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Two classes of Richtmyer-Meshkov instabilities: A detailed
statistical look

J. R. Ristorcelli, A. A. Gowardhan,a) and F. F. Grinstein
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 23 July 2012; accepted 14 March 2013; published online 25 April 2013)

A single parameter numerical study of the evolution of the multimode planar
Richtmyer-Meshkov instability (RMI) in a shocked/reshocked (air-SF6, Atwood
number A = 0.67) configuration with a Mach number Ma = 1.5 shock is carried
out. Our results demonstrate that the initial material interface morphology (for fixed
Ma, A) controls the RMI evolution characteristics. Our discussion focuses on the light-
to-heavy configuration with initial A > 0 and heavy-to-light reshock. Depending on
the rms slope of the initial interface, ηo, there are two different instabilities: one with
the classical RMI trends and another with trends suggesting a very different fluid
physics which we study in detail. We use statistical metrics to demonstrate that the
two different regimes are characterized by very different and self-consistent fluid
physics. The response of the rate of mixing layer growth to increasing ηo is different
and opposite in sign in each regime: in the high-ηo class of initial conditions, increas-
ing ηo leads to a decrease in kinetic energy and mixing layer growth rate; and in the
low-ηo class of flows, increasing ηo leads to an increase in kinetic energy and growth
rate. The low ηo case corresponds to impulsive acceleration of an almost-flat thin
interface, the classical small-perturbation RMI. The high-ηo regime corresponds to:
(a) impulsive acceleration of a very rough initial interface, and (b) shock passage
through a turbulent material interface. We additionally observe that this bipolar be-
havior of the turbulent field is not seen in the statistics of the material mixing field
and this may invalidate closures that slave the mixing field to the turbulence. It ap-
pears that simple Reynolds-Averaged Navier-Stokes moment closure models cannot
currently predict both classes of RMI. We offer speculations on the similarity of
instabilities and the possibility of using high-ηo first-shocked simulations to study
reshock problems. Our article describes these two instabilities as a function of ηo for
fixed A and Ma; we do not propose that ηo offers a complete parameterization of the
general problem. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802039]

I. INTRODUCTION

In many areas of interest such as, inertial confinement fusion (ICF), understanding the collapse
of the outer cores of supernovas, vorticity is introduced at material interfaces by the impulsive loading
of shock waves, and turbulence is generated via the so-called Richtmyer-Meshkov instability (RMI).1

RMI adds the complexity of shock waves and other compressible effects such as baroclinic enstrophy
generation to the basic physics associated with transition and turbulent mixing. These flows are
typically investigated using the early-time relevant RMI model for a first-shocked relatively flat and
thin material interface.1 However, for most classes of shock-induced mixing, reshocks which happen
at a later-time and involve morphologically more complex interfacial layers and fluid instability
mechanisms distinctly different from RMI are more important phenomena; the distinction between
the classical RMI and this new nonlinear instability is one major focus of the present work. Beyond
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the work surveyed in Ref. 1, investigation of initial condition (IC) effects on RMI has been the
subject of many experimental,2–6 numerical,6–19 as well as theoretical13, 20 studies.

In contrast with forced isotropic homogeneous turbulence, where stable statistics are achieved,
the flow we study is inherently transitional and non-equilibrium before relaxing to an inhomogeneous
quasi-equilibrium decaying turbulence at long times. Nonetheless we use the same statistical methods
as used in traditional studies of equilibrium turbulence to study the early time instability and transition
mechanisms. A flow transition in the RMI is caused by energy from the shock interface interaction
being deposited at the interfacial layer over finite periods of time during its interaction with the
shock, compression, or expansion-fan waves. Transition to turbulence is traditionally viewed in
terms of rapid increase in the energy and the production by mode coupling of a spectrum of smaller
length scale motions which can lead to an inertial subrange in the turbulent kinetic energy spectrum
for sufficiently high Reynolds number (Re),31e.g., above the proposed mixing-transition Taylor
microscale based Re, Reλ = 100.32

In the RMI simple models for the growth rates of the interfacial layer undergoing acceleration
by a shock depend on the Atwood number, A = (ρ inner − ρouter)/(ρ inner + ρouter), where outer denotes
the gas the shock wave traverses before it impacts the material interface, the shock Mach number,
Ma, and some measure of the interfacial perturbations. Layer growth rates are consistently much
higher after reshock;18 transition after reshock is typically observed10, 14, 17 and extreme sensitivity to
detailed conditions at reshock time has been reported.2, 14, 26 Before reshock, transition has been8, 17 or
not been8, 10, 14 observed; transition occurrence has been reported to depend on particular combination
of IC specifics such as sign and magnitude of A,18 Ma,6, 33 and Re;8 IC resolution issues14 are also
likely relevant in the numerical transition context. The work in Refs. 6 and 33 reports a very notable
RMI growth sensitivity to Ma, particularly with regards to the transition process;33 as little as a
15% variation in Ma can make the difference for a shocked interface to undergo or not undergo
transition.

A. Preview

In this report we focus on the light-to-heavy (L-H) (A > 0, air/SF6) planar shock-tube config-
uration, and on investigating effects of initial material interfacial morphology on the shock and the
reshock problems. More specifically, we consider a stochastic initial interface with varying interfa-
cial perturbation spectra. This is a stochastic multi-mode IC problem in which changes induced in
the RMI by changes in characteristic amplitude and wavelengths of the initial interfacial are studied.
Our interest in this problem is motivated by the change in the nature of the instability as the initial
interfacial rms slope ηo is increased as first reported in our earlier work on the bipolar nature of the
RMI.21 For large ηo, what one might call a nonlinear RMI, the simulations exhibit a behavior that
bears little resemblance to the trends of the well-known conventional or linear RMI.

The change of the instability mechanism is of interest in its own right on fundamental grounds.
Our studies are also prompted by additional applications. The low-ηo or linear RMI case corresponds
to the shock passage across an almost flat thin interface. In the literature this is, ostensibly, the most
studied case. The high-ηo or what we may call the nonlinear RMI corresponds to the (a) the
shock passage across a very rough interface, and (b) the shock impacting a fully turbulent interface
between dissimilar materials. Our central focus is presenting a more detailed study the two classes
RMI instabilities using statistical metrics not used in RMI studies. We apply metrics from statistical
approaches to turbulence as well as ones derived from the second order moment equations that
are used for turbulence model development to analyze the flow. There is a caveat: the application
of metrics developed for stationary homogenous high Reynolds turbulence requires some caution
when applied to non-stationary, non-equilibrium, inhomogeneous low Reynolds number turbulence.
Our investigation is also motivated by the associated turbulence modeling challenge: are turbulence
models general enough to predict both classes of the RMI—and thus complex systems involving
flow with sequential shocks?

As the instability mechanism for the nonlinear RMI appears primarily due to enstrophy pro-
duction by the nonlinear cascade mechanism and not baroclinicity it seems possible to speculate
with our partial numerical evidence that the nonlinear RMI is the instability relevant to the RMI
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reshock problem. As our studies are single parameter rms slope studies targeted for a specific project
we have limited our studies to a single Ma and A > 0. The A < 0 studies necessary to formally
make connections between the high rms slope first-shock problem and the reshock problem for
arbitrary density configurations are required. An important observation in our study of the L-H (A
> 0) configuration, is that the statistical trends of heavy-to-light (H-L) reshock effects on mixing
and transition as function of ηo can be produced with a first-shocked L-H configuration if ηo is high
enough. If the primary instability mechanism is the mode coupling of the cascade and the enstrophy
strain feedback loop then the results we speculate on are more general. This has potential relevance
to reducing computational and experimental costs to address reshocked turbulent interface research.
It will be left an open question.

Our present focus is on understanding the instability and transition following first-shock (or
reshock) as related to interfacial IC characteristics. Late-time asymptotic behaviors of the quasi-
equilibrium decaying turbulence is not our particular interest here: they likely involve inhomogeneous
turbulence decay conforming to traditional self-similar scalings with weak dependence on ICs35

and, particularly, on the infrared portion of the initial spectrum.36 Moreover, as is well known in the
turbulence literature, simulations of the long time problem suffer from the integral scale saturation
problem: when the integral scale of the turbulence becomes of the order of the computational
domain (or laboratory facility) smallest characteristic size, the power laws of different decays tend
to approach each other (see also Ref. 39).

B. Outline

The plan of the paper is as follows. In Sec. II the problem statement and methodology are
summarized. Sections III and IV are devoted to our description of the two different classes of
instability. In Sec. III we use the usual mixing layer width as a metric. In Sec. IV, we use metrics
of the flow that come from the moment evolution equations for a turbulent flow and paint a very
clear distinction regarding the “bipolar” responses of the instability first recognized in Ref. 21; here
we look at the physics in substantially more depth using more comprehensive measures used in
studies of traditional turbulent flows.22 We offer speculations on the similarity of instabilities and
the possibility of using high-ηo first-shocked simulations to study reshock problems; however, we
are careful to also leave this as an open problem as H-L first-shocked simulations are not part of
our present scope area. After delineating the two classes of RMI using a moment closure based
narrative, we discuss how the observations of the material mixing physics are consistent with the
fluid physics further consolidating a more detailed pictures of nonlinear RMI. In Sec. V we document
statistics relevant to testing moment closure procedures for material mixing, and Sec. VI examines
the challenges that these two classes of RMI present to turbulence models of the moment equation
type. Summary and conclusions are presented in Sec. VII.

II. PROBLEM STATEMENT, SIMULATION, AND ANALYSIS METHOD

The planar shock-tube configuration investigated involves low (air) and high (SF6) density
gases, presumed ICs at the material interface initially separating the gases, and eventual reshock off
an end-wall (Fig. 1). The contact discontinuity between air and SF6 is modeled as a jump in density
using ideal gases with γ = 1.4 and γ = 1.076, respectively, with constant pressure across the initial
interface at rest. A shocked air region is created upstream satisfying the Rankine-Hugoniot relations
for a Mach 1.5 shock. The shock propagates in the (x) direction through the contact discontinuity
(from the light to heavy fluid) and reflects at the end of the simulation box on the right. Periodic
boundary conditions are imposed in the transverse (y,z) directions. The air/SF6 interface is shocked
at t = 0, reshocked by the primary reflected shock at t ∼ 3.5 ms, and then by successive reflected
expansion and compression waves of decreasing intensity. The evolution and interaction of the
shock and air/SF6 interface (e.g., as in Fig. 1) are in good agreement with those of similar reported
studies.14

Because shocks and turbulence are involved, resolving all relevant physical scales in RMI sim-
ulations becomes prohibitively expensive. Turbulent material mixing can be usefully characterized
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FIG. 1. Planar shocktube. (a) Flow configuration; (b) typical shock/interface evolution. Reprinted with permission from
A. A. Gowardhan, J. R. Ristorcelli, and F. F. Grinstein, Phys. Fluids 23, 071701 (2011). Copyright 2011 American Institute
of Physics.

by the fluid physics involved: (1) large-scale entrainment, (2) stirring due to velocity gradient fluc-
tuations, and (3) molecular diffusion. When convective time-scales are much smaller than those
associated with molecular diffusion, we are primarily concerned with the numerical simulation of
the first two convectively driven (interpenetration) mixing processes, which can be captured with
sufficiently resolved implicit large eddy simulation (ILES).23, 24 ILES addresses the difficult issues
posed by under-resolution, by relying on subgrid models provided implicitly by physics capturing
numerics.

Here, we use an ILES simulation strategy that uses the Los Alamos National Laboratory
(LANL) RAGE code25 to investigate planar RMI. Issues of initial material interface characterization
and modeling difficulties, and the effects of IC resolved spectral content on transitional and late-time
turbulent mixing driven by planar RMI were investigated.14 Three-dimensional (3D) simulations of
shocked gas-curtain laboratory observations were also carried out26 with the aim of characterizing
the impact of 3D IC specifics on the gas-curtain dynamics and mixing. The cited work suggested
that robust effective performances can be achieved with ILES in the RMI context despite uncertainty
issues of IC characterization and modeling. The present work expands on our early investigation of
the effects of initial interfacial morphology of the air-SF6 interface in affecting planar RMI.21

RAGE solves the multi-material compressible conservation equations for mass density, mo-
menta, total energy, and partial mass densities, using a 2nd-order Godunov scheme, adaptive mesh
refinement (AMR), a variety of numerical options for gradient limiters and interface treatments.
As used in the present work (with no interface treatments, and a van Leer limiter), RAGE models
a Schmidt number Sc ∼ 1 miscible material interface, and high-Re convection-driven flow with
effective viscosity νeff determined by the small-scale cutoff.14

As in Ref. 5, integral measure analysis is based on transverse-plane and volume averaged
quantities,

〈 f 〉(x) =
∫

f (x, y, z)dydz,

f̄ =
∫

〈 f 〉dx, (1)

YSF6 = ρSF6/ρ, ψ(x) = 〈
YSF6

〉
, M(x) = 4ψ(x)[1 − ψ(x)], δ(t) =

∫
M(x)dx,

where ρ is the mass density, ρSF6 is the SF6 partial mass-density, YSF6 is the SF6 mass fraction,
and M(x), δ(t), are cross-stream averaged, and integrated mixedness, respectively. The volumetric
average indicated by f̄ denotes integration over the instantaneous mixing region, defined by a slab
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TABLE I. Planar shock-tube simulations.

δo (cm) 0.5 (low-ηo) 5 (high-ηo)

(λmin,λmax) L( 1
24 , 1

6 ) L( 1
12 , 1

4 ) L( 1
6 , 1

3 ) L( 1
4 , 1

2 ) L( 1
24 , 1

6 ) L( 1
12 , 1

4 ) L( 1
6 , 1

3 ) L( 1
4 , 1

2 )

κo (cm−1) π π /2 π /4 π /6 π π /2 π /4 π /6
ηo = κoδo π /2 π /4 π /8 π /12 10π /2 10π /4 10π /8 10π /12
No. of modes 402 90 18 7 402 90 18 7

of volume V about the center of the mixing layer constrained in the x-direction by requiring M(x)
> 0.75. Analysis of turbulence characteristics is based on data deviations around transverse planes
within the instantaneous mixing region, using,

ũi = 〈ρui 〉 / 〈ρ〉 , ui = ũi + u′
i , ω = ∇ × u,

ri j = 〈ρu′
i u

′
j 〉, 2k = rii , (2)

ρ = 〈ρ〉 + ρ ′, R = 〈ρ ′2〉, υ = 〈υ〉 + υ ′,

where u denotes the velocity field, and υ = 1/ρ is the specific volume; moreover, k is the local
turbulent kinetic energy, ω2 is the squared vorticity magnitude, R is the local mass-density variance,
and we denote with K, , and R̄ their corresponding volumetric averages, respectively. Our notation
here and in what follows assumes summation over repeated (Roman) indices, and we also use
(), i ≡ ∂()/∂ xi.

A sharp interface (Fig. 2) morphology is defined in terms of χ (y,z) which denotes local material
interface deviation about the mean. The local interface deformation is given by

χ (y, z) = �
∑

anm sin(κn y + φn) sin(κm z + ϕm), (3)

where κn = 2πn/L, κm = 2πm/L, −1/2 < anm < 1/2 are randomly selected coefficients, � is used to
prescribe δo, 0 < {ϕn,ϕm} < 2π are phases randomly selected for each contributing mode, and the
participating modes are constrained by the periodic boundary conditions through the requirement,
λmin ≤ L/[2π (n2 + m2)1/2] ≤ λmax (actual number of contributing modes are quoted in Table I). The
statistics of the initial interface, rms thickness, and rms slope, are then given by

δ2
o = 〈χχ〉, η2

o = κ2
o δ2

o = 〈∇χ∇χ〉, κ2
o = 〈∇χ∇χ〉/〈χχ〉.

The meaning of these quantities is depicted in Fig. 2.
The quantity κo is used in the study of homogenous stochastic processes, where it is called

the mean zero-crossing frequency.27, 38 The initial material interface value of κo is computed by
checking for sign changes of the density fluctuation over lines within a transverse plane and ensemble
averaging over the zero crossing occurrences (Fig. 3). In practice this is accomplished by computing
λo – the mean zero crossing length (ZCL) – using the ideas depicted in the Figs. 2 and 3. The zero
crossing wavenumber is computed using κo = 2π /λo, and the initial rms slope, ηo, follows from the
formula.

FIG. 2. Initial material interface characteristics. Reprinted with permission from A. A. Gowardhan, J. R. Ristorcelli, and
F. F. Grinstein, Phys. Fluids 23, 071701 (2011). Copyright 2011 American Institute of Physics.
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FIG. 3. Zero-crossings of ρ′; L denotes the transverse dimension of the computational domain. Reprinted with permission
from A. A. Gowardhan, J. R. Ristorcelli, and F. F. Grinstein, Phys. Fluids 23, 071701 (2011). Copyright 2011 American
Institute of Physics.

The same zero counting process is used at all subsequent time to compute λ(t), κ(t), and thus η(t),
the rms slope, as running variables. From the definitions it is straightforward to show a connection
between the ZCL and the Taylor microscale of the density filed. For a homogeneous process on a
plane the Taylor microscale is given by

1

λ2
T

= 1

2

〈∇χ∇χ〉
〈χχ〉 ,

and the ZCL and Taylor microscale are proportional.38

Various simulations based experiments were performed in terms of well-defined initial material
interface perturbations and grid resolutions (using up to two levels of AMR refinement) were
considered. The baseline resolution involved an 820 × 240 × 240 grid (�min = 0.1 cm); a much
finely resolved 1640 × 480 × 480 grid (�min = 0.05 cm) was used for selected representative cases.
The various cases are organized into two distinct categories having significantly different (low and
high) initial rms slope ηo (Table I).

III. DEPENDENCE OF THE MIXING WIDTH ON ηo, THE RMS SLOPE
OF THE INITIAL INTERFACE

We first focus on Fig. 4, which show the temporal evolution of the mixing layer width and its
scalings for two different classes of L-H first shock simulations. We emphasize that the subject of
our study the fluid dynamical response to the mixing layer being shocked and that our interest is on
the early and intermediate times. Long-time asymptotic decay scalings are not our current interest.

As noted in our previous work,14, 21 inspection of the evolution of the mixing layer width
δ(t) (Fig. 4(a)) for the low-ηo case shows growth rate trends are ordered in agreement with the
predictions of the small perturbation linear impulse model of Richtmyer:28 as the initial rms slope,
ηo, is increased the layer grows faster and K is higher. The turbulent kinetic energy K produced
by the interaction of the shock and the density interface is primarily in the direction of the shock,
〈ρu′

1u′
1〉 	 〈ρu′

2u′
2〉 ≈ 〈ρu′

3u′
3〉 leads to growth of the modes in the shock propagation direction and

increased mixing layer widths with increasing ηo. The L-H low-ηo first shock cases generally have
higher anisotropy than the L-H high-ηo cases (see below).

For large initial rms slope, the high-ηo cases, a trend that is exactly the opposite of the low-ηo

case is seen: the layer growth decreases as ηo increases. The Richtmyer28 scaling does not predict the
ordering of the trends. For the high-ηo case there is a not only a much larger deposition of baroclinic
vorticity but more importantly the vortex centers, whose distance is proportional to the ZCL, are
closer to each other and they interact nonlinearly to produce more smaller scale flow features. The
creation of new length scales, seen as an increase in the bandwidth of the flow (see below), is not
seen in the low-ηo case. This gives rise to a very different scaling behavior as we explain in more
detail in Sec. IV.
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FIG. 4. Mixing width evolution for first shock low-ηo and high-ηo. (a) First-shocked only for low-ηo and high-ηo;
(b) rescaled to collapse data. Arrows indicate the direction of increasing ηo. Reprinted with permission from A. A. Gowardhan,
J. R. Ristorcelli, and F. F. Grinstein, Phys. Fluids 23, 071701 (2011). Copyright 2011 American Institute of Physics.

Additional evidence for two different instability classes is seen by the scaling law collapse shown
in Fig. 4(b). We follow Ref. 3 and plot the layer thickness κo(δ − δo) versus time scaled with κoδ̇o.
Here, δ̇o is the initial mixing layer growth rate computed (using temporal central finite-differences)
based on early-time simulation data after the shock has traversed the material interface. The less
precise scalings for the faster-evolving high-ηo shocked mixing-layer widths after normalization with
δ̇o reflect a historical rather than fundamental issue: our original study did not focus on early time
aspects and, in hindsight, dumps in time (fixed dump interval ∼100 μs) were not frequent-enough
to ensure uniformly accurate δ̇o for all cases compared.

The results for low-ηo and high-ηo in Fig. 4(b) tend to collapse into distinctly different scaling
groups, δ ∼ t or δ ∼ t

1
2 , suggesting transition to a different class of flow physics above a threshold

value ηo ∼ 1 (for A and Ma specific to these simulations). These different trends demonstrate what
we have called the bipolar behavior of the RMI.21 In short, a flat interface and a very rough one (or
equivalently a turbulent interface) react with very different instabilities. From the physical viewpoint
one would like to understand the different physics; from an engineering model viewpoint one would
like to be able to predict (model) these two classes of the RMI. The (δ ∼ t

1
2 ) scaling will be called

the diffusive scaling, and (δ ∼ t) the ballistic scaling.
Figure 5 compares the evolution of a first shock L-H high-ηo mixing layer width with the

corresponding low-ηo H-L reshocked cases. Before reshock, the trend of the dependence on ηo of the
growth of the mixing layer is consistent with the conventional RMI, as say seen even in Richtmyer’s
original impulse theory;28 the mixing layer grows faster as ηo is increased. After reshock, the mixing
layer growth trends reverse: the mixing layer grows more slowly as ηo is increased. This is consistent
with the first shock high-ηo regime behavior (Fig. 5(b)). The low-ηo interface at time of reshock has
an rms slope, η(tres), commensurate with the first shock of the high-ηo cases and exhibits the same
high-ηo scaling behavior: the higher the rms slope at reshock, η(tres), the lower the growth rate in
direct contrast to the conventional small perturbation RMI trends.

A bulk Re built on the time-dependent mixing-layer width, Re = δ(t)δ̇(t)/ν, has been typically
used to characterize the flow evolution of such simple flows, e.g., Ref. 29. In Fig. 6 we use δ(t)δ̇(t) to
indicate the relative behaviors of the mixing layer growth trends between L-H first-shocked high-ηo

and H-L reshocked low-ηo cases. Evidence for the fluid physics responsible for these similarities
between two fairly distinct classes of flows is discussed from the point of view of statistical moments
of the flow in Secs. IV and V.
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FIG. 5. Mixing width growth. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only. Arrows indicate the
direction of increasing ηo. ICs at t = 0 are characterized by the single parameter ηo.

IV. COMPARISON OF THE STATISTICS OF THE TWO FLOW CLASSES

Our observations above regarding the effects of the initial interfacial morphology indicate that,
for the high-ηo L-H case, the accelerated interface develops into a nonlinear regime with very different
scaling behaviors than the RMI scaling seen in the low-ηo case, namely, the δ ∼ t

1
2 “diffusive” scaling

versus the δ ∼ t “ballistic” scaling, respectively. In this section, we study and compare the low-ηo

first-shocked L-H and the H-L reshocked cases with the high-ηo L-H first-shocked case. In preview,
we observe similar ordering of trends of the reshock cases with the high-ηo first-shock case. As
it turns out, the interface rms slope η(tres) at reshock time is commensurate with the first-shocked
high-ηo case and exhibits the same scaling law behavior once above some threshold value, i.e., the
higher the initial rms slope at shock, the lower the growth rate. Using metrics from equilibrium
turbulence vocabulary, we discuss and connect these two diverse behaviors through description of
the fluid-physics.

FIG. 6. The evolution of a bulk Re. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only. Units are m2/s. Note
that at t ∼ 5000 μs on (a) the second (reflected compression wave) reshock occurs increasing the energy of the layer. Arrows
indicate the direction of increasing ηo.
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FIG. 7. Turbulent kinetic energy. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only. The arrows indicate
the direction of increasing ηo. Not shown are the arrows for the pre-reshock low-ηo case. Note that at t ∼ 5000 μs on the left
hand side the second (reflected compression wave) reshock occurs increasing the energy of the layer.

A. Energy

Figure 7 show the turbulent kinetic energy K as a function of time. The first-shocked L-H low-ηo

has very little energy compared to either the H-L reshocked case or the first-shocked high ηo case, in
fact, they differ by orders of magnitude. In the low-ηo first-shocked/reshocked cases, at t ∼ 5000 μs
the reflected shock from the back wall increases the energy substantially; the period of the flow for
t > 5000 μs is not of direct interest to our study of the behavior of the two instabilities. Our focus is
on the evolution of flow quantities immediately after reshock and before occurrence of the reflected
compression-wave reshock, t < 5000 μs. We note the ordering of the K curves, once a threshold
value has been passed, with increases in the rms slope at time of shock: the higher the ηo or η(tres) the
lower the energy, K. This is opposite to the H-L low-ηo case for which K increases with increasing
ηo (see also Ref. 21). We reiterate our interest in studying the nature of the instabilities and not the
asymptotic temporal power-law scalings of the decay period.

B. Enstrophy

Similar statements can be made for the enstrophy. To leading order the enstrophy  scales the

dissipation ε , as, ε = ν
〈
ω2

〉 = ν. Figure 8 shows the turbulent enstrophy as a function of time.
The L-H first-shocked low-ηo has very little enstrophy compared to either the H-L reshocked case
at and the L-H high-ηo shock case; again they differ by orders of magnitude. In the reshocked
cases, at around t ∼ 5000 μs (depending on case) the reflected shock from the back wall increases
the enstrophy substantially. Note again the ordering of the enstrophy in the high-ηo and high with
ηo or η(tres) cases: the higher the rms slope the higher the enstrophy. Singularly compelling, and
consistent with the notion of a turbulent flow with nonlinear cascade is the fact that both cases
with the highest early-time enstrophy have the least amount of enstrophy at some intermediate later
time. The characteristic time scale of turbulent decay which scales as ∼ /K is very different
as function of ηo or with ηo or η(tres) and this manifests itself in a more rapid decay of the
enstrophy for the highest ηo (Fig. 8(b)). We make a point here about modeling – which we return
to below: the assumption made in most turbulence models is that the production of enstrophy is
proportional to the production of turbulent kinetic energy and, we speculate – given the present
results, that this may not be useful for this non-equilibrium flow near the enstrophy deposition
stage.
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FIG. 8. Enstrophy. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only. The enstrophy increase at t ∼ 5000
μs on (a) reflects occurrence of the reflected compression wave reshock.

C. Anisotropy

We now investigate the anisotropy of the fluctuating velocity fields using the anisotropy tensor
bij,34 defined in terms of the Reynolds stress rij,

bi j = ri j/rkk − 1
3δi j . (4)

The tensor bij is bounded, i.e., −1/3 ≤ bij ≤ 2/3, with bαα = −1/3 and bαα = +2/3, corresponding
to having either no turbulent kinetic energy or all of the energy, respectively, in the (α,α) component
of bij, and bαα = 0 for all α corresponds to the isotropic turbulence limit. As the tensor is trace-free,
bii = 0, and because it is statistically symmetric, b22 = b33, and we use b11 = r11/2k − 1/3; 〈b11〉
is plotted in Fig. 9. In general, the high-ηo case and the low-ηo reshock case have much lower
anisotropy as a consequence of the nonlinear interactions that distribute the energy amongst the
different components. At the end of the low-ηo simulation (before reshock) one has 〈b11〉 ∼ 0.28
which corresponds to three-times as much energy in the axial direction as compared to either of the
transverse directions. At the end of the low-ηo simulation after reshock, and at the end of the high-ηo

case, the anisotropy is much lower, 〈b11〉 ∼ 0.1, corresponding to about 30% more energy in the
axial component as compared to either of the transverse components.

FIG. 9. Anisotropy evolution. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only.
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The trajectory towards isotropy is due to nonlinear effects manifesting through the pressure-
strain correlation in the Reynolds stress equations.30 Unlike the kinetic energy and material mixing
the anisotropy decreases with increases in ηo whether one is in the high-ηo or the low-ηo class of
the RMI. Thus, the high-ηo or low-ηo case behaves similarly regarding anisotropy unlike most other
statistics that exhibit the bipolar behavior.

D. A spectral bandwidth proxy

Measures of transition to turbulence are inherently as multi-valued as the definition one chooses
to uses to define turbulence. At the very simplest end, transition to turbulence is seen as rapid
increase in population of motions with smaller length scales, which for equilibrium turbulence can
lead to an inertial subrange in the turbulent kinetic energy spectra (see, e.g., Ref. 30 and references
therein). The spectral bandwidth of equilibrium turbulence is scaled by a power of the turbulent
Re, usually taken as a ratio of integral-to-Kolmogorov length scales, or ratio of integral-scale (�) to
Taylor-microscale (λ), for example,

λ/� ∼ 1/
√

Re� ∼ 1/Reλ, (5)

as given in Ref. 30, with λ2 = 〈u2〉/〈(u1,1)2〉, and � = K3/2/ε.
In our preliminary exploration oriented context, we use the thickness of the layer, δ(t) as an

approximation for the integral scale, and the mass-density Taylor microscale λ(t) – related to the
spatial zero crossing frequency through λ(t) = 2π /κ(t) – as proxy for the scales at the higher end
of the inertial range. Thus η(t) = κ(t)δ(t) is a qualitative measure of the spectral bandwidth. The
symbol η thus plays two roles: as ηo it describes the initial interface and as η(t) it is a running
spectral bandwidth variable.

Figure 10 shows that the rms slope of the interface η(t) increases with time. As the flow becomes
nonlinear (high-ηo), one observes increased production of small-scales motions at early times as
indicated by higher η(t) and longer self-similar ranges in the spectra (see Fig. 10(b) and Ref. 14).
The late time saturation of η(t) for the highest ηo in Fig. 10(a) indicates faster disappearance of small
scales by extraction via the cascade mechanism (see also discussion of Fig. 12 below) associated with
the higher Reynolds number flow. As in Ref. 14, the q-shelled spectra are obtained by averaging
2D ER(q) evaluated at cross-stream planes within the mixing slab region defined above. This is
consistent with what was seen for the enstrophy: the higher the early time enstrophy the sooner
the flow produces more scales through nonlinear processes as seen in an increase in our spectral
bandwidth measure in Figs. 10 and 11 and the faster the enstrophy and energy decays. This is

FIG. 10. (a) and (b) Spectral bandwidth and energy spectra evolution: first-shocked cases only; ER(q) spectra at representative
times are shown in (b), where (*) denotes finer resolution results (see also Fig. 11).
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FIG. 11. Taylor mass-density microscale wavenumber: evolution of wavenumber κ(t) after first-shocked low and high ηo

cases. The cases with (*) denote finer (doubled) resolution results; in the worst-case resolution scenarios, i.e., shortest IC
wavelength sets (ηo = π /4 and ηo = 10π /4), 20–60 cells/wavelength were involved on the coarsest grid (and 40–120 on the
finest).

consistent with standard notions regarding decaying turbulence, that, e.g., the higher the enstrophy,
the sooner the flow goes into a decay mode accompanied by a decrease of the spectral bandwidth
measure (Fig. 10), and the more rapid decrease in energy and enstrophy—Figs. 8 and 9. This is a
highly non-equilibrium flow and the higher ηo in the high-ηo cases, the larger the cascade rate, the
more rapidly the decay process of both K and  occurs.

It is useful to separately investigate the zero crossing wavenumber portion of η(t). The evolution
of κ(t) of the mass-density field is shown in Fig. 11 for the high-ηo and low-ηo L-H first-shocked
cases which all start with the same initial wavenumber. For the high-ηo cases, one sees a sudden
increase in the κ(t) corresponding the creation of additional smaller scales of the motion. It is
interesting to note that at the time the κ(t) of the three high-ηo simulations take a sudden increase
is also where the bulk Re suddenly starts to decay, see Fig. 6. This is consistent with the notion
that the extraction of energy from the large scales by a nonlinear cascade to smaller scales increases
with the appearance of additional scales, a feature only possible through a nonlinear process. The
appearance of the nonlinear cascade is the primary physical process that distinguishes the high-ηo

from the low-ηo case—in which the Taylor microscale stays reasonably constant (and fairly grid
independent) and there is no cascade (Figs. 10(b) and 11). The finer resolution results in Fig. 11
also show higher Taylor density microscale for high-ηo (and somewhat longer inertial range in
Fig. 10(b))—consistent with higher Re.14

Our low-ηo L-H first-shocked results are consistent (in not showing transition before reshock)
not only with our own previously reported (A > 0, low-ηo) results before reshock14 but also with those
of Pullin et al.10 using a classical LES strategy, different numerics, and similar resolution for the
same planar RMI problem, and (as in Ref. 10) predict mixing width growth rates in agreement with
the laboratory experiments.4 The fact that both cited simulations10, 14 show non-transition before
reshock suggests an effective resolution-dependent Re below the mixing-transition Re threshold.32

The RMI ILES work by Cohen et al.,8 also involving A = 0.67 > 0 and Ma = 1.5, addressed
first-shocked mixing only for the planar RMI experiments in Ref. 4 using the finest reported grid
resolutions: 50–200 cells per characteristic wavelength of the dominant initial material interface
perturbation (the so-called egg crate mode). In contrast, 10–20 cells per wavelength were used in
Refs. 10 and 14, and at least 20–40 here (and in Ref. 21). Cohen et al.8 show evidence of both,
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FIG. 12. “Spectral bandwidth” measure η(t). (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only.

laminar and transitional behavior on first-shock for a given A and Ma, depending on grid resolution
and associated effective Re.14

We now compare the low-ηo L-H first-shocked and the H-L reshocked case with the high-ηo

L-H first-shocked only case. Late-time η(t) in Fig. 12(b) gives the initial rms slope at reshock (for
t ∼ 3000–4000 μs); when η(t) > π /2—high enough for transition to nonlinearity to become possible.
Figure 12(a) shows the evolution of η(t) after the mixing layer is reshocked. The fact that η(t) increases
with time for all cases suggests that spectral bandwidth is increasing—which can also be understood
as an increase in turbulent Re.22, 30 For the low-ηo cases, the increase in η(t) = κ(t)δ(t) is due to the
increase δ(t). In the section on mixing below it is shown that κ(t) becomes relatively constant as no
new scales are created and the small scales are simply decaying by a flow with very little enstrophy.
As noted earlier in connection with Fig. 10(a), the late time saturation of η(t) for the highest ηo in
Fig. 12(b), indicates faster disappearance of small scales by extraction via the cascade mechanism.
Due to mode coupling, there is a much larger (and faster) increase in spectral bandwidth for the
high-ηo cases which are then followed by a faster decay due to the stronger mode coupling. This is
consistent with heuristic notions of the presence of a nonlinear cascade characteristic of turbulent
flow. Our observations suggest that sudden increases in η(t) and κ(t) can be consistently used as
basis for metrics to indicate a transition to a different class of flow physics.

E. Turbulent eddy viscosity

The same ideas can be discussed using the turbulent eddy viscosity, ν t = K1/2δ(t), a cornerstone
modeling assumption in simple turbulence closure. Note that if K1/2 δ(t) is normalized by a fluid
viscosity it can be interpreted as a bulk turbulent Re; our interest is in the un-normalized quantity as
a measure that a standard moment closure might use to compute turbulent transport. In Fig. 13(b)
we see that the high enstrophy case – what we have called the more turbulent and which (up to a
point in which the decay sets in strongly) has a higher bandwidth – has a lower turbulent viscosity
as the very high level of enstrophy has dissipated the energy much more rapidly than in the lower ηo

case of the high-ηo group. After the passage of the shock the turbulence is a decaying turbulence in
which the flow with the highest level of enstrophy after shock deposition (and enstrophy creation)
will decay the fastest by cascade.

F. Summary of statistical analysis

Our analysis on the effects of initial interfacial morphology indicates that for high η(tres) or ηo,
the RMI develops directly into a nonlinear regime and becomes a flow producing more and more
small scales through nonlinear model coupling processes characteristic of vorticity amplification of a
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FIG. 13. Turbulent eddy viscosity: νt = K1/2δ(t). (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked only. Note
that at t ∼ 5000 μs on the left plot a second reshock is occurring and that increases the energy a second time. Units are m2/s.

cascade. In addition, the transition of the highest ηo reshock case to a decaying turbulence (beginning
of the decrease of the spectral bandwidth measure) is also seen in the high ηo suggesting a remarkable
consistency in the flow physics as captured by the η(t) = κ(t)δ(t) measure. A self-consistent picture
emerges not only between low and high-ηo, η(tres), cases but also within the high-ηo cases: one sees
that the flow with the most enstrophy – ostensibly the initially most turbulent by the conventional
notions – ends up being the least turbulent (having the least enstrophy) due to the increased cascade
rate and dissipation and in all the plots the most initially turbulent flow decays fastest and becomes
the least turbulent (using any of the above measures) by the end of the simulation. This picture
supports our finding that RMI turbulence can be achieved on the first shock if the interface has large
enough rms slope.

Within each of the two classes of ICs (high ηo or η(tres), and low-ηo) the response of the rate
of growth of the RMI mixing layer width to the increase of ηo is opposite. For the low-ηo class of
interfaces, the growth of the mixing layer appears driven by vorticity deposition with little mode
coupling and the evolution of the RMI layer scales as δ ∼ t and trends follow Richtmyer’s impulsive
scaling.28 Increasing ηo in the low-ηo classes increases the deposition of baroclinic vorticity on
the initial material interface and leads to higher layer growth. For the high-ηo and η(tres) class of
interfaces, the growth of the mixing layer appears driven by vorticity deposition and importantly a
large amount of additional vorticity is created through mode coupling and the evolution of the RMI
layer scales as δ ∼ t

1
2 , and trends do not follow the impulse scaling. It is pertinent to recall that –

in three-dimensional flows – vorticity (or enstrophy) is not a conserved invariant and is created by
nonlinear processes. In contrast, increasing ηo in the high-ηo group also increases the deposition of
baroclinic vorticity, but this leads to a reduced mixing width growth rate δ ∼ t

1
2 , associated with the

production of new small scales by nonlinear mode coupling that are additionally dissipative. The
two RMI flow types are summarized with the following heuristic:

low−ηo, δ ∼ t : as ηo ↑  ↑ b11 ↓ K ↑ δ ↑,

(6)
high−ηo, δ ∼ t1/2 : as ηo ↑  ↑ b11 ↓ K ↓ δ ↓ .

The low-ηo case is consistent with the idea of little mode coupling and a linear growth δ ∼ t whose
trends are consistently ordered with the impulse theory of Richtmyer. This is the case of a first
shock on a relatively smooth interface. The high-ηo case is consistent with the idea of a nonlinearly
mode-coupled flow with diffusive growth law δ ∼ t

1
2 whose trends – after the spectral broadening

phase – are consistent with what is known of the decay of isotropic turbulence (see below). The
low-ηo reshock cases which have high η(tres) follow all the trends of the high-ηo cases. We have not
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been able to verify the δ ∼ t
1
2 scaling for the reshock case as the occurrence of the second reshock

is too soon for a robust scaling to appear.
The remarkable fact is that the increase of enstrophy that accompanies the increase in ηo in both

linear ballistic and nonlinear diffusive cases leads to two very different fluid dynamical responses: in
the low-ηo case the kinetic energy increases due to higher deposition of energy while in the high-ηo or
η(tres) “nonlinear” case there is a production of new smaller scale motions and a reduction in kinetic
energy as would accompany a cascade of energy to small scales. While the configuration corresponds
to the Richtmyer-Meshkov geometry it appears that there are two very different instabilities.

V. ANALYSIS OF MATERIAL MIXING

In this section we give observations on the mixing process seen in the simulations. First we
present images to illustrate what the data suggest. We show how a consistent picture emerges when
looking at analysis based on the ZCL, the probability density function (PDF) of YSF6 —Fig. 15,
and second order moments. We provide some statistics of the material field used in second order
moment closures for variable density turbulence. The statistical analysis is done as noted earlier in
the instantaneous mixing region, defined by the slab of volume V about the center of the mixing
layer constrained in the x-direction by requiring M(x) > 0.75. The slab involves a cross section of
the shock tube (Ly × Lz). PDFs are computed based on individual YSF6 values within this slab. For
each time, the slab contains 120 data points in the y and z directions for the coarse resolution and
240 cells for the fine resolution case. The number of cells in the shock direction varies with time as
the region is constrained by M(x) > 0.75.

In Fig. 14 the instantaneous mass fraction fields for the nine cases are shown. The mass fraction
of SF6 at selected times, t = 3000 μs after the first shock (or t = 3000 μs after reshock). In
columns 1, 2, and 3, first-shocked L-H low-ηo case, reshocked H-L low-ηo case, and first-shocked

FIG. 14. Mixing visualizations. Column 1: first-shocked low-ηo case. Column 2: low-ηo after being first-shocked/reshocked.
Column 3: first-shocked high-ηo case. Images taken at t = 3000 μs after first-shock (columns 1 and 3) or t = 3000 μs after
reshock (column 2).
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FIG. 15. PDFs of YSF6 for: (a) high-ηo and low-ηo first-shocked; (b) first-shocked high-ηo and first-shocked/reshocked
low-ηo. Plots for same times as in Fig. 14, and PDFs at t = 3000 μs after first-shocked-only or t = 3000 μs after reshock.

L-H high-ηo case, respectively, are shown. The point here is that there is much less mixing for the
low-ηo first-shocked case as compared to the other two cases; this is consistent with the much lower
energy and enstrophy and initial behavior of the ZCL as indicated above. The primary point is that
the similarity between hydro-dynamical statistics of the first-shocked L-H low-ηo case and the H-L
reshocked low-ηo case and the first-shocked L-H high-ηo case seen above is consistent with what is
observed in the material fields.

Many of the observations we have made regarding turbulence level are substantiated by the
PDFs for the material field. In general, the higher the ηo, the higher the turbulence level, and the
more mixed the fluid as seen by a PDF that becomes more unimodal. We see an approximately
bimodal distribution for the low mix and low-ηo first-shocked-only cases in Fig. 15(a) indicating
regions of pure fluid in the sampling region. The PDF has maxima associated with the two pure
fluids indicating that important levels of unmixed fluid remain. The high-ηo cases (and the one
intermediate case) have a more unimodal distribution with maxima in the mixed fluid region of the
PDF. This is consistent with the very different levels of turbulence and more rapid mixing with
the first shock L-H high-ηo cases. Figure 15(b) compares the L-H high-ηo first-shocked cases and
the low-ηo L-H first and H-L reshock cases and shows similar unimodal behavior characteristic of
faster mixing processes. Thus the high-mix PDFs support our interpretations regarding the bipolar
behavior of the RMI and the magnitude of the turbulence generated.

A. The zero crossing wavenumber

One can also study the mixing process using the ZCL (or Taylor microscale) of the density
field, λ, which assigns a characteristic length scale to the material field. From the viewpoint of the
theory of homogeneous stochastic processes, λ is the mean distance between zero crossings of a
realization of a zero mean process and this is how we calculate it once the flow has evolved. From the
correlation function viewpoint, λ is related to the radius of curvature at the origin of the two-point
spatial correlation and is thus mathematically equivalent to the Taylor microscale of homogeneous
turbulence. As noted above, we use the interpretation of λ as a mean ZCL to compute it and interpret
it as a statistical measure of the material “blob” size. And since we are not in fully developed
homogenous equilibrium turbulence we shall use the term ZCL rather than Taylor microscale in
our discussion to avoid any associations with a problem that does not resemble the RMI. The
wavenumber κ(t) associated with the ZCL λ(t) through λ(t) = 2π /κ(t) was weighted by the layer
thickness δ(t), in η(t) = κ(t)δ(t)—used above as a qualitative measure of spectral bandwidth. The
behavior of λ(t) (or κ(t)) supports a consistent viewpoint of our interpretation of the two classes of
instabilities.
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FIG. 16. Density Taylor microscale wavenumber. (a) Low-ηo first-shocked/reshocked; (b) high-ηo first-shocked-only (see
also Fig. 11).

The evolution of the ZCL wavenumber κ(t) of the density field is shown in Fig. 16(a) for the
low-ηo first-shocked/reshocked case and in Fig. 16(b) for L-H high-ηo first-shocked only cases (see
also Fig. 11). For the latter high-ηo cases, one sees at some point a sudden increase in the κ(t)
corresponding to a decrease in the typical statistical blob size of the density field due to the creation
of additional smaller scales of the motion. It is interesting to note that the time when the κ(t) of
the three high-ηo simulations takes a sudden increase is also where the bulk Re starts to decay, see
Fig. 6. This is consistent with the notion that the transfer of energy by the nonlinear cascade to
smaller scales increases with the appearance of additional scales, a feature only possible through
a nonlinear process. As noted before in connection with Fig. 11, the appearance of the nonlinear
cascade and the creation of more smaller scales is the primary physical process that distinguishes
the low-ηo first-shocked-only cases – in which the ZCL stays reasonably constant – from the H-L
reshocked flow and the L-H high-ηo first-shocked-only case.

B. Second order moments of the material field

We present additional material field statistics in order to make the presentation more compre-
hensive, point out some very interesting findings, and provide insights into material mixing relevant
to moment closure models. The key finding here is that the high-ηo/low-ηo bipolar behavior observed
in the hydrodynamic field is also seen in the material field at early time but not at later time for the
low-ηo case. This is an important finding as most turbulence models slave the material mixing to the
turbulence field and the behavior of the two fields does not track each other for the low-ηo case after
an intermediate period of time. The reason for the disparity is that unlike the enstrophy field which
is generated by the nonlinear cascade mechanism and baroclinicity, the mixing rate field has only
the cascade mechanism as a production term.

Figures 17 and 18 give the second order moments of the material field, the averaged mass-

density/specific-volume covariance, bavg = −〈ρ ′υ ′〉 and the mean mass-density variance
〈
ρ ′2〉. The

quantity b is of interest in the context of variable-density moment closure strategies,30, 41 where
b〈P, i〉 appears as a production term in the transport equation for the turbulent mass flux, 〈ρ ′u′

j〉. The
turbulent mass flux in the presence of a pressure gradient is the primary source of kinetic energy
of the turbulence. At early time, the moments are ordered by the expected low-ηo scaling and are
similar to the low-ηo trends of the hydrodynamic field. At some intermediate time, before reshock,
the order of the trends with ηo changes. At early time, the higher the ηo the larger the amount of both
second order moments produced and also the larger the amount of the production of the mixing rate
by the stirring 〈ρ ′

, iSijρ
′, j〉, where Sij = u′

i, j is the fluctuating strain rate.22, 42 Thus, there is more
rapid decay of both second order moments with higher ηo. At some point in time the lower ηo cases
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FIG. 17. The evolution of bavg . (a) Low-ηo first shocked/reshocked; (b) high-ηo first-shocked only.

cross over and have higher second order moments because they have experienced less cumulative
stirring, 〈ρ ′

, iSijρ
′
, j〉, than the higher ηo cases and are not decaying as the cascade is not dissipating

them as fast as the high ηo case—and consequently they have larger magnitudes before the reshock
(see Figs. 17(a) and 18(a)). This does not occur for the enstrophy field (the dissipative mechanism
for the kinetic energy) as its primary production mechanism for the low-ηo cases is baroclinic, i.e.,
it involves the source term εijk〈ωiρ , jp, k〉, where εijk is the Levi-Civita symbol, and not the usual
nonlinear stretching term 〈ωiSijωj〉 of the cascade, the analog to the stirring 〈ρ ′

, iSijρ
′
, j〉. Framing

the discussion of mixing in this way is peculiar to a moment closure approaches to turbulence, see
Refs. 22 and 42 and references therein.

It is useful on many counts for modeling purposes, to examine the normalized density variance〈
ρ ′2〉/〈ρ2

〉
. In some second order closures,37 an equation for the density variance is solved and in

the mass flux equation the density intensity is taken as an approximation bavg ≈ 〈
ρ ′2〉/〈ρ2

〉
—this is

the leading Boussinesq approximation.37 Interestingly, comparison of bavg (Fig. 17) and
〈
ρ ′2〉/〈ρ2

〉
(Fig. 19) shows that they do behave qualitatively and almost quantitatively the same, and thus the
approximation is useful for the statistics studied. Recall that both b and the density variance, as
described above, are an ensemble average in the well mixed portions of the layer. While not the

FIG. 18. Evolution of the mean mass-density variance
〈
ρ′2〉. (a) Low-ηo first shocked/reshocked; (b) high-ηo first-shocked

only.
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FIG. 19. Evolution of
〈
ρ′2〉/〈ρ2

〉
. (a) Low-ηo: first shock and reshock; (b) high-ηo: first shock.

subject of our studies, we have seen that the approximation degrades substantially at the edges of
the layer as might be anticipated by the Taylor series expansion of b given in Ref. 30. Results for the
maximum value of b, which represent the least mixed extrema of the field, are given in Fig. 20. In
all cases, there is a rise of the covariance with the impact of the shock, followed by their monotonic
decay. In the fully mixed state b = 0.

Thus having discussed some of the moments that one might expect a turbulence model to predict,
we move on to a discussion of the modeling challenges of these two classes of RMI instabilities and
their dependence on ICs.

VI. CHALLENGES FOR MOMENT CLOSURE MODELS

The two very different shock-driven flow behaviors discussed above are relevant to the generality
of turbulence models in predicting these classes of instabilities. The low-ηo case corresponds to
impulsive acceleration of an almost-flat interface, the classical small-perturbation RMI. The high-ηo

regime corresponds to: (a) impulsive acceleration of a very rough initial interface, and (b) shock
passage through a turbulent material interface. It appears that simple models of RMI type flows
cannot currently handle both classes of ICs (for a given initial A, Ma), and are certainly not likely to
predict RMI flows with sequential shocks. We now highlight some unique flow physics that current

FIG. 20. Evolution of bmax. (a) Low-ηo first shocked/reshocked; (b) high-ηo first-shocked only.
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turbulence closure models – built as they are on self-similarity and equilibrium assumptions – are
not likely to capture. The physically meaningful data to validate a moment closure against will be
δ(t), δ(t)δ̇(t), K, and K1/2 δ(t)—which are, respectively, the rms mixing layer thickness, a bulk Re
proxy, the kinetic energy, and the turbulent eddy viscosity.

A. Challenge 1

Can one predict the temporal evolution of a quantity used in a moment closure for either the
high-ηo or low-ηo class of the instability?

1. Scaling of the mixing layer thickness

Fig. 4 shows two distinct scalings for the mixing layer width for the high-ηo and low-ηo cases. If
a moment closure is to capture the two instability behaviors it will have to capture the very different
high-ηo (δ ∼ t1/2) and low-ηo (δ ∼ t) scalings as well as trends. We speculate that most current
models will fail as model development appears to have focused primarily on the equilibrium decay
regime and use self-similarity.

2. Magnitude of shock response

The data indicate a very different response to the shock depending on the ηo, η(tres), of the
interface. For the high-ηo cases the four moment closure metrics and the dissipation ε ∼  are an
order of magnitude or more larger than for the low-ηo ICs. This is an important difference.

B. Challenge 2

If one increases ηo within the high-ηo and low-ηo class of instabilities are the trends of the
predicted quantities opposite of each other for K and δ and the same for  and b11? In short, can a
moment closure model be consistent with Eq. (6)?

1. Effects of initial rms slope on trends

As has been mentioned above and in Ref. 5 the RMI exhibits two very different behaviors
depending on ICs which (for given initial A and Ma) are characterized by ηo (Eq. (6)).

2. Energy and enstrophy behave differently

At the passage of the shock across the high-ηo case, one finds, comparing Figs. 7–9, that the
rise in kinetic energy and enstrophy do not track each other: the jump in K upon shock transit is the
same for all the high-ηo cases while the jump in  differs by a factor of five between the highest ηo

and lowest ηo examples of the high-ηo studies. Moreover (see Fig. 7) in the low-ηo case, K increases
as ηo increases following a trend consistent with that predicted by the small perturbation theory of
Richtmyer.28 In the high-ηo case, K decreases as ηo is increased. In contrast, for both high and low
ηo cases, the enstrophy increases. The production mechanisms of K and  are very different; in
most turbulence models the production of enstrophy is modeled as proportional to the production of
energy and these very different production terms likely need to be accurately modeled. To say that
in another way: energy deposition and enstrophy deposition occur by different mechanisms. The
current phenomenology in turbulence models cannot account for the difference in deposition.

Note that the figures show that the decay of K is different than the decay of . Inspection of
Fig. 7 shows that the higher the initial K (after shock time) the higher K is for the duration of the
flow. While for enstrophy, the higher the initial  the lower it is by the end of the run as is seen in
Fig. 8.

We have shown how the different RMI instabilities and their trends with initial rms interface
slope are unlikely to be predicted with the standard form of models—the clearest difficulty being that
such models, as currently configured, have built-in dependence on the rms slope either generally or
as an initial condition input. We now look at implications of these typical model equations long after
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the peak of the enstrophy and energy to understand whether these classes of models can compute a
simple decay in our present (shock driven) context. We consider the moment equations long past the
initial conditions and in the central portions of the now wide mixing zone, for which the modeled k
and ε equations40 for the decay are

1

k

d

dt
k ∼ −ε

k
,

1

ε

d

dt
ε ∼ Cε2

ε

k
. (7)

Based on the numerical simulation data averaged over the region M > 0.75 we compute the variables
in the above equations. The objectives are the following: (1) to verify whether the form of the Eq. (7)
will predict the different temporal trajectories of K and , and (2) to verify the accepted wind tunnel
value of the decay coefficient Cε2 = 1.33. Our analysis (details not shown here) demonstrates that
the above form of the decay equations does capture the trajectories of K and . Moreover, we also
take the ratio of the two Eq. (7) in order to compute the coefficient Cε2 based on the simulation data
and find a robust Cε2 ≈ 1.33 for all the high-ηo cases and after reshock. For the low-ηo cases there
is some variability but 1.33 serves usefully as a mean. With the decay coefficient being so close to
conventional values (with some caveats for the low-ηo simulations) we conclude that the decay phase
can be well modeled by the traditional phenomenology provided the flow is in the turbulent regime.
Such an agreement is not to be expected: the model equations for the decay phase are built using
wind tunnel turbulence phenomenology and not shock driven turbulence for which enstrophy and
energy deposition by baroclinic processes are vastly different. Such agreement is not to be expected:
the model equations for the decay phase are built using wind tunnel turbulence phenomenology and
not shock driven turbulence for which enstrophy and energy deposition by baroclinic processes are
vastly different.

3. Turbulent eddy viscosity

As mentioned above, in equilibrium turbulence, the spectral bandwidth and the turbulent Re
have all been used as a measure of the nonlinear nature of the flow.16, 17 Due to our interest in moment
closure methods, we use the turbulent eddy viscosity as a proxy of these measures; recall that the
fluid viscosity does not appear (in any important way) in moment closure methods for developed
turbulence (away from walls). To this end we use the turbulent eddy viscosity K1/2 δ(t) as a metric
of nonlinearity easily obtained from a moment closure calculation. Figure 13 shows very distinct
behaviors of this quantity for the low-ηo and high-ηo and reshocked cases.

4. The anisotropy

Unlike the energy and mixing width the isotropy increases with increasing ηo in all cases (see
Fig. 9).

VII. SUMMARY AND CONCLUSIONS

We have studied, for fixed Ma and A, how the initial rms interface slope affects the fluid and
mixing physics of the RMI. We have observed the appearance of two different RM instabilities with
distinctly different physics depending on the initial morphology of the air-SF6 interface. Our study
is a single parameter study, and has not studied the effects of varying A or Ma in order to study the
interfacial morphology effects. Our findings are thus pertinent to the L-H first-shocked and the H-L
reshocked interfaces as the initial A is kept fixed.

For fixed A > 0 and Ma, the rms slope of the initial material interface ηo appears to be a
very important parameter in determining whether statistical trends are in a linear regime scaling as
suggested by Richtmyer’s model,28 or in a nonlinear mode-coupled regime exhibiting many of the
phenomenological characteristics of a cascade process producing additional small scales. The trends
in these two regimes, as indicated by the response of the RMI to an increase in the rms slope of the
interface, ηo, on the first-shocked L-H interface are opposite. The two identified RMI flow types can
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be summarized with the following heuristic (Eq. (6)):

low−ηo, δ ∼ t : as ηo ↑  ↑ b11 ↓ K ↑ δ ↑,

high−ηo, δ ∼ t1/2 : as ηo ↑  ↑ b11 ↓ K ↓ δ ↓ .

In the low-ηo case the baroclinic generation is the primary production mechanism for enstrophy. In
the high-ηo case enstrophy is additionally and importantly generated by the amplification of vorticity
interacting with the strain field as is characteristic of nonlinear mode coupling and the appearance of
a cascade and smaller scales of the flow. The subsequent decay of the flow has many of the features
of a decaying turbulent flow. The low-ηo case is consistent with the idea of little mode coupling and
a linear growth (δ ∼ t) whose trends are consistent with the small perturbation impulse theory of
Richtmyer.28 This is the case of a first-shocked L-H interface on a relatively smooth interface. The
first-shocked L-H high-ηo case is consistent with the idea of a nonlinearly mode-coupled flow with
diffusive growth law (δ ∼ t1/2).

The remarkable thing is that the increase in enstrophy that accompanies the increase in ηo

for both high-ηo and low-ηo (first-shocked-L-H and first-shocked-L-H/reshocked-H-L) cases leads
to two very different fluid dynamical responses: in the low-ηo case the kinetic energy increases
associated with higher deposition of energy while in the high-ηo “nonlinear” (and reshocked) case
there is a rapid production of new smaller scale motions and enstrophy and a large reduction in
kinetic energy accomplished by a cascade mechanism. We have also observed these behaviors in
our double interface (shocked gas-curtain) studies.26 We have called this the bipolar behavior of the
RMI and have shown that two very distinct classes of fluid physics appear in the RMI configuration.

Our current presentation and previous results21, 26 have used a single-parameter ηo (for fixed Ma,
A) to discuss IC dependence of the trends in the fluid and mixing physics of shock-driven transition
and the appearance of two different instabilities. In no way should this be interpreted as a statement
that we believe that the IC problem can be characterized by a single parameter. We merely report
on identifying one way of diagnosing and presenting the diversity of the early and intermediate
time RMI which may provide an effective framework to assess the performance of reduced-order
turbulence closure models. The material interface instabilities, as seen in the short and intermediate
time mixing-layer response to a shock, likely have a very complicated dependence on many other
relevant variables and various proposals are being explored, e.g., Refs. 18 and 20.

The first-shocked L-H high-ηo results when contrasted to the low-ηo first-shocked L-H studies
support the idea that RMI can go directly to a nonlinear mode coupled flow state producing more
small scales on the first shock with high enough ηo. The reshocked H-L low-ηo case has the same
ordering of trends with rms slope η(tres), at the time of the reshock as the first-shocked L-H high-ηo

case. The η(tres) at the initiation of the H-L reshock is in the nonlinear regime and the trends with
increasing η(tres) at initiation of the H-L reshock are consistent with the ηo trends in the high-ηo

case first-shock L-H. Given that the same trends with η(tres) are seen for the H-L reshock case as
in the high-ηo first-shock L-H case one speculates that the reshock goes directly to a nonlinear
mode coupled flow and cascade by the same mechanism as the nonlinear first-shock case. As the
primary generation of vorticity for high η(tres) and ηo is the nonlinear cascade and not baroclinicity
we believe that these trends will be also seen in A < 0 simulations—but until this can be confirmed
it remains an open question.

The fact that slower growth rate of the high-ηo mixing-layer width is associated with more mate-
rial mixing—contrary to intuition at first glance, demonstrates that mixing-layer width growth-rate,
bulk Re, and material mixing are not causally connected. Our observations have a very straightfor-
ward physical explanation: higher initial material interface slope leads to production of more smaller
scales which dissipate turbulent kinetic energy faster, reducing the layer growth rate and increasing
the mixing rate—in short higher mixing-layer width growth rate does not mean more (molecular)
mixing. We showed that the first-shocked high-ηo case has very different trend scalings than first
shocked low-ηo case. The two very different RMI behaviors are relevant to the generality of models
used to predict these classes of flows. Current statistical model strategies cannot distinguish between
these two classes of flows.
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