controller, only 57% of the simulations converge; in contrast, when we
used the FO-PID controller this percentage increased to 82%. Our com-
plete analysis of the data proves that maximum robustness of the FO-PID
controller is obtained when α = 1.3 and β = [0.5,1]. Thus, a FO-PID con-
troller can expand the robustness in controlling the onset of oscillations due
to changes in synaptic weight parameters that affect the network dynamics.
A detailed description of this work can be found in [13].

15.4. Discussions and conclusions

In this chapter, we presented an overview of how to use fractional-
order differential equation models in neuroscience. We concentrated on
two different aspects. In one, we showed that fractional-order dynamics in
the membrane voltage or the activation of membrane conductances repli-
cate complex spiking activity. From a different perspective, we showed that
fractional-order PID controllers could be a robust solution for DBS systems.
Altogether, our work shows that fractional-order systems can be widely ap-
plied in neuroscience, from modeling to neuro-engineering.

Fractional-order dynamics is not only applied to modeling membrane
voltage and spiking activity. In fact, our original experimental and model-
ing work concentrated on the diffusion rates of intracellular signals. Here
we found that diffusion in complex dendritic trees follows subanomalous
diffusion, a well-known process described with fractional-order equations
[77,78]. In these studies, we linked the shape and density of dendritic
spines, the site of most excitatory synapses, to the anomalous exponent
(the fractional order of the diffusion equation in time). The models not
only replicated experimental results, but also provided a new perspective in
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understanding the function of dendritic spines as “traps” for diffusing sig-
nals along dendrites. Multiple theoretical works have been inspired by our
results [35,62,81,100].

If, indeed, neurons follow fractional-order dynamics, it is necessary to
understand how those properties are reflected in neural network dynamics.
It is well known that the fractional differentiation of order β of a signal
with a power spectrum that follows a power law of the same order results
in an output signal with a flat power spectrum [51,99]. This is known as
whitening the noise and is a hallmark of optimal coding [60]. This could
indicate that neurons that perform a fractional-order derivate of their input
could be optimally coding their inputs, thus facilitating efficient compu-
tation in the brain [36]. There are multiple challenges to investigate the
effects of fractional-order neuro-dynamics on networks; some of the ones
that we think are more pressing are in the areas of coding and of learning
and memory [18,52,72].

We also presented a very different application of fractional dynamics in
which we used it to design a FO-PID controller to reduce modeled patho-
logical oscillations. Here we combined mathematical analysis with simu-
lations. Lyapunov stability analysis is a powerful and universal method for
investigating dynamical systems [11,47]. The well-constructed Lyapunov
function that we presented allows the area of stability to be evaluated in
the phase space as well as in the space of the parameters. Our analysis in-
dicates that the state variables STN(t) and GP(t) could be controlled and
synchronized. The simulations showed that the robustness of the FO-PID
controller was multiple times that of the classical controller. This study al-
lows us to understand how fractional dynamics improve the robustness in
the controller and, while the neuronal model was highly simplified, our ob-
jective was to provide a proof-of-principle about the increase in robustness
of history-dependent controllers for DBS applications. Future work should
include realistic neural networks and an expanded stability analysis in order
to guarantee convergence over a wide range of changes in neuronal activity
[10,19,73]. The neuronal phenomena we are trying to control consist of the
sudden emergence of pathological oscillations; therefore, Lyapunov stability
extended to non-smooth systems should be considered in future extensions
of this research [103]. Although closed-loop controllers have been studied
to suppress the pathological beta oscillations associated with PD, there are
still some challenges on how to properly tune the controllers considering
the DBS signal constraints, and since this is an invasive technique there
is a need to be careful with its proper application [21]. Thus, our study
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provides a proper background on the implementation, tuning, and future
applications of closed-loop controllers.

As a final comment, we want to point out that fractional-order dynam-
ical systems are a promising tool to study neuronal function and behavior.
However, there are multiple challenges to tackle. For example, what is the
biophysical origin of the scale-free behavior? In some cases, we have exper-
imentally shown that the complex dendritic structure of neurons is directly
related to anomalous diffusion phenomena in different types of neurons
[78]. However, while fractional-order behavior is observed at all neurobi-
ological scales, the biophysical substrates of such activity remain unknown.
Another question is whether the emergence of fractional-order dynamics
is related to systems with a large number of times constants or whether it
is because there are strong interactions across scales that result in systems
outside equilibrium. This could be happening in the open-closed states of
voltage-gated channels; however, this requires further study. Ultimately, it
is important to determine if fractional-order dynamics provides an advan-
tageous computational strategy to the organism. We have suggested that
history dependence is a mechanism to increase the computational capacity
of neurons, and as such, we propose that scale-free history-dependent pro-
cesses produced by evolutionary pressures allow organisms to continuously
adapt to an ever-changing environment.
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ChapterPoints

• This chapter discusses the concept of bio-impedance measurements and the
woody plant stem structure.

• A comparison between the traditional bio-impedance models used for woody
plants and a modified model is provided.

• The employed bio-impedance models parameters are extracted to find the best
characterizing model.

16.1. Introduction

Bio-electrics is the study of the electrical properties and behaviors
of biological tissues [1]. Our focus here is on plant tissues with different
functions depending on their location in the leaf, stem, or root [2,3], and
particularly on woody tissue, which is composed of two main cell types:
the xylem and the phloem. Xylem cells are responsible for one-directional
transportation, forming long chains of small interconnected tubes to trans-
port water and nutrients to the leaves. Phloem cells are responsible for
two-directional transportation, transporting sugar and food [4].

Bio-impedance is the produced electrical impedance spectra (magnitude
and phase) of biological cells under sufficiently small AC signal (voltage or
current) stimulus, as shown in Fig. 16.1(a). Two-electrode, three-electrode,
or four-electrode configurations can be used to measure bio-impedance,
which changes significantly based on the tissue morphology, extra- and

Fractional-Order Modeling of Dynamic Systems with
Applications in Optimization, Signal Processing, and
Control
https://doi.org/10.1016/B978-0-32-390089-8.00021-0

Copyright © 2022 Elsevier Inc.
All rights reserved.

457

https://doi.org/10.1016/B978-0-32-390089-8.00021-0


458 Menna Mohsen et al.

Figure 16.1 Current path inside a tissue due to (a) an AC signal applied over tissue (b) at
low frequencies and (c) at high frequencies.

intracellular resistance, shape, type, structure, location, health status, and
chemical composition [1]. When excited by a voltage signal, the current
paths through the tissue differ depending on the applied frequency [5–7].
At low frequencies, current passes mainly through the extracellular space
around the cells, as shown in Fig. 16.1(b), while at higher frequencies,
the impedance of the cell becomes lower due to its capacitive nature, and
hence the current flows everywhere according to local ionic conductivity,
as depicted in Fig. 16.1(c). Thus, it is important to cover a wide range
of frequencies when measuring bio-impedance with a sufficient number of
points in this range. This task is usually conducted using an electro-chemical
station, as shown in Fig. 16.2. Bio-impedance measurements contribute
greatly to the study of plant responses to certain conditions such as fruit
ripening [8], the analysis of fruits under heating conditions [9], and ma-
turity assessment of fruit [10]. It is also used in many medical applications
such as blood storage [11], noninvasive health monitoring [12], and disease
determination [13]. Also, bio-impedance measurements are conducted to
estimate the quality of wood, such as its chemical structure, which has a
significant effect on the development of mold on the wood [14]. The in-
teraction between mold development and wood characteristics is used as
the main factor in evaluating the effect of wood quality on its robustness
against mold and decay. Wood characteristics under mold growth were in-
vestigated using bio-impedance measurements in [15].

Fractional calculus is the study of integrals and derivatives of noninte-
ger order, where the ordinary integer calculus is a limited set of fractional
calculus. Fractional-order modeling has many benefits, including the added
degree of freedom and the memory dependency in the fractional derivative
definition, which increase the flexibility and controllability of any de-
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Figure 16.2 Impedance measurement of Schefflera Arboricola using a Biologic SP150
station.

sign [16,17]. Fractional-order derivatives are nonlocal operators containing
memory traces. This means that the present response of a system modeled
with such derivatives is a result of all past excitations up mostly until the
characteristic time constant of the system which is important to the un-
derstanding of many applications. Recently, fractional calculus has become
the pioneer in many fields such as bio-engineering [18,19], chemistry [20],
chaotic systems [21–23], filters [24,25], physics [26], mechanics [27,28],
robotics [29], encryption [30,31], control systems [32], finance [33], wire-
less power transmission [34], viscoelasticity [35], oscillators [16,36], and
supercapacitor modeling [37].

Several definitions were introduced in the literature for fractional-order
differentiation; the most famous definition, preferably employed in analog
designs, is the Caputo derivative [38] defined as follows:

C
a Dtα f (t) = 1

�(m − α)

∫ t

a
(t − τ)(m−α−1)f (m)(τ )dτ, (16.1)

where m − 1 < α ≤ m, m ∈ N . By setting a = 0, the Laplacian transform of
Eq. (16.1) is given by [38]
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L [C0 Dtα f (t)] = sαF(s) −
m−1∑
K=0

sα−K−1Dkf (0). (16.2)

At zero initial condition the definition reduces to [39]

L [C0 Dtα f (t)] = sαF(s). (16.3)

Using these extra degrees of freedom from the fractional order, it is possible
to define a general fractance device [39]. A special case of fractance devices
is the constant phase element (CPE), whose impedance is represented by

ZCPE = 1/(sαC), (16.4)

where C is a pseudocapacitance value and α is the fractional order, typically
in the range of (0 < α < 1). This continuous range of the fractional order
enables capturing the self-similar fractal-like structure of biological tissues,
which translates into an equivalent infinite self-similar resistor-capacitor
impedance network.

Various bio-impedance circuits were introduced in the literature to
model the electrical properties of plant tissues [18]. The single dispersion
Cole-impedance model is the first representation for the bio-impedance
introduced by the Cole brothers in 1940 [40]. It became a popular model
to represent biological tissues because of its simplicity in fitting with actual
data. The double dispersion Cole-impedance model is a second generation
of the single dispersion Cole-impedance model, which was used for a wide
range of frequencies [2]. In 1969, the Hayden model was introduced in
[41], which consists of a resistance representation of the extracellular re-
sistance, the intercellular resistance, the plasma membrane resistance, and a
capacitance representation of the plasma membrane capacitance. However,
the model showed some defects between the theoretical impedance and
the measured one, as it is more generic to mimic the plant tissues precisely
because of the negligence of the vacuole representation in the tissue [1].
The double-shell model was introduced in 1990 to overcome the Hayden
model’s defects, as it took into consideration the vacuole representation in
the tissue [5–7]. However, the model showed many defects in fitting data
at low frequencies [2]. A more detailed model was also introduced in [42]
where two resistances were added, representing the plasma membrane and
tonoplast resistances. It was more complicated than the original double-
shell model, and it did not improve the accuracy of curve fitting, so it
was not used practically. In [1], the Hayden and double-shell models were



Modeling woody plant tissue using different fractional-order circuits 461

generalized into the fractional-order forms to get a better fitting for the
measured data.

In [43–45], bio-impedance models were used for human skin measure-
ments, while in [46] and [47] they were used for diagnosis of aging and to
measure the pressure on the human skin, receptively. Also, bio-impedance
was used on mouse muscles [48,49], on rat brains [50], and for testing
the effect of the chilling process on pork loins [51]. In agriculture, it was
used for monitoring fruits during pre- and postharvest [52–54] and for
quantifying the physical changes in fruits during freezing and heating pro-
cesses [9,55,56]. Bio-impedance was also used for environmental purposes
[57–60].

There are two types of measuring bio-impedance: direct and indi-
rect methods. Direct methods use portable/bench devices such as Livium,
PalmSense3, SP150, and PSM3750 Newton4th. The indirect methods de-
pend on embedding the tested tissue inside an analog circuit and then post-
processing through an optimization technique to extract the bio-impedance
model parameters. From the perspective of the indirect method, step re-
sponse measurements were used to extract the Cole-impedance model
parameters for fruit samples in [61]. In [19], a new technique is used by
embedding the sample in an oscillator circuit to estimate its parameters us-
ing two measurements. A Kramers–Kronig transform was used in [62] to
estimate the phase while measuring only the magnitude response. Then the
measured magnitude and the estimated phase are used to extract the model
parameters [62]. In [63–65], magnitude-only response measurements were
used to identify the model parameters.

A common woody house plant, Schefflera Arboricola, is used in this work
(See Fig. 16.2) [66]. It is a member of the flowering woody plants in the
Araliaceae family, which can grow very tall and is widely used in medic-
inal herbal products [67] since it contains fumaric gamma-hydroxybutyric
acids [68,69]. It has also been used in liver meridian disease medicine [70]
since it enhances blood circulation, relieves pain, and stops bleeding [71].
It has also been used recently to treat rheumatoid arthritis, numbness in
the limbs, abdominal pain, headaches, arthralgia, and swollen throat [72].
Also, S. Arboricola can be grounded into a paste to treat injuries and stop
bleeding [71].

Plant wood is a complex tissue where several studies proposed suitable
circuit models to properly fit its measured impedance values, such as in
[73], where the fractional-order double-shell model was used. The Cole-
impedance model was used in modeling the wood tissue in [74] as well as
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a modified version in [75]. Other studies modeled wood by using different
approximations for the CPE [76].

This chapter proposes a modified model for wood tissue and com-
pares it with the fractional-order double-shell model, triple dispersion
Cole-impedance model, and the model introduced in [75]. In particu-
lar, we employ a triple Cole impedance model, chosen to increase the
degrees of freedom to improve the fitting accuracy. The modified model
was inspired by double-shell model, which offers the best fitting of the
measured data using the optimizer Zfit of the impedance analyzer SP150.
The models are tested experimentally on S. Arboricola plant sample using
SP150.

This chapter is organized as follows. Section 16.2 describes the wood
cell structure’s characteristics. Section 16.3 shows an overview of the em-
ployed bio-impedance circuit models. Section 16.4 discusses the experi-
mental setup, presents the results, and provides a discussion. Section 16.5
concludes the chapter.

16.2. Woody cell structure

Woody plants are the source of essential products such as food,
medicines, oils, lumber, and fuel. Trees modify their growth according
to their environment, such as light intensity, wind, temperature, and soil
fertility [77].

Woody plants have two different types of transportation cells, as shown
in Fig. 16.3. Xylem (Fig. 16.3(a)) moves water and solutes from the roots
to the leaves. Phloem (Fig. 16.3(b)) moves glucose made in the leaves by
the photosynthesis process and amino acids to the rest of the plant [78].

The arrangement of the xylem and the phloem is different in the stem
and the roots. The xylem and the phloem are found in groups called vas-
cular bundles. The position of these bundles changes from one part of the
plant to another. Both xylem and phloem are made of rows of cells that
form a continuous tube running the whole length of the plant [79].

Xylem vessels, which act as hydraulic systems, are made of dead cells
impermeable to water. The walls contain woody materials, so xylem ves-
sels are rigid, and the vascular bundles of the roots are in the center. The
presence of the vascular bundles of the roots in the center helps the plant
protect itself and adds more stability to it, as it is hard to pull out. In the
stem, the vascular bundles are near the edge to give the stem strength and
prevent it from bending [78,79].
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Figure 16.3 Woody transportation in (a) xylem and (b) phloem cells.

Phloem vessels are made of living cells. These cells are called sieve cells,
forming sieve elements connected by sieve plates (small pores). They are
responsible for transporting sucrose and amino acids up and down the plant,
depending on where they are needed [77,79].

16.3. Bio-impedance models overview

Four different circuit models for wood tissue are shown in Fig. 16.4.
The fractional wood model (FWM) is depicted in Fig. 16.4(a), the double-
shell model is shown in Fig. 16.4(b), and Fig. 16.4(c) shows the triple
dispersion Cole-impedance model. Finally, a modified wood model is pro-
posed in Fig. 16.4(d).
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Figure 16.4 Most common bio-impedance models used for plant tissue modeling.
(a) Fractional wood impedance circuit [75]. (b) Double-shell model [7]. (c) Triple disper-
sion Cole-impedance circuit. (d) Modified wood model impedance circuit.

An integer-order circuit model for wood tissue was introduced in [75],
which consists of an RC ladder. However, It was large and did not provide
the best fitting results. A fractional-order model (FWM) was introduced
in [75], to reduce the number of elements in the RC ladder-equivalent
network. The components of the circuit shown in Fig. 16.4(a) have an
equivalent impedance given by

ZFWM = 1
sαCα

+ R1

1 + sβR1Cβ

. (16.5)

The fractional-order double-shell model presented in Fig. 16.4(b) was
used to characterize the plant tissues and was also used to characterize the



Modeling woody plant tissue using different fractional-order circuits 465

wood tissue in [5–7]. The impedance can be written as follows:

ZFDS = R1(R2 + R3
1+SαCαR3

)

R1 + (R2 + R3
1+SαCαR3

)
. (16.6)

The double dispersion Cole-impedance model is the extended version
of the single dispersion Cole-impedance model to describe the impedance
for more complex material over a wide range of frequencies. The triple
Cole-impedance model (TCM) shown in Fig. 16.4(c) is the third exten-
sion, and the equivalent impedance is written as follows:

ZTCM = R∞ + (R1 − R∞)

1 + sαR1Cα

+ (R2 − R∞)

1 + sβR2Cβ

+ (R3 − R∞)

1 + sγ R3Cγ

. (16.7)

Finally, a modified wood model (NM) is proposed in Fig. 16.4(d). The
modification is the addition of the parallel resistor R1 to the wood model
shown in Fig. 16.4(a). The equivalent impedance of this model is

ZNW = R1Z1

R1 + Z1
, (16.8a)

Z1 = 1
sαCα

+ R2

1 + sβR2Cβ

. (16.8b)

16.4. Experimental setup

The woody plant S. Arboricola, from the Araliaceae family, which is
widely used in medicinal herbal products, was selected. The woody stem
of S. Arboricola was first measured using the SP150 impedance analyzer
module, as shown in Fig. 16.2, where the plant is 1 m above the floor. Two
crocodile electrodes were used for measuring the woody stem of the plant,
where the length of the stem is about 10 cm and the diameter is about
11 mm. The interelectrode distance was first set to 8 cm and subsequently
changed to 3 cm, 5 cm, and 8 cm, as shown in Fig. 16.5.

The measured impedance data were fitted to the four mentioned circuit
models using the optimizer Zfit of the impedance analyzer SP150. The
results were then recorded to be compared, as shown in Table 16.1.
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Figure 16.5 Experimental setup for three different interelectrode positions. (a) Posi-
tion 1. (b) Position 2. (c) Position 3.

16.4.1 Results and discussion
The results for each interelectrode position using each of the models are
given in Table 16.1, where the first position is 3 cm, the second is 5 cm,
and the third is 8 cm. The impedance Nyquist plots for all used models at
each position are shown in Fig. 16.6. As shown in Fig. 16.7, the fractional-
order double-shell model has the highest percentage of error in all positions
as it moves between 31% and 49%. The highest percentage of error is the
result of the nonreasonable parameter values reported in Table 16.1. For
example, in position 1, the value of R2 is equal to 0.537 n� (which is
nearly zero), while for position 2, Cβ is 0.25e-21 F, which means that it is
an open circuit. R2 is very high as it also mimics an open circuit, and R3 is
zero, which means a short circuit. This means that the double-shell model
failed to fit.

The FWM has reasonable parameters for all three positions, but the
percentage error is still high: they are 15%, 35%, and 11% for positions 1, 2,
and 3, respectively. The percentage error for the most significant position
(position 3) is the least. Meanwhile, this model could fit well for high
impedances only. However, the percentage error for position 3 is still high.

The triple Cole-impedance model has a smaller percentage error com-
pared with the previous two models, as shown in Fig. 16.7, where the
highest error values are 4.55%, 11%, and 5.4% for positions 1, 2, and 3, re-
spectively. However, the parameter values are unreasonable, and the model
has the highest number of elements. This means that this model’s higher
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Table 16.1 Fractional wood model parameters.
Model Parameter Position

Position 1 Position 2 Position 3
FD

S
α 0.5172 0.4840 0.4823
Cα 1.272 µF 0.128 µF 1.42 nF
β 0.5584 0.6812 0.5788
Cβ 93.61 nF 0.206e-21 F 33.15 µF
R1 273.016 k� 247.958 k� 1444 k�

R2 0.557 n� 0.17e309 � 1.529 k�

R3 52.108 k� 0 � 183.396 k�

FW
M

α 0.3802 0.3021 0.6206
Cα 3.827 µF 4.45 µF 15.5 nF
β 0.5796 0.6213 0.2743
Cβ 84.5 nF 26.7 nF 2.27 µF
R1 40.178 k� 108.7 k� 101.58 k�

T
C

M

R∞ 9.827 f� 27.16 f� 4.2e-114 �

α 0.5074 0.4722 0.4186
Cα 1.878 µF 1.988 µF 1.839 µF
(R1 − R∞) 235.871 k� 490 k� 1.6 M�

β 3.491 μ 0.53884 μ 0
Cβ 18300 GF 30 nF 7.68e-192 F
(R2 − R∞) 12.093 k� 112.5 k� 124 m�

γ 0.5596 0.9252 0.5934
Cγ 18.5 nF 0.121 pF 27 nF
(R3 − R∞) 44.134 k� 5.39e-12 � 141.67 k�

N
M

α 0.5172 0.4784 0.4228
Cα 1.27 µF 1.293 µF 1.55 µF
β 0.5584 0.5819 0.5940
Cβ 93.61 nF 31.91 nF 27.59 nF
R1 273.016 k� 597.275 k� 177 k�

R2 52.108 k� 137.826 k� 154.446 k�

number of degrees of freedom is not enough to give reasonable parameters.
For example, the value of R1 in all positions is very low, which means it
is a short circuit all the time. Also, the dispersion coefficient β is nearly
zero, which acts as an open circuit. That means the triple dispersion Cole-
impedance model is not the optimum circuit model to represent the wood
structure.

Finally, the modified wood model results shown in Table 16.1 have rea-
sonable values, whereby increasing the interelectrode distance increases R2,
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Figure 16.6 Experimental Nyquist plots and fittings for the three interelectrode posi-
tions using all models. (a) Position 1. (b) Position 2. (c) Position 3.

decreases Cβ , and increases Cα. This model has the smallest percentage
errors, as shown in Fig. 16.7, which are 4.55%, 11%, and 5.4% for posi-
tions 1, 2, and 3, respectively. That proves the modified wood model is the
best circuit model to represent the wood structure.

16.5. Conclusion

This chapter surveyed the most suitable bio-impedance models for
wood tissue. A modified model was introduced and compared to three dif-
ferent models (double-shell, modified triple dispersion Cole model, and
traditional wood model). The modified circuit model showed the smallest
percentage of fitting error when compared to the measured data. Three
different electrode positions were tested, where the modified wood model
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Figure 16.7 Percentage error for the three positions in all models. (a) Position 1. (b) Po-
sition 2. (c) Position 3.

managed to fit well over the different positions with the smallest percent-
age error. Other optimizations could be used in future studies such as
metaheuristic optimizations and different woody plant types, giving better
accuracy and a lower fitting error, overcoming some models’ limitations.
(See Table 16.2.)
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17.1. Introduction

The momentous responsiveness of academic and industrial research
and development (R&D) towards the investigation, enhancement, and im-
plementation of neuron models is outstanding. A number of applications
of artificial neural networks (ANNs) have been explored and spiking neu-
ral networks [2] like artificial intelligence (AI), deep learning (DL), and
machine learning (ML) are results of such research. Consequently, numer-
ous models and designs have been offered and realized for procurement
of ANNs and/or SNNs to efficaciously impersonate the characteristics
of the brain, like image and voice recognition, pattern classification, chat
bots, attribute identification, memory, etc. However, in [44,45], it has been
confirmed that electrical properties of some membranes are exactly gov-
erned by fractional-order differential equations (FODEs). It is worth to
note that the fractional-order calculus (FOC) was an unexplored branch of
mathematics and engineering because of its intrinsic complexity. The unex-
ploredness of FOC [22] was due to the fact that it does not have completely
satisfactory geometrical or physical interpretation [43,69]. The fractional-
order derivative can be defined as “the derivative that has arbitrary order
and order can be complex or real.” However, it characterizes more pre-
cisely some natural behavior associated with different areas of engineering,
and now it is used as a promissory tool in bioengineering [46,60], viscoelas-
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ticity [15,25], electronics [38,56], robotics [39,58], control theory [7,16],
signal processing [53,66], etc. The fractional-order neural networks (FO-
NNs) are also well suited for the development and investigation of other
allied areas, as depicted in [14,57], and provide the added feature for gov-
erning dynamical system performance. In addition, the FO derivative is
governed by preceding responses, i.e., FO systems have memory and as the
fractional order approaches a minimum value, the dependency of the out-
put on earlier states rises. In the recent past, a lot of effort has been made
towards the development and investigation of FO complex dynamical be-
havior of the ANNs [4,8,19,21,31,34–36,42,64,65,72].

Due to the rapid advent of modern computer technology, the com-
puting power has increased tremendously. However, despite the obvious
advantages of the ANNs, like the ones discussed above, hardware design
approached of ANNs have not advanced so much. The hardware design of
ANNs is efficient due to intrinsic speed and an extremely parallel nature.
During the recent past, there has been a tremendous growth in the hard-
ware implementation of the neuron models and networks based on them
[6,12,20,23,47,48,52,55,61,68,70].

The rudimentary component of ANNs is a “neuron.” Therefore, nu-
merous mathematical models have been proposed [1,5,18,23,26–28,30,37,
50,59,62,64]. One of the most important characteristic models that por-
trays a huge diversity of dynamics is the FitzHugh–Nagumo (FHN) model
[29,30]. For conventional-order, i.e., integer-order, FHN neuron mod-
els, quite a few digital as well as analog (field programmable analog array
[FPAA])-based realizations exist in the literature [9–11,24,32,40,52,70].
However, a more important version of the FHN model, i.e., the FO-FHN
neuron model, is investigated and implemented in [3,4,41,49,67,71]. For
analog realization of the neuron models, discrete or of-the-shelf compo-
nents like resistors, capacitors, inductors, etc., are employed, which con-
sume much power and are very bulky, which makes them unsuitable to
fabricate large ANNs and unfit for the realization of complex ANNs. How-
ever, VLSI realization of complete FHN models employs transistors (bipolar
junction transistors [BJTs], complementary metal oxide semiconductors
[CMOS]), operational amplifiers (Op-Amps), and operational transcon-
ductor amplifiers (OTAs), consume low power, and are suitable to fabricate
large ANNs. Another analog realization uses FPAA boards which consist of
switched capacitor circuits for realizing the various models. For digital real-
ization, i.e., field-programmable gate array (FPGA)-based design, there are
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various FPGA boards available commercially that are used to realize various
models.

In this chapter we demonstrate the realization of FO-FHN models in
three ways: (i) using low-voltage low-power CMOS circuits in companding
mode, i.e., using sinh-domain implementation, (ii) using FPAA boards, and
(iii) using FPGA boards.

17.2. Fractional-order FitzHugh–Nagumo (FO-FHN)
neuron model

In 1961 Richard FitzHugh developed a mathematical neuron model
[68]. The FHN model is alternatively called the Bonhoeffer–van der Pol
model. In the following year, J. Nagumo created the equivalent circuit of
this model [51] and described a prototype of an excitable system. The FHN
model is a superior version of the relaxation oscillator as it displays a specific
excursion in phase space. The main characteristics of the FHN model are
electrical impulses along nerve and cardiac fibers [23].

Having said that, fractional-order modeling will add to the dynami-
cal characteristics of the neuron model in terms of the controllability and
generation of frequency [4], memory, etc. It is due to the fact that the
FO derivative accommodates and considers the historical responses in es-
timating the system response at any instant of time. Hence it adds to the
advantages of memory. Further, the reliance on memory of the system can
be meticulously handled through the FO derivative and the system will
become highly dependent on the history as the order of the FO deriva-
tive approaches zero, and vice versa. The detailed account of the FO-FHN
model is discussed in [36]. The FO-FHN model can be given as

dα1x1(t)
dtα1

= x1(t) − 1
c
x1(t)3 − x2(t) + I(t),

a
dα2x2(t)

dtα2
= x1(t) − bx2(t) + d,

(17.1)

where x1 and x2 are the membrane current and recovery variable current,
respectively.
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The state space representation of (17.1) can be written as

[ dα1 x1(t)
dtα1

dα2 x2(t)
dtα2

]
=

[
g(x1) −1

1
a − b

a

][
x1(t)
x2(t)

]
+

[
I(t)

d
a

]
,

where g(x1) =
(
1 − x2

1
c

)
, x1(t) represents the sheath potential and recovery

variable, x2(t) represents the activation of an outward current, I(t) is the
external current, and α1 and α2 are fractional orders. When α1 = α2 =
α = 1, the FO-FHN neuron model becomes the conventional integer-
order model.

17.2.1 Dynamical analysis of FO-FHN neuron model
Let (x∗,y∗) be the equipoise of the FO-FHN neuronal model given in
(17.1). Dynamical characteristics of the FO-FHN neuronal model can be
found using

dα1x1(t)
dtα1

= x1(t)
(
1 − 1

c
x1(t)2

)
− x2(t),

dα2x2(t)
dtα2

= x1(t)
a

− bx2(t)
a

.

(17.2)

The eigenvalues of the Jacobian matrix are

λ1,2 =
1 − x∗2

1 ±
√(

x∗2
1 + b

a − 1
)2 − 4b

a

(
1 − b(1 − x∗2

1 )
)

2
. (17.3)

The stability of the equipoise is governed by:

Case 1: If |arg(λi)| > απ
2 , then equipoise (x∗,y∗) is stable.

Case 2: If |arg(λi)| < απ
2 , then equipoise (x∗,y∗) is unstable (i = 1,2).

Using the parameters a = 13, b = 0.8, and I = 0.37, the equilibrium
points of (17.1) will be (−0.9339,−0.2924). Hence the corresponding
eigenvalues of the linearized system given in (17.3) are λ1,2 = 0.0331 ±
0.2607i with |arg(λ1,2)| = 1.4445 in radians. Letting |arg(λ1,2)| = παcritical

2 , we
will get the critical value of the fractional order as 0.9196. Hence, we can
have the following cases:
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Figure 17.1 Nullcline diagram of the FO-FHN neuron model.

Case 1: If α > αcritical, the equilibrium point (−0.9339,−0.2924) is unstable
and hence the neuron is under periodic spiking.
Case 2: If α < αcritical, the equilibrium point (−0.9339,−0.2924) is stable
and hence the neuron is at quiescence.

The nullcline diagram of the FO-FHN neuron model is show in
Fig. 17.1, and the transient behavior of the FO-FHN neuron model is
shown in Fig. 17.2.

17.2.2 Coupling of FO-FHN neuron model
The FO-FHN neuron model is coupled with other FO-FHN neuron
models/units [29] by a coupling factor or coupling function. It is imperative
to note here that the neural network produces different dynamics/behaviors
depending on the coupling function used and coupling parameters varied.
Depending on coupling, FO-FHN models will have applications like im-
age synthesis, learning, etc. The kind of the coupling used here is called
unidirectional coupling. It guarantees exponentially fast synchronization of
neurons [13]. The coupling of neurons is given as
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Figure 17.2 Transient response and phase portrait of the FO-FHN neuron model.
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dαx11(t)
dtα

= x11(t) − x3
11

c
− x21(t) + I(t) + k(x12 − x11),

a
dαx21(t)

dtα
= x11(t) − bx21(t) + d,

dαx12(t)
dtα

= x12(t) − x3
12

c
− x22(t) + I(t) + k(x13 − x12),

a
dαx22(t)

dtα
= x12(t) − bx22(t) + d,

dαx13(t)
dtα

= x13(t) − x3
13

c
− x23(t) + I(t) + k(x14 − x13),

a
dαx23(t)

dtα
= x13(t) − bx23(t) + d,

dαx14(t)
dtα

= x14(t) − x3
14

c
− x24(t) + I(t) + k(x13 − x14),

a
dαx24(t)

dtα
= x14(t) − bx24(t) + d.

(17.4)

Here k is the coupling coefficient and is changed to highlight the
numerous dynamical behaviors of the ANNs. Having thus stated the FO-
FHN neuron model, in the upcoming sections various types of implemen-
tations of the FO-FHN neuron model will be discussed.

17.3. Analog implementations of the FO-FHN neuron
model

In the analog domain, the FO-FHN model, like any other circuit,
can be realized by employing the conventional discrete off-the-shelf com-
ponents (i.e., resistors, capacitors, inductors) alongside with off-the-shelf
semiconductor components (BJTs, MOSFETS, etc.), which employ high
voltages and low integration density while the contemporary VLSI technol-
ogy employs low voltages and has high integration density. In this chapter
we will implement the FO-FHN model by employing the companding
design technique.

The companding technique is popularly known as externally linear and
internally nonlinear (ELIN) circuit design. Using the sinh-domain com-
panding technique, we can reduce power consumption because of the
intrinsic class AB nature of this technique [33,63]. The main features of
companding methods are: (i) low power consumption, (ii) resistor-free
design, (iii) usage of only grounded capacitors, and (iv) electronic recon-
figurability (tunability).
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17.3.1 Sinh-domain building blocks for FO-FHN neuron model
From (17.1) and (17.2), one can assess that the FO-FHN neuron model can
be realized in sinh-domain companding mode by employing sinh-domain-
FO integrators, sinh-domain gain blocks, and sinh-domain multipliers.

17.3.1.1 Sinh-domain nonlinear transconductor

Sinh-domain realization of any differential equation can be fundamentally
done by a nonlinear transconductor, as shown in Fig. 17.3, and its input–
output relation is given as

iout = 2I0Sinh
( v̂IN+ − v̂IN−

nVT

)
. (17.5)

Using a typical current mirror in the circuit given in Fig. 17.3, we can have
Cosh and −Sinh as

iout = 2I0Cosh
( v̂IN+ − v̂IN−

nVT

)
, (17.6)

iout = −2I0Sinh
( v̂IN+ − v̂IN−

nVT

)
, (17.7)

where VT is the thermal voltage (26 mV @ 27◦C), n is the subthreshold
slope factor (1 < n < 2), and, v̂IN+, v̂IN− are the noninverting and inverting
input voltages, respectively.

Figure 17.3 Nonlinear transconductor. (a) MOS realization. (b) Employed symbol.
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17.3.1.2 Sinh-domain two-quadrant multiplier/divider

A sinh-domain two-quadrant (2Q) multiplier/divider circuit is given in
Fig. 17.4, and its relationship is given as

iout = I0
i1
i2

. (17.8)

Figure 17.4 (a) 2Q multiplier/divider. (b) Employed symbol.

17.3.1.3 Sinh-domain lossless integrator

The integrator in sinh-domain mode is depicted in Fig. 17.5(a) and the
symbol used is depicted in Fig. 17.5(b). The mathematical relationship of
the lossless integrator is

τ
d
dt

[Sinh(v̂OUT )] = Sinh(v̂IN ). (17.9)

Here τ = ĈintnVT
2Iint

is the time constant of the integrator.

Figure 17.5 (a) Sinh-domain integrator. (b) Employed symbol.
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Figure 17.6 MOS realization of splitter.

17.3.1.4 Sinh-domain four-quadrant multiplier

In order to implement a sinh-domain four-quadrant (4Q) multiplier, a
current splitter [63] block is required. Its sinh-domain implementation is
shown in Fig. 17.6. Using the current splitter, the 4Q multiplier has been
realized as shown in Fig. 17.7. The governing equations for the current
splitter and 4Q multiplier are

i2p =
i2 +

√
i22 + 4I2

o

2
, (17.10)

i2n =
−i2 +

√
i22 + 4I2

o

2
, (17.11)

iout = K
i1i2
I0

. (17.12)

17.3.1.5 Sinh-domain fractional-order lossless integrator

The fractional-order lossless integrator (FOLLI) [17] is given as

H(s) = 1
(τ.s)α

. (17.13)
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Figure 17.7 4Q multiplier. (a) Sinh-domain implementation. (b) Employed symbol.

The magnitude of FOLLI is represented by |H(ω)| = (ωu/ω)α and the
phase response of FOLLI is denoted by φ = −απ/2. Here, ωu ≡ 1/τ is the
unity gain frequency.

The second-order continued fraction expansion approximation of 1/sα

is given by

1
sα

= (α2 − 3α + 2)s2 + (α2 + 3α + 2)

(α2 + 3α + 2)s2 + (8 − 2α2)s + (α2 − 3α + 2)
(17.14)

or

1
(τ s)α

=
(

α2−3α+2
α2+3α+2

)
s2 + 1

τ

(
8−2α2

α2+3α+2

)
s + 1

τ2

s2 + 1
τ

(
8−2α2

α2+3α+2

)
s + 1

τ2

(
α2−3α+2
α2+3α+2

) . (17.15)

The FOLLI described above can be comprehended by follow-the-
leader feedback (FLF) topology shown in Fig. 17.8, which is characterized
as

H(s) = 1
(sτ)α

= G2s2 + G1
τ1

s + G0
τ1τ2

s2 + 1
τ1

s + 1
τ1τ2

. (17.16)

Using FLF of Fig. 17.8, sinh-domain implementation of FOLLI is
presented in Fig. 17.9(a) and its symbol is presented in Fig. 17.9(b). Com-
paring (17.16) and (17.17), the time constant values and coefficients were
computed and are given in Table 17.1. Using FOLLI, the sinh-domain
FO-FHN neuron circuit is shown in Fig. 17.10.

17.3.2 Simulation results of FO-FHN neuron model
The circuit simulator used for performing the simulation is HSPICE. It is
pertinent to mention that the Synopsys HSPICE circuit simulator is the
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Figure 17.8 FLF structure of FOLLI.

Figure 17.9 FOLLI. (a) Sinh-domain implementation. (b) Employed symbol.

Table 17.1 Time constants and gain coefficients of the FOI.
G2 G1 G0 τ1 τ2(

α2−3α+2
α2+3α+2

)
1

(
α2+3α+2
α2−3α+2

)
τ
(

α2+3α+2
8−2α2

)
τ
(

8−2α2

α2−3α+2

)

industry’s golden standard for accurate circuit simulation. HSPICE is a key
part of the Synopsys Analog and Mixed Signal (AMS) verification suite.
HSPICE is capable of performing steady-state, transient, and frequency-
domain analysis along with the statistical analysis. HSPICE also allows
hierarchical node naming, circuit optimization, input, output, and behav-
ioral algebraics for parameterized cells, and interactive waveform viewing.
The performance of the sinh-domain realization of the FO-FHN model
is performed via the HSPICE simulator using the TSMC 130 nm CMOS
process. The values for voltage source (VDD = 650 mV, VDC = 350 mV)
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Figure 17.10 Sinh-domain implementation of the FO-FHN neuron model.

and current source (I0 = 200 pA) were used in simulation. PMOS tran-
sistors having a W/L ratio of 55 µm/1.5 µm were used obtain the DC
current sources. Aspect ratios of MOS transistors of transconductor and
current splitter are given in Table 17.2. By adjusting the aspect ratios of
Mp11 and Mp12, the gain factor “K” can be set to any value. The DC trans-
fer characteristics of the 4Q multiplier are depicted in Fig. 17.11(a). The
current i1 is changed from −200 pA to 200 pA and i2 is changed from
−200 pA to 200 pA. The transient response of a multiplier with sinusoidal
input having a frequency of 10 Hz and an amplitude of 100 pA is depicted
in Fig. 17.11(b).

For achieving sinh-domain implementation of the FO-FHN neuron
model as shown in Fig. 17.10, the parameters for FOLLI of Fig. 17.9 are
given in Table 17.3. For FOLLI, the values used for Ĉint1 and Ĉint2 were
200 pF and 2 nF, respectively. The obtained results for FOLLI are shown
in Fig. 17.12, and the phase responses of FOLLI with orders 0.5, 0.6, and
0.7 are plotted for τ = 16.2 ms in Fig. 17.12(b) and the simulation results
of phase responses with orders 0.5, 0.6, and 0.7 in the case τ = 211 ms are
given in Fig. 17.12(b). The results associated with FOLLI and the results
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Table 17.2 Aspect ratio of nonlinear transconductor and current splitter
MOS transistors.

Nonlinear transducer Current splitter

MOS transistor Aspect ratio MOS transistor Aspect ratio
Mp1 − Mp4 4 µm/4 µm

Mp1 − Mp4 4 µm/4 µm Mp5 − Mp8 4 µm/4 µm
Mp5 − Mp8 1 µm/1 µm Mp9 − Mp10 1 µm/10 µm
Mp9 − Mp10 1 µm/10 µm Mp11 − Mp12 1 µm/1 µm
Mn1 − Mn4 2 µm/2 µm Mn1 − Mn8 2 µm/2 µm

Figure 17.11 (a) Characteristics of the 4Q multiplier. (b) Output transient behavior of
the 4Q multiplier.

Table 17.3 Bias currents and coefficients of sinh-domain FOI with
various orders and time constants.

τ (ms) α Iint1 (pA) Iint2 (pA) G2 G1 G0
16.2 831 416
211 0.5 63.9 32 0.2 1 5
16.2 728 320
211 0.6 56 24 0.134 1 7.43
16.2 636 231
211 0.7 48.9 17.8 0.085 1 11.77

conforming to a multiplier with I0 = 150 pA, 200 pA, and 250 pA are given
in Fig. 17.13.

Using the FO-FHN model of Fig. 17.10 and the FOLLI block of
Fig. 17.9, the acquired results of the FO-FHN model were obtained by
changing the input impetus I . The FO-FHN neuron model of commen-
surate order (i.e., α1 = α2 = α) is designed. With α = 0.5, the results hence
obtained are given in Fig. 17.14. Fig. 17.14(a)–(f) gives the x2 vs. x1 phase
portrait for the FO-FHN model having different excitation current values,
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Figure 17.12 Phase response of FOI with α = 0.5, 0.6, and 0.7. (a) τ = 16.2 ms. (b) τ =
211 ms.

Figure 17.13 Demonstration of the electronic tunability of the 4Q multiplier.

as depicted in the caption of the figure. The corresponding obtained results
for α = 0.6 and α = 0.7 are given in Fig. 17.15 and Fig. 17.16, respectively.

Further, the simulation of incommensurate order i.e., for different val-
ues of α) of integrators is obtained. The x2 vs. x1 results of the FO-FHN
neuron model using α1 = 0.5 and α2 = 0.6 are displayed in Fig. 17.17.
The conforming results for α1 = 0.6 and α2 = 0.7 are given in Fig. 17.18.
Obtained results suggest that the firing rate of the fractional-order model
increases as the integrator order increases, as shown in Fig. 17.19(a). Also,
the firing rate of the neuron model increases as the impetus of neurons
increases, as shown in Fig. 17.19(b). The estimated silicon area for the FO-
FHN neuron model was 2.2 mm2 and the maximum working frequency
of fractional-order neuron circuits is 856 Hz.

The corner analysis was performed to assess the integrated circuit (IC)
realization with variants such as speed of the PMOS and NMOS. Corners
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Figure 17.14 x2 vs. x1 portrait for the FO-FHN neuron model with α1 = α2 = α = 0.5
for (a) I = 15 pA, (b) I = 34 pA, (c) I = 43.4 pA, (d) I = 45 pA, (e) I = 61.5 pA, and
(f ) I = 62.5 pA.

Figure 17.15 x2 vs. x1 portrait for the FO-FHN neuron model with α1 = α2 = α = 0.6
for (a) I = 48.7 pA and (b) I = 50 pA.

such as “typical NMOS” and “typical PMOS (TT),” “fast NMOS and fast
PMOS (FF),” “slow NMOS and slow PMOS (SS),” “fast NMOS and slow
PMOS (FS),” and “slow NMOS and fast PMOS (SF)” are deliberated to
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Figure 17.16 x2 vs. x1 portrait for the FO-FHN neuron model with α1 = α2 = α = 0.7
for (a) I = 33.2 pA and (b) I = 35 pA.

Figure 17.17 x2 vs. x1 portrait for the FO-FHN neuron model with α1 = 0.5α2 = 0.6 for
(a) I = 46.2 pA and (b) I = 50 pA.

Figure 17.18 x2 vs. x1 portrait for the FO-FHN neuron model with α1 = 0.6, α2 = 0.7
for (a) I = 34 pA and (b) I = 37.5 μA.

estimate the performance of IC realization with process variations. The
attained outcomes for the FO-FHN neuron model with α1 = α2 = 0.5 and
a stimulus of I = 65 pA in the process corners TT, FF, SS, FS, and SF are
shown in Fig. 17.20. It is observed that there is a change in the shape and
frequency of the signal. The R2 fitting test was performed to check the
matching of attained corner results; corner outcomes provide a respectable
fit to typical results for the designs.

The Monte Carlo analysis was performed for the FO-FHN neuron
model with α1 = α2 = 0.5 for calculating the threshold voltage variations on
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Figure 17.19 Illustration of (a) the increase in firing rate with input impetus and (b) the
increase in firing rate with the order of the neuron.

Figure 17.20 Corner analysis for the FO-FHN neuron model.

the performance of the circuit. The attained results are shown in Fig. 17.21.
The standard deviation of the amplitude (peak to peak) was 89 pA and the
standard deviation for frequency of the output waveform is 45 mHz. In
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Figure 17.21 The response of the FO-FHN neuron model with threshold variation.

addition, the linearly coupled four-neuron FO-FHN neuron model given
in (17.4) was designed with α1 = α2 = 0.5 to assess the application per-
formance. As the dynamics of the coupled neurons depend on coupling
function and coupling strength (k), for different coupling strength values,
the attained results are shown in Fig. 17.22. It is verified that as k increases,
the dynamics change.

17.4. FPAA implementation of FO-FHN neuron network

For FPAA implementation of the FO-FHN, the Anadigm FPAA
AN231E04 kit was employed. The kit is comprised of configurable analog
modules (CAMs). The CAM blocks are basically switched capacitor circuits
and hence the clock frequency is used to set frequencies. The various CAM
blocks of the Anadigm kit are bilinear filters, sumintegrator, biquad filters,
analog-to-digital converters (ADCs), sumfilter, sumdiff, multipliers, Hold
circuits, etc. Since FPAA does not contain FOLLI, we need to implement
it using filterbiquad CAM as used by [17]. The transfer function for the
filterbiquad CAM is given as

T(s) = −
GH

(
s2 + ( 2π fz

Qz

)
s + 4π2f 2

z

)
s2 + ( 2π fp

Qp

)
s + 4π2f 2

p

. (17.17)

Here, GH , fz, Qz, fp, and Qp are various factors of the filterbiquad CAM.
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Figure 17.22 Variation of k in a linearly coupled four-neuron FO-FHN neural network.

Eq. (17.15) can be rewritten as

1
(τ s)α

=
(

α2−3α+2
α2+3α+2

)(
s2 + 1

τ

(
8−2α2

α2−3α+2

)
s + 1

τ2

(
α2+3α+2
α2−3α+2

))
s2 + 1

τ

(
8−2α2

α2+3α+2

)
s + 1

τ2

(
α2−3α+2
α2+3α+2

) . (17.18)

On comparing (17.17) and (17.18),

GH = α2 − 3α + 2
α2 + 3α + 2

, fz = 1
2πτ

(α2 + 3α + 2
α2 − 3α + 2

) 1
2
,

Qz =
(
(α2 + 3α + 2)(α2 − 3α + 2)

) 1
2

8 − 2α2 , fp = 1
2πτ

(α2 − 3α + 2
α2 + 3α + 2

) 1
2
,
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Table 17.4 Values of GH , fz , Qz , fp, and Qp for various FOs with τ = 16.2 μs.
Order GH GL fz (kHz) Qz fp (kHz) Qp

0.5 0.2 5 22 0.223 4.39 0.223
0.6 0.134 7.42 26.8 0.209 3.61 0.209
0.7 0.085 11.76 33.7 0.190 2.86 0.190

Figure 17.23 FPAA realization of the FO-FHN neuron model.

Qp =
(
(α2 + 3α + 2)(α2 − 3α + 2)

) 1
2

8 − 2α2 .

Besides, the low-frequency gain GL can be given by

GL = α2 + 3α + 2
α2 − 3α + 2

.

Values of GH , fz, Qz, fp, and Qp with different FOs are tabulated in
Table 17.4.

The filter biquad CAMs with other CAMs were used to implement
the required circuit as given in Fig. 17.23. The FPAA results are shown in
Fig. 17.24.

17.5. FPGA implementation of FO-FHN neuron model

The first step in hardware realization of any system is to recognize
the hardware to be used. FPGA is chosen here because of its rapid proto-
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Figure 17.24 Experimental FPAA results for the FO-FHN neuron model (x1) with an in-
put impetus of 0.95 V. (a) α1 = α2 = 0.5. (b) α1 = α2 = 0.6. (c) α1 = α2 = 0.7.

typing and its inherent properties of reconfigurability and parallelism. The
discretization or numerical simulations of fractional differential equations
Dα

v y(t) = f (y(t), t) can be obtained by using the Grünwald–Letnikov (GL)
definition of fractional derivatives [17,54], which is given as

y(tn+1) = (f (y(tn), tn))hα −
n∑

j=v

Cα
j y(tn−j), (17.19)

where

Cα
j =

(
1 − 1 + α

j

)
Cα

j−1, Cα
0 = 1. (17.20)

Therefore, using (17.19), the numerical solution of FHN neuron can be
written as

x1(tn+1) =
(
x1(tn) − x3

1(tn)
3

− x2(tn) + I(tn)
)
hα1 −

n∑
j=ν

Cα1
j x1(tn−j),

x2(tn+1) = 1
a

(
x1(tn) − bx2(tn) + d

)
hα2 −

n∑
j=ν

Cα2
j x2(tn−j).

(17.21)

The coefficient Cj is referred to as the memory part. Simulation for dif-
ferent values of α1, α2, and I(t) are shown in Figs. 17.25–17.28. Fig. 17.29
shows the nullcline diagram of the membrane potential variable and recov-
ery variable and phase space diagrams for different values of α1 and α2 when
I(t) = 0.7.
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Figure 17.25 FO-FHN neuron model with variable input stimulus and a = 13, b = 0.8,
d = 0.8, and c = 1/3. (a) Phase space bet. x1(t) and x2(t) when α1 = 1, α2 = 1, and
I(t) = 0.4. (b) Membrane pot. x1(t) when α1 = 1, α2 = 1, and I(t) = 0.4. (c) Phase space
bet. x1(t) and x2(t) when α1 = 1, α2 = 1, and I(t) = 0.45. (d) Membrane pot. x1(t) when
α1 = 1, α2 = 1, and I(t) = 0.45.

Figure 17.26 FO-FHN neuron model with variable input stimulus and a = 13, b = 0.8,
d = 0.8, and c = 1/3. (a) Phase space bet. x1(t) and x2(t) when α1 = 0.9, α2 = 1, and
I(t) = 0.448. (b) Membrane pot. x1(t) when α1 = 0.9, α2 = 1, and I(t) = 0.448. (c) Phase
space bet. x1(t) and x2(t) when α1 = 0.9, α2 = 1, and I(t) = 0.5. (d) Membrane pot.
x1(t) when α1 = 0.9, α2 = 1, and I(t) = 0.5.

The first step in FPGA implementation of any variable or function is
attaining bit length of the variables in the model. From above, we see that
the membrane potential values vary from −2 to 2.5; therefore, a bit width
has to be 3. Nevertheless, to elude overflow and accurately represent the
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Figure 17.27 FO-FHN neuron model with variable input impetus and a = 13, b = 0.8,
d = 0.8, and c = 1/3. (a) Phase space bet. x1(t) and x2(t) when α1 = 0.8, α2 = 0.9, and
I(t) = 0.53. (b) Membrane pot. x1(t) when α1 = 0.8, α2 = 0.9, and I(t) = 0.53. (c) Phase
space bet. x1(t) and x2(t) when α1 = 0.8, α2 = 0.9, and I(t) = 0.60. (d) Membrane pot.
x1(t) when α1 = 0.8, α2 = 0.9, and I(t) = 0.60.

Figure 17.28 FO-FHN neuron model with variable input impetus and a = 13, b = 0.8,
d = 0.8, and c = 1/3. (a) Phase space bet. x1(t) and x2(t) when α1 = 0.75, α2 = 0.75,
and I(t) = 0.55. (b) Membrane pot. x1(t) when α1 = 0.75, α2 = 0.75, and I(t) = 0.55.
(c) Phase space bet. x1(t) and x2(t) when α1 = 0.75, α2 = 0.75, and I(t) = 0.70.
(d) Membrane pot. x1(t) when α1 = 0.75, α2 = 0.75, and I(t) = 0.70.

decimal part, especially the constants Cj of each variable, we are using a
bit width of 24 bits, where 4 bits are reserved for the integer part and
20 bits are used for the decimal part. Further, the hardware flow diagram is
shown in Fig. 17.30. It is pertinent to mention that the main challenge in
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Figure 17.29 Nullcline diagrams of membrane pot. x1(t) and recovery variable x2(t).
Phase space diagrams for different values of fractional operators α1 and α2 when a =
13, b= 0.8, d = 0.8, c = 1/3, and I(t) = 0.7.

Table 17.5 Resource exhausted of the board DE2-115. Available Resources (AVI).
Neuron
model

Resource type
Logic Registers Memory bits DSP blocks

Used AVI Used AVI Used AVI Used AVI
FHZ 2440 2208 1960 2
Neuron <3% 114,480 <2% 114,480 <1% 3,981,312 <1% 266

implementing the FODE on a practical FPGA board is that in the second
part of the numerical GL equation, which is also referred to as memory,
the values of the coefficients in the designed equation are mostly very small
and consume a lot of hardware resource.

The FPGA board employed is DE2-115 for the circuit implementa-
tion of the FO-FHN neuron. Table 17.5 depicts the hardware resource
exhausted by the FO-FHN.

17.6. Conclusion

In this chapter a detailed account of the analog and digital realiza-
tion of the FO-FHN neuron model has been investigated and various
aspects of implementations of FO modeling have been discussed. In ana-
log implementation, two techniques have been employed. One is the VLSI
implementable low-voltage low-power companding technique, which of-
fers the advantages of low voltage and reconfigurability. The other analog
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Figure 17.30 Hardware flow diagram of FO-FHN.

implementation technique used is FPAA, which offers the advantage of
experimental verification of FO design with on-board switched capacitor
design. Besides, FPGA implementation of the FO-FHN neuron model has
been achieved, which offers advantages of flexible design. In along im-
plementation, the detailed dynamical aspects of the FO-FHN model are
discussed in this chapter. In addition, the coupling scheme of the neuron
models is also given for application purposes.

Being very advantageous, FO circuit design of analog and/or digital
nature is still difficult because of unavailability of off-the-shelf FO elements.
The difficulty level of FO circuit design increases to a great extent due to
the approximated design employed for the FO element. The approximated
design not only increases the circuit complexity but also consumes more
memory in the case of FPGA implementation and more power in the case
of analog design. This is further aggravated in the case of FO-NNs, where
a large part of the neurons are required to perform a specific task such as
data classification. Therefore, future research of the FO-NN design must
focus on the optimization of the designs for achieving low power and high
speed features. This may raise the need to use different design techniques
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or algorithms. Furthermore, some practical applications of FO-NNs can be
designed to verify the performance of FO-NNs for real-world applications.
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