
Fernando Da Silva Borges- PhD
- Postdoctoral Fellow at SUNY Downstate Health Sciences University
Fernando Da Silva Borges
- PhD
- Postdoctoral Fellow at SUNY Downstate Health Sciences University
About
92
Publications
20,137
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
974
Citations
Introduction
Research in computational neuroscience with more than 40 publications in peer reviewed journals, and PI/co-PI in 7 research grants. Lectured undergraduate courses, and organized Courses on Computational Modeling. Investigates neural network models with research mainly focused on neuronal synchronization, synaptic plasticity, and epilepsy models (in silico, in vivo, and in vitro), also investigates full-scale microcircuits models of hippocampus, somatosensory and motor cortex.
Current institution
Publications
Publications (92)
In this work, effects of constant and time-dependent vaccination rates on the Susceptible–Exposed–Infected–Recovered–Susceptible (SEIRS) seasonal model are studied. Computing the Lyapunov exponent, we show that typical complex structures, such as shrimps, emerge for given combinations of a constant vaccination rate and another model parameter. In s...
In this work, effects of constant and time-dependent vaccination rates on the Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) seasonal model are studied. Computing the Lyapunov exponent, we show that typical complex structures, such as shrimps, emerge for given combinations of constant vaccination rate and another model parameter. In som...
Spiral waves are spatial-temporal patterns that can emerge in different systems as heart tissues, chemical oscillators, ecological networks and the brain. These waves have been identified in the neocortex of turtles, rats, and humans, particularly during sleep-like states. Although their functions in cognitive activities remain until now poorly und...
We investigate the transient dynamics of the Fisher equation under nonlinear diffusion and fractional operators. Firstly, we investigate the effects of the nonlinear diffusivity parameter in the integer-order Fisher equation, by considering a Gaussian distribution as the initial condition. Measuring the spread of the Gaussian distribution by u(0,t)...
The description of neuronal activity has been of great importance in neuroscience. In this field, mathematical models are useful to describe the electrophysical behavior of neurons. One successful model used for this purpose is the Adaptive Exponential Integrate-and-Fire (Adex), which is composed of two ordinary differential equations. Usually, thi...
Cancer is a group of diseases in which cells grow uncontrollably and can spread into other tissues. Various studies consider the interactions between cancer cells and the immune system as well as different types of treatment. Mathematical models have been used to study the growth of cancerous cells. We study a fractional order model that describes...
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possibl...
The fractional reaction-diffusion equation has been used in many real-world applications in fields such as physics, biology, and chemistry. Motivated by the huge application of fractional reaction-diffusion, we propose a numerical scheme to solve the fractional reaction-diffusion equation under different kernels. Our method can be particularly empl...
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular s...
This work studies the SIS model extended by fractional and fractal derivatives. We obtain explicit solutions for the standard and fractal formulations; for the fractional case, we study numerical solutions. As a real data example, we consider the Brazilian syphilis data from 2011 to 2021. We fit the data by considering the three variations of the m...
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Certain aspects of the 5-HT signaling framework hint at its potentia...
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying
the dynamics of a standard model, i.e., with integer derivatives. We study the dynamical behavior by means of the bifurca‑
tion diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurren...
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying the dynamics of a standard model, {\it i.e.}, with integer derivatives. We study the dynamical behavior by means of the bifurcation diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recu...
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular s...
The brain is formed by cortical regions that are associated with different cognitive functions. Neurons within the same region are more likely to connect than neurons in distinct regions, making the brain network to have characteristics of a network of subnetworks. The values of synaptic delays between neurons of different subnetworks are greater t...
In the brain cortex, excessive burst synchronization is a characteristic of epileptic activities. Such dynamical behaviour is associated with an unbalanced between
excitatory and inhibitory signals. On the other hand, balanced excitatory and inhibitory signals could prevent such activities. For this reason, we investigated the emergence of highly s...
Cognitive tasks in the human brain are performed by various cortical areas located in the cerebral cortex. The cerebral cortex is separated into different areas in the right and left hemispheres. We consider one human cerebral cortex according to a network composed of coupled subnetworks with small-world properties. We study the burst synchronizati...
Neuronal synchronization is important for communication between brain regions and plays a key role in learning. However, changes in connectivity can lead to hyper-synchronized states related to epileptic seizures that occur intermittently with asynchronous states. The activity-regulated cytoskeleton-associated protein (ARC) is related to synaptic a...
We are delighted to present you the Proceedings of the 2022 CNS meeting. The CNS meeting encourages approaches that combine theoretical, computational, and experimental work in the neurosciences, and provides an opportunity for participants to share their views. The abstracts corresponding to speakers' talks and posters are what you find collected...
Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modu...
Synaptic time delays and plasticity are intrinsic characteristics present in real neuronal networks, and the interplay between both can promote complex dynamics in the brain. In this work, we build connected plastic subnetworks of Hodgkin-Huxley neurons where the subnetworks are composed of excitatory neurons and the connectivity modifications foll...
Neuroplasticity, also known as brain plasticity or neuronal plasticity, allows the brain to improve its connections or rewire itself. The synaptic modifications can help the brain to enhance fitness, to promote existing cognitive capabilities, and to recover from some brain injuries. Furthermore, brain plasticity has impacts on neuronal synchronisa...
The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch and related sensorimotor behaviors. In 2015, the Blue Brain Project (BBP) developed a groundbreaking rat S1 microcircuit simulation with over 31,000 neurons with 207 morphoelectrical neuron types, and 37 million synapses, incorporating anatomical and...
The primary somatosensory cortex (S1) of mammals is critically important in the perception of touch and related sensorimotor behaviors. In 2015 the Blue Brain Project developed a groundbreaking rat S1 microcircuit simulation with over 31,000 neurons with 207 morpho-electrical neuron types, and 37 million synapses, incorporating anatomical and physi...
Excessively high, neural synchronisation has been associated with epileptic seizures, one of the most common brain diseases worldwide. Previous researchers have argued which epileptic and normal neuronal activity are support by the same physiological structure. However, to understand how neuronal systems transit between these regimes is a wide ques...
Electrical stimulation of the brain is a largely used alternative for the treatment of myriad neurological disorders. Although recognizably efficacious and safe, many details of the underlying mechanisms remain obscure. Our group devised and successfully tested, in animal models of epilepsy, a novel nonstandard form of electrical stimulation in whi...
Foreword from the editors.
We hosted four keynote speakers: Wolf Singer, Bill Bialek, Danielle Bassett, and Sonja Gruen. They enlightened us about computations in the cerebral cortex, the reduction of high-dimensional data, the emerging field of computational psychiatry, and the significance of spike patterns in motor cortex. From the submissions,...
Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, oligodendroglioma, and ependymoma. We study a mathematical model that describes glia-neuron interaction,...
Neurons in the nervous system are submitted to distinct sources of noise, such as ionic-channel and synaptic noise, which introduces variability in their responses to repeated presentations of identical stimuli. This motivates the use of stochastic models to describe neuronal behavior. In this work, we characterize an intrinsically stochastic neuro...
Neurons in the nervous system are submitted to distinct sources of noise, such as ionic-channel and synaptic noise, which introduces variability in their responses to repeated presentations of identical stimuli. This motivates the use of stochastic models to describe neuronal behavior. In this work, we characterize an intrinsically stochastic neuro...
The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a
key role in neural development and function. NOVA1 also includes a protein-coding difference
between the modern human genome and Neanderthal and Denisovan genomes. To investigate the
functional importance of an amino acid change in humans, we reintro...
Brain tumours are masses of abnormal cells that can grow in an uncontrolled way in the brain. There are different types of malignant brain tumours. Gliomas are malignant brain tumours that grow from glial cells and are identified as astrocytoma, oligodendroglioma, and ependymoma. We study a mathematical model that describes glia-neuron interaction,...
The brain has the phenomenal ability to reorganise itself by forming new connections among neurons and by pruning others. The so-called neural or brain plasticity facilitates the modification of brain structure and function over different time scales. Plasticity might occur due to external stimuli received from the environment, during recovery from...
In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work,...
https://www.youtube.com/watch?v=IBU1H0fj70I
Cancer is a term used to refer to a large set of diseases. The cancerous cells grow and divide and, as a result, they form tumours that grow in size. The immune system recognise the cancerous cells and attack them, though, it can be weakened by the cancer. One type of cancer treatment is chemotherapy, which uses drugs to kill cancer cells. Clinical...
In this work, we study the dynamic range of a neuronal network of excitable neurons with excitatory and inhibitory synapses. We obtain an analytical expression for the critical point as a function of the excitatory and inhibitory synaptic intensities. We also determine an analytical expression that gives the critical point value in which the maxima...
Chimera states are spatiotemporal patterns in which coherent and incoherent dynamics coexist simultaneously. These patterns were observed in both locally and nonlocally coupled oscillators. We study the existence of chimera states in networks of coupled Rössler oscillators. The Rössler oscillator can exhibit periodic or chaotic behavior depending o...
Noise appears in the brain due to various sources, such as ionic channel fluctuations and synaptic events. They affect the activities of the brain and influence neuron action potentials. Stochastic differential equations have been used to model firing patterns of neurons subject to noise. In this work, we consider perturbing noise in the adaptive e...
The neural circuit linking the basal ganglia, the cerebellum and the cortex through the thalamus plays an essential role in motor and cognitive functions. However, how such functions are realized by multiple
loop circuits with neurons of multiple types is still unknown. In order
to investigate the dynamic nature of the whole-brain network, we
built...
The brain has the phenomenal ability to reorganize itself by forming new connections among neurons and by pruning others. The so-called neural or brain plasticity facilitates the modification of brain structure and function over different time scales. Plasticity might occur due to external stimuli received from the environment, during recovery from...
Self-sustained activity in the brain is observed in the absence of external stimuli and contributes to signal propagation, neural coding, and dynamic stability. It also plays an important role in cognitive processes. In this work, by means of studying intracellular recordings from CA1 neurons in rats and results from numerical simulations,
we demo...
Epileptic seizures are associated with excessively high synchronous activities of neocortex regions or other neural populations. Traub and Wong showed that synchronized bursts appear in epileptic seizures depend on the neural dynamics. Two suggested mechanisms responsible for the generation of partial epilepsy are the decrease of inhibition and inc...
Epileptic seizures are associated with excessively high synchronous activities of neocortex regions or other neural populations. Traub and Wong showed that synchronized bursts that appear in epileptic seizures depend on neural dynamics. Two suggested mechanisms responsible for the generation of partial epilepsy are the decrease of inhibition and th...
Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses. In our neuronal...
Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses. In our neuronal...
The human cerebral cortex can be separated into cortical areas forming a clustered network structure. We build two different clustered networks, where one network is based on a healthy brain and the other according to a brain affected by a neurodegenerative process. Each cortical area has a subnetwork with small-world properties. We verify that bot...
Excessively high, neural synchronisation has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronisation mechanisms can thus help control or even treat epilepsy. In this paper, we study neural synchronisation in a random network where nodes are neurons with excitatory an...
The brain can display self-sustained activity (SSA), which is the persistent firing of neurons in the absence of external stimuli. This spontaneous activity shows low neuronal firing rates and is observed in diverse in vitro and in vivo situations. In this work, we study the influence of excitatory/inhibitory balance, connection density, and networ...
In this work, we apply the spatial recurrence quantification analysis (RQA) to identify chaotic burst phase synchronisation in networks. We consider one neural network with small-world topology and another one composed of small-world subnetworks. The neuron dynamics is described by the Rulkov map, which is a two-dimensional map that has been used t...
We consider a network topology according to the cortico-cortical connec-
tion network of the human brain, where each cortical area is composed of a random
network of adaptive exponential integrate-and-fire neurons. Depending on the
parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic
tool to identify spike and burst pa...
Brain plasticity refers to brain's ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where t...
Brain plasticity refers to brain's ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where t...
The characterisation of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to ide...
The characterisation of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to ide...
In this work, we study the dynamic range in a neuronal network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. Our results show...
In this work, we study the dynamic range in a neuronal network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. Our results show...
Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved netw...
Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved netw...
Neuronal systems have been modelled by complex networks in different description levels. Recently, it has been verified that the networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera-like states in a network considering the connectivity matrix based on...
We study the capacity of Hodgkin-Huxley neuron in a network to change temporarily or permanently their connections and behavior, the so called spike timing-dependent plasticity (STDP), as a function of their synchronous behavior. We consider STDP of excitatory and inhibitory synapses driven by Hebbian rules. We show that the final state of networks...
Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat ce...
We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-
fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the
coupling strength and the probability of connections, by constructing parameter spaces that identify
these synchronous behaviours from measurements of t...
We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of th...
We have studied neuronal synchronisation in a random network of adaptive exponential integrate-and-fire neurons. We study how spiking or bursting synchronous behaviour appears as a function of the coupling strength and the probability of connections, by constructing parameter spaces that identify these synchronous behaviours from measurements of th...
We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on t...
We have studied effects of perturbations on the cat cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with small-world property. We focus on the suppr...
To study neuroplasticity, the capacity of neurons and neural networks to
change temporarily or permanently their connections and behavior, we
investigate the effects of spike timing-dependent plasticity (STDP) on
synchronization in Hodgkin-Huxley neural networks. We consider spike
timing-dependent plasticity of excitatory and inhibitory synapses ac...
The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cogni-tive regions. We have built a network of networks, in which networks are...
Neste artigo, investigamos a sincronização de disparos neuronais em uma rede neuronal com plasticidade sináptica e perturbação externa. Nas simulações, a dinâmica neuronaí e descrita pelo modelo de Hodgkin-Huxley, considerando sinapses químicas (excitatórias) entre neurônios. De acordo com a sincronização dos disparosédisparosé esperado que uma per...
In this paper, we investigated the neural spikes synchronisation in a neural
network with synaptic plasticity and external perturbation. In the simulations
the neural dynamics is described by the Hodgkin Huxley model considering
chemical synapses (excitatory) among neurons. According to neural spikes
synchronisation is expected that a perturbation...
The brain of mammals are divided into different cortical areas that are
anatomically connected forming larger networks which perform cognitive tasks.
The cat cerebral cortex is composed of 65 areas organised into the visual,
auditory, somatosensory-motor and frontolimbic cognitive regions. We have built
a network of networks, in which networks are...
In this paper, we study the effects of spike timing-dependent plasticity on
synchronisation in a network of Hodgkin-Huxley neurons. Neuron plasticity is a
flexible property of a neuron and its network to change temporarily or
permanently their biochemical, physiological, and morphological
characteristics, in order to adapt to the environment. Regar...
In recent years, it became clear that a better understanding of the interactions among the main elements involved in the cancer network is necessary for the treatment of cancer and the suppression of cancer growth. In this work we propose a system of coupled differential equations that model brain tumour under treatment by chemotherapy, which consi...
We study the dynamic range of a cellular automaton model for a neuronal
network with electrical and chemical synapses. The neural network is separated
into two layers, where one layer corresponds to inhibitory, and the other
corresponds to excitatory neurons. We randomly distribute electrical synapses
in the network, in order to analyse the effects...
In the soil science, a direct method that allows the study of soil pore distribution is the bi-dimensional (2D) digital image analysis. Such technique provides quantitative results of soil pore shape, number and size. The use of specific softwares for the treatment and processing of images allows a fast and efficient method to quantify the soil por...
The dynamic range is the logarithmic difference between maximum and
minimum levels of sensation produced by known stimuli. In the human
sensory systems the dynamic ranges are typically larger than for single
neurons, this amplification being essentially a collective effect of the
neural network. We investigated the dynamic range exhibited by a
cell...
In this work we investigate a mathematical model describing tumour growth under a treatment by chemotherapy that incorporates time-delay related to the conversion from resting to hunting cells. We study the model using values for the parameters according to experimental results and vary some parameters relevant to the treatment of cancer. We find t...
Neste trabalho analisa-se modelos matematicos que descrevem a dinâmica de populacoes. Os modelos estudados descrevem a interacao das celulas tumorais com o sistema imunologico e propiciam a proposta de um modelo de controle para proliferacao celular descontrolada em regioes cerebrais. O sistema imunologico proposto e constituido por celulas de repo...
Total porosity (TP), determined by image analysis, pore type and pore size distribution were evaluated on impregnated soil blocks from an undisturbed Brazilian sandy loam soil using a digital portable optical microscope. The free software Image J (version 1.40g) was used for image analysis. Procedures for soil image collection and analysis were pre...