Fernando Porté-Agel

Fernando Porté-Agel
Swiss Federal Institute of Technology in Lausanne | EPFL · Environmental Engineering Institute

Professor

About

297
Publications
72,193
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,120
Citations

Publications

Publications (297)
Preprint
Full-text available
Deep learning models have shown strong performance in load forecasting, but they generally require large amounts of data for model training before being applied to new scenarios, which limits their effectiveness in data-scarce scenarios. Inspired by the great success of pre-trained language models (LLMs) in natural language processing, this paper p...
Article
Full-text available
This study investigates the influence of topography on wind turbine flow and power efficiency. Specifically, a standalone wind turbine is positioned at the top of idealized two-dimensional hills, and the effects of hill geometry and turbine position are systematically investigated. Various parameters are studied, including hill slope, distance betw...
Article
Full-text available
In this study, we aim to investigate the influence of inflow turbulent length scales on wind turbine wakes. For this purpose, large-eddy simulations of the wake of a wind turbine are performed under neutral atmospheric conditions with different boundary layer heights. Different inflow turbulent scales are generated by varying the boundary layer hei...
Article
Full-text available
We recorded aerodynamic roughness and shear velocity along transects on and around mature crescent‐shaped barchan dunes of 4.5m $4.5\ \mathrm{m}$ and 27m $27\ \mathrm{m}$ height above the horizontal rock‐covered Qatar desert by fitting to the log‐law time‐averaged vertical velocity profiles acquired from triads of ultrasonic anemometers penetrating...
Article
Full-text available
Analytical wake models are widely used to predict wind turbine wakes. While these models are well-established for horizontal-axis wind turbines (HAWTs), the analytical wake models for vertical-axis wind turbines (VAWTs) remain under-explored in the wind energy community. In this study, the accuracy of two wake scaling techniques is evaluated to pre...
Article
Full-text available
This work investigates the effect of wind direction on the flow over a cliff and its interaction with the wake of a wind turbine sited on the cliff. The cliff is modeled as a forward-facing step, and five wind directions are tested ( θ = 0 ∘ , 15 ∘ , 30 ∘ , 45 ∘ , and − 45 ∘ ) , where 0 ∘ represents a wind direction perpendicular to the cliff edge....
Article
Full-text available
Predictions of the dynamic wake meandering model (DWMM) were compared to flow measurements of a scanning Doppler lidar mounted on the nacelle of a utility-scale wind turbine. We observed that the wake meandering strength of the DWMM agrees better with the observation, if the incoming mean wind speed is used as advection velocity for the downstream...
Conference Paper
Full-text available
Wind tunnel experiments are performed to investigate the effect of nacelle-to-rotor size on the wake of a wind turbine under different Reynolds numbers. Four different turbine configurations are tested, which vary in the rotor diameter and nacelle length and diameter. The near wake region is observed to be significantly affected by the nacelle-to-r...
Article
Full-text available
Wind tunnel experiments were performed with a miniature floating wind turbine model to study the effects of cyclic pitch motion on its power performance. The cyclic pitch motion was prescribed by two key parameters: pitch frequency and amplitude. The power performance of the turbine model was investigated at a frequency range of 0.1 − 5.0 Hz and an...
Article
Full-text available
A new statistical wake meandering (SWM) model is proposed that improves on existing models in the literature. Compared to the existing SWM models, the proposed model has a closed description that does not require simulations to create look-up tables while maintaining applicability to a wide range of flow conditions. The proposed SWM model is compar...
Article
Full-text available
This work presents a novel hybrid (physics-and data-driven) model for short-term (intra-day and day-ahead, 3h-24h) wind power forecasting (STWPF). Traditionally, STWPF predictors admitted very few meteorological variables only from the grid points closest to the turbines. Here, with the aim to further capture the underlying atmospheric processes ru...
Article
Healthcare sector buildings, particularly hospitals, significantly contribute to global energy consumption and greenhouse gas emissions. Hospitals require a substantial amount of steam, including the essential hygienic or “clean steam,” that is currently supplied mostly by heaters and fossil fuel-based boilers. This study proposes a solar-driven cl...
Article
Full-text available
We investigate the effect of pressure gradient on the cumulative wake of multiple turbines in wind tunnel experiments spanning across a range of adverse pressure gradient (APG), zero pressure gradient (ZPG), and favorable pressure gradient (FPG). Compared to the upstream-most turbine, the in-wake turbines exhibit lower (higher) wake velocity in APG...
Article
Full-text available
Static axial induction control and tilt control are two strategies that have the potential to increase power production in wind farms, mitigating wake effects and increasing the available power for downstream turbines. In this study, wind tunnel experiments are performed to evaluate the efficiency of these two techniques. First, the axial induction...
Preprint
Full-text available
Predictions of the dynamic wake meandering model (DWMM) were compared to flow measurements of a scanning Doppler lidar mounted on the nacelle of a utility-scale wind turbine. We observed that the wake meandering strength of the DWMM agrees better with the observation, if the incoming mean wind speed is used as advection velocity for the downstream...
Article
Full-text available
This article provides a comprehensive review of the most recent advances in the planning, execution, and analysis of inflow and wake measurements from nacelle-mounted wind Doppler lidars. Lidars installed on top of wind turbines provide a holistic view of the inflow and wake characteristics required to characterize and optimize wind turbine perform...
Article
Full-text available
In this study, wind-tunnel experiments are used to investigate cyclic yaw control as a wake mitigation strategy aiming to improve wind farm power production. The control strategy is applied to a single wind turbine and a wind farm comprising of a column of three wind turbines in full wake state. The power performance of the wind farm is optimized b...
Article
Full-text available
Flow separation caused by steep topography remains a significant obstacle in accurately predicting turbulent boundary-layer flows over complex terrain, despite the utilization of sophisticated numerical models. The addition of atmospheric thermal stability, in conjunction with steep topography, further complicates the determination of disrupted tur...
Article
Full-text available
Large Eddy Simulations (LES) of atmospheric boundary layer (ABL) flow with the actuator disc (AD) for turbine modelling is a widely used method of simulating wind farm flows. Hence, it is important to understand the requirements for achieving a good comparison between ABL flow and turbine wakes between different research group setups, despite unavo...
Article
Full-text available
This work is dedicated to the systematic investigation of wind turbine wakes under the effect of pressure gradients. Wind tunnel experiments are carried out with a wind turbine positioned on straight ramps of increasing angle such that it experiences an approximately linear flow speed-up/slow-down from the induction region into the far wake. Fiftee...
Article
Full-text available
This study investigated the power production and blade fatigue of a three-turbine array subjected to active yaw control (AYC) in full-wake and partial-wake configurations. A framework of a two-way coupled large eddy simulation (LES) and an aeroelastic blade simulation was applied to simulate the atmospheric boundary layer (ABL) flow through the tur...
Preprint
Full-text available
This study investigates the power production and blade fatigue of a three-turbine array subjected to active yaw control (AYC) in full-wake and partial-wake configurations. A framework of two-way coupled large-eddy simulation (LES) and aeroelastic blade simulation is applied to simulate the atmospheric boundary-layer (ABL) flow through the turbine a...
Article
Full-text available
In this study, we aim to investigate if there is a scaling of the streamwise distance from a wind turbine that leads to a collapse of the mean wake velocity deficit under different ambient turbulence levels. For this purpose, we perform large-eddy simulations of the wake of a wind turbine under neutral atmospheric conditions with various turbulence...
Article
Full-text available
This study validates large-eddy simulation (LES) for predicting the flow through a wind turbine array subjected to active yaw control. The wind turbine array consists of three miniature wind turbines operated in both non-yawed and yawed configurations under full-wake and partial-wake conditions, for which wind tunnel flow measurements are available...
Article
Full-text available
The transition process from laminar stratified shear layer to fully developed turbulence is usually captured using direct numerical simulations, in which the computational cost is extremely high and the numerical domain size is limited. In this work, we introduce a scale-aware subgrid-scale (SGS) parameterization, based on the gradient tensor of re...
Article
Full-text available
In this study, we present an analytical modeling framework for wind turbine wakes under an arbitrary pressure gradient imposed by the base flow. The model is based on the conservation of the streamwise momentum and self-similarity of the wake velocity deficit. It builds on the model proposed by Shamsoddin and Porté-Agel, which only accounted for th...
Article
Full-text available
Analytical wind turbine wake models are widely used to predict the wake velocity deficit. In these models, the wake growth rate is a key parameter specified mainly with empirical formulations. In this study, a new physics-based model is proposed and validated to predict the wake expansion downstream of a turbine based on the incoming ambient turbul...
Article
Full-text available
Wind-tunnel experiments are performed to investigate the effect of minor modifications to the roof edge shape on the power performance and wake characteristics of a horizontal-axis wind turbine sited on a cube shaped building. Three roof edge shapes are considered: a sharp edge, a rounded edge, and a solid fence. The power performance of the turbin...
Article
Full-text available
LES and wind tunnel studies have shown significant benefit when allowing turbines (T) in a wind farm to adopt different heights. This work presents two new genetic algorithms (GA) that perform wind farm layout optimization (WFLO) involving continuous and top-unconstrained Z-coordinate (XYZ-WFLO), applied to different power densities (PD) and using...
Preprint
Full-text available
This study validates the large-eddy simulation (LES) technique for the prediction of the flow through a wind turbine array subjected to active yaw control. The wind turbine array consists of three miniature wind turbines operated in both non-yawed and yawed configurations under full-wake and partial-wake conditions, for which wind tunnel flow measu...
Article
Full-text available
Wake meandering is a low-frequency oscillation of the entire wind turbine wake that can contribute to power and load fluctuations of downstream turbines in wind farms. Field measurements of two Doppler lidars mounted on the nacelle of a utility-scale wind turbine were used to investigate relationships between the inflow and the wake meandering as w...
Article
Full-text available
In this study, the wake behind a wind turbine located on an escarpment is investigated using particle-image velocimetry in a wind tunnel. Five different escarpment models are used, which vary in the windward side shape from forward facing steps (FFS) with different curvatures at the leading-edge to sinusoidal ramp shapes with varying slopes. The di...
Preprint
Full-text available
Wake meandering is a low-frequency oscillation of the entire wind turbine wake that can contribute to power and load fluctuations of downstream turbines in wind farms. Field measurements of two Doppler LiDARs mounted on the nacelle of a utility-scale wind turbine were used to investigate relationships between the inflow and the wake meandering as w...
Article
Full-text available
Urban canopy models (UCMs) developed based on Prandtl mixing-length theory provide a simple method for predicting urban flows. In the existing models, the Prandtl mixing length and the sectional drag coefficient of buildings are usually assumed to be uniform with height within urban canopies. This leads to exponential vertical profiles of the time-...
Article
Full-text available
In recent years, wind farm layout optimization (WFLO) has been extendedly developed to address the minimization of turbine wake effects in a wind farm. Considering that increasing the degrees of freedom in the decision space can lead to more efficient solutions in an optimization problem, in this work the WFLO problem that grants total freedom to t...
Article
Full-text available
Large-eddy simulation (LES) with actuator models has become the state-of-the-art numerical tool to study the complex interaction between the atmospheric boundary layer (ABL) and wind turbines. In this paper, a new evaluation of actuator disk models (ADMs) for LES of wind turbine flows is presented. Several details of the implementation of such mode...
Article
Full-text available
In the past two decades, wind energy has been under fast development worldwide. The dramatic increase of wind power penetration in electricity production has posed a big challenge to grid integration due to the high uncertainty of wind power. Accurate real-time forecasts of wind farm power outputs can help to mitigate the problem. Among the various...
Article
Full-text available
A numerical framework for the aerodynamic characterization of wind turbine airfoils is developed and applied to the miniature wind turbine WiRE-01. The framework is based on a coupling between wall-resolved large eddy simulation (LES) and application of the blade element momentum theory (BEM). It provides not only results for the airfoil aerodynami...
Article
Full-text available
Wake measurements of a scanning Doppler lidar mounted on the nacelle of a full-scale wind turbine during a wake-steering experiment were used for the characterization of the wake flow, the evaluation of the wake-steering set-up, and the validation of analytical wake models. Inflow-scanning Doppler lidars, a meteorological mast, and the supervisory...
Conference Paper
Full-text available
Wind turbines are often sited on different topographical features. In the current work, we performed wind-tunnel measurements of the wake behind a single wind turbine sited on two escarpments differing in the windward side shape using tomographic particle-image velocimetry. The escarpments are classified as forward facing step (FFS) and ramp-shape....
Article
Full-text available
The spatial structure of turbulence in atmospheric boundary layer flows is highly relevant to wind energy. In particular, wind turbine control strategies based on inflow preview measurements require knowledge of the longitudinal evolution of turbulent flow as it approaches the rotor. These upstream measurements are usually obtained with nacelle-mou...
Article
Full-text available
In this study, we perform a multi-objective parametric study for an array of three miniature wind turbines subjected to active yaw control (AYC), with the objectives of maximizing the power and minimizing the fatigue loads. Using the time series extracted from large-eddy simulation (LES), we compute the mean power and the yaw-moment damage equivale...
Article
Full-text available
Multi-rotor wind turbines have shown a faster wake recovery than equivalent single-rotor turbines. In this work the potential benefit of a wind farm with multi-rotor turbines is assessed through the optimization of the turbine positions using the CEGA wind farm optimization algorithm, for different power densities. The EPFL analytical wake model is...
Article
A point vortex transportation model for yawed wind turbine wakes - Volume 890 - Haohua Zong, Fernando Porté-Agel
Preprint
Full-text available
Abstract. Wake measurements of a scanning Doppler lidar mounted on the nacelle of a yawed full-scale wind turbine are used for the characterization of the wake flow and the validation of analytical wake models. Inflow scanning Doppler lidars, a meteorological mast and the data of the wind turbine control system complemented the set-up. Results show...
Article
Variability of the rotor aspect ratio is one of the inherent characteristics of vertical-axis wind turbines (VAWTs) which differentiates them especially from the more conventional horizontal-axis wind turbines. In this study, we intend to investigate the effect of rotor aspect ratio on VAWT wakes. In particular, we aim to find out whether a common...
Article
A momentum-conserving wake superposition method for wind farm power prediction - Volume 889 - Haohua Zong, Fernando Porté-Agel
Article
Full-text available
Wind energy, together with other renewable energy sources, are expected to grow substantially in the coming decades and play a key role in mitigating climate change and achieving energy sustainability. One of the main challenges in optimizing the design, operation, control, and grid integration of wind farms is the prediction of their performance,...
Article
Full-text available
In this study, we validated a wind-turbine parameterisation for large-eddy simulation (LES) of yawed wind-turbine wakes. The presented parameterisation is modified from the rotational actuator disk model (ADMR), which takes account of both thrust and tangential forces induced by a wind turbine based on the blade-element theory. LES results using th...
Article
Layout optimization of wind farms constitutes an important and challenging task in complex terrain. This is especially due to the complex interactions of the boundary layer flows in complex terrain and wind turbine wakes, which renders wake modelling in complex terrain difficult. This study tackles this challenge with a new engineering wake model,...
Article
Full-text available
Accurate prediction of wind turbine wakes is important for more efficient design and operation of wind parks. Volumetric wake measurements of nacelle-mounted Doppler lidars are used to characterize the wake of a full-scale wind turbine and to validate an analytical wake model that incorporates the effect of wind veer. Both, measurements and model p...
Chapter
Full-text available
In the atmospheric boundary layer, the Coriolis force associated with the Earth’s rotation induces a spanwise wind shear in addition to the wall-normal one leading to a continuous change in wind direction with height. The spanwise wind shear in directionally sheared inflow has a significant impact on the formation and development of wind-turbine wa...
Article
The present study describes the development of a technique for the measurement of atmospheric turbulence and temperature at a point in space based on the integration of a fast-response multihole pressure probe and a thermocouple with an inertial measurement unit on a multirotor UAV-based platform. This allows for an accurate measurement of time ser...
Article
Yaw angle control is known nowadays as a promising and effective technique to mitigate wake effects in wind farms. In this paper, we perform wind tunnel experiments to study the performance of a model wind farm with five turbine rows under a wide variety of yaw angle distributions. Electrical servo controllers are used to monitor and control the op...
Article
Understanding and predicting the behaviour of wind turbine wake flows over hills is important for optimal design of wind-farm configurations on topography. In this study, we present an analytical modelling framework together with large-eddy simulation (LES) results to investigate turbine wakes over two-dimensional hills. The analytical model consis...
Article
Full-text available
Wind Farm Layout Optimization (WFLO) can be useful to minimize power losses associated with turbine wakes in wind farms. This work presents a new evolutionary WFLO methodology integrated with a recently developed and successfully validated Gaussian wake model (Bastankhah and Porté-Agel model). Two different parametrizations of the evolutionary meth...
Article
Full-text available
The objective of this paper is to compare field data from a scanning lidar mounted on a turbine to control-oriented wind turbine wake models. The measurements were taken from the turbine nacelle looking downstream at the turbine wake. This field campaign was used to validate control-oriented tools used for wind plant control and optimization. The N...
Article
Full-text available
The growth rate of wind-turbine wakes in the atmospheric boundary layer is a key parameter in analytical models used to predict wind-turbine wakes and their effects in wind farms. To date, the turbine-wake growth rate is determined empirically, owing to our limited understanding of the physical mechanisms leading to the recovery of the wakes in tur...
Chapter
This paper presents the evaluation of Reynolds-averaged NavierStokes (RANS) turbulence models, including the RNG k − ε, SST k − ω and more recently developed SST γ − Reθ models of flow past an idealized three-dimensional urban canopy. For validation purposes, the simulated vertical and spanwise profiles of mean velocity are compared with wind tunne...
Article
Full-text available
In this study, an analytical wake model for predicting the mean velocity field downstream of a wind turbine under veering incoming wind is systematically derived and validated. The new model, which is an extended version of the one introduced by Bastankhah and Porté-Agel, is based upon the application of mass conservation and momentum theorem and c...
Article
Recently, a new family of subgrid-scale (SGS) models, termed as gradient-based models, has been introduced to calculate the SGS stresses in large eddy simulation (LES). In the present work, the modulated gradient model (MGM) was implemented in the OpenFOAM package, and the pimpleFoam solver was improved to be adopted with non-eddy viscosity models....
Article
Many mountainous regions with high wind energy potential are characterized by multi-scale variabilities of vegetation in both spatial and time dimensions, which strongly affect the spatial distribution of wind resource and its time evolution. To this end, we developed a coupled interdisciplinary modeling framework capable of assessing the shifts in...
Article
Full-text available
Scanning Doppler lidars are the best tools for acquiring 3D velocity fields of full scale wind turbine wakes, whether the objective is a better understanding of some features of the wake or the validation of wake models. Since these lidars are based on the Doppler effect, a single scanning lidar normally relies on certain assumptions when estimatin...
Article
Full-text available
This study presents the setup, methodology and results from a measurement campaign dedicated to the characterization of full-scale wind turbine wakes under different inflow conditions. The measurements have been obtained from two pulsed scanning Doppler lidars mounted on the nacelle of a 2.5 MW wind turbine. The first lidar is upstream oriented and...
Article
The diurnal variation of atmospheric conditions over land has a significant effect on the wind and temperature distributions which greatly influence the generation and propagation of wind turbine aerodynamic sound. In this paper, a fully consistent unsteady approach is used to study wind turbine noise such that large eddy simulation with a rotation...