
Blockchains for Industrial IoT - a Tutorial

Pal Varga and Ferenc Janky
Budapest University of Technology and Economics

v1.0
2019

Abstract

Utilizing Blockchains within the Internet of Things (IoT) concept is quite a recent idea. There
are already a number of use cases and supporting frameworks available, which shows its potential
benefits for many domains.

There are interesting, business-driven target areas within the Industrial IoT domain, including
sectors such as supply chain (including manufacturing, transportation and logistics), maintenance,
energy trading, grids, and even healthcare. When compared to consumer IoT, these systems have
special requirements: certain level of real-time, security, engineering complexity, multi-stakeholder
visibility, fast transaction and asset traceability. While the Distributed Ledger Technology (DLT)
already addresses some areas of these (such as multi-stakeholder visibility or asset traceability),
Blockchain Technology (BCT) provides additional value for security, building trust, and reducing
cost while accelerating transactions of service agreements. This tutorial aims to reveal the oppor-
tunities and challenges as well as presenting real-life examples together with network management
aspects. First it provides an overview and definitions the BCT universe – from Assets and Blocks
through Consensus Mechanisms and Distributed Ledgers to Wallets. Next, it describes some special
requirements of the Industrial IoT domain together with ideas of utilizing BCT to cover these needs.
While discussing benefits, the tutorial reveals some drawbacks as well. These help us answering the
questions: when is it beneficial to use BCT, when is it questionable, and when is it avoidable?

Furthermore, the tutorial provides insights on various use-cases of employing BCT and smart ser-
vice contracts in healthcare, electricity trading, production, asset tracking or proactive maintenance.
Aside from being interesting simply because they are becoming core technologies of near-future sys-
tems, IIoT and Blockchains have a network management viewpoint as well. The IIoT end-devices
need on-boarding, their data needs to be secured, authenticity needs to be checked, and trust needs
to be built – all of which tasks BCT can be utilized effectively. Moreover, as part of configuration
management, reliable and secure firmware distribution and upgrade can be supported inherently.

The hands-on part of this tutorial includes a multi-player bidding scenario. In here, the users
(consumers) can deploy smart service contracts on in an Ethereum-based blockchain, stating their
need of given amount of energy at a maximum price. The energy-provider type of players in this
scenario can bid on winning the contract. The various transactions related to the bidding, energy
consumption and withdrawal of gains can be followed by the players either by using the GUI provided,
or by issuing commands for reading transaction parameters and service contract values stored at the
blockchain.

1



Contents

1 Introduction 2

2 Motivation: using Blockchains for Industrial IoT 3
2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 IoT security: a brief overview on issues and solutions . . . . . . . . . . . . . . . . . . . . . 3
2.3 Special features of Blockchains to be utilized by IIoT . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Interoperability across IoT devices, IoT systems and industrial sectors . . . . . . . 4
2.3.2 Traceability and Reliability of IoT data . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.3 Improved Security of IoT system-of-systems through blockchains . . . . . . . . . . 4

2.4 When is it beneficial to use BCT for IIoT? . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Precautions for Blockchain usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Blockchain-related concepts 6
3.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 A sample workflow of Blockchain-related processes . . . . . . . . . . . . . . . . . . 6
3.1.2 Distributed Ledger Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Cryptographic Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.4 Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.5 Consensus algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.6 Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Smart contracts using Ethereum 10

5 Introduction to the demo environment 11
5.1 Login details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Attaching to geth node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Most frequently used geth commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 PowerBid game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.4.1 Description of the contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.2 Deployment, bidding and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.3 Game-play summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.4 Typical values to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 Implement a number guessing game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.2 Potential solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction

This tutorial provides a generic overview of Blockchain Technology and its feasibility for the Industrial
Internet of Things (IIoT) domain. The tutorial itself consist of three parts: (i) an oral lecture with its
separate presentation material, (ii) the current syllabus providing support background material for (iii)
the demo on using smart service contracts in a multi-player bidding scenario.

In order to get a proper grip on the tutorial exercises, some of the main concepts of the Blockchain
Technology, the Distributed Ledgers, and the Smart Service Contract are described here. Beside this,
some application areas of these concepts for Industrial Internet of Things (IIoT) are discussed in brief.

The presentation material is also available for this tutorial, at
http://alpha.tmit.bme.hu/~pvarga/CNSM_2019/iot_sc_tutorial_syllabus.pdf.
The cheat-sheet for the hands-on exercises is available at
http://alpha.tmit.bme.hu/~pvarga/CNSM_2019/cheat_sheet.pdf

The source code for the demo application for the multi-player bidding scenario is available at
https://github.com/fecjanky/iot_sc_tutorial.
The demo application can be pulled from DockerHub with tag fecjanky/iot_sc_tutorial:latest

2

http://alpha.tmit.bme.hu/~pvarga/CNSM_2019/iot_sc_tutorial_syllabus.pdf
http://alpha.tmit.bme.hu/~pvarga/CNSM_2019/cheat_sheet.pdf
https://github.com/fecjanky/iot_sc_tutorial


2 Motivation: using Blockchains for Industrial IoT

2.1 General considerations

The domain of Industrial IoT is growing in terms of endpoint numbers, application functions, and multi-
player usage scenarios – among others. When compared to public IoT approaches, the industrial domain
proceeds with a much smoother pace, but with great mass – so its momentum (the product of mass and
velocity) is huge, as well. There are several reasons why industry adopts IoT in a more conservative
way, including the requirements for real-time operation, security and safety, high reliability, complexity,
engineering efficiency, return of investment, and not to forget: trust. It takes time to address all these at
once; and it is very risky at any industrial partner to introduce a technological approach for which not all
the elements are fully tested – especially if their current systems function well, although not optimally.

The technical requirements are already available for everyone who wish to adopt IIoT solutions; and
those at the forefront of Industry4.0 movement, has already started to do so. It is the non-technical
terms – e.g., return of investment and trust – that are hard to justify for every paradigm shift.

Trust among new partners is currently built through the involvement of legal and financial authorities.
These introduce background checks, and issue mitigation processes if a new partnership ends up on a
wrong track. The involvement of authorities seems necessary, but it does slow the process down, and
it has its financial price as well. There is a more traditional way of getting trust: building it slowly by
partners (and their trusted ecosystems) working together from smaller towards greater ventures.

The immutable feature of distributed legders, and heir verification through blockchain technology
make it possible to leave out certain authorities from the ”trust-building” process. Together with smart
service contracts, the use of private blockchains within industrial partnerships or ecosystems make trans-
actions fast, secure, safe, trusted, validated and immutable throughout the various supply chains.

While the current tutorial merely provides an overview and a few hands-on demonstrations on the
above issues and solutions, readers are encouraged to study the current surveys on the details of IoT
blockchain technologies [1] as well as their comprehensive comparisons and applications [2].

2.2 IoT security: a brief overview on issues and solutions

There are various known security issues at each layer of the IoT infrastructure. These can be mapped
to data security principles – Confidentiality, Integrity, Availability. Figure 1 depicts an approach where
each layer has different security issues and measures, and operated by different players of the IoT in-
frastructure, so the have separated mitigation policies. Figure 2 provides an overview of these security
categories and their mitigation policies.

Figure 1: IoT infrastructure layers – for security
assessment [3]

Figure 2: Security issue categories and their miti-
gation - and overview [3]

3



2.3 Special features of Blockchains to be utilized by IIoT

2.3.1 Interoperability across IoT devices, IoT systems and industrial sectors

IoT data is produced and consumed at various levels of the ecosystem. Various requirements, including
real-time, QoS, security, and engineering efficiency necessitate to provide borders around elements of the
IoT infrastructure, within which these requirements can be satisfied when compared to the borderless
scenario. Automation or IoT local clouds can be formed based on physical or logical closeness.

It was the Arrowhead framework for industrial IoT that first defined these local clouds [4], within
which the interoperability of elements was based on service oriented architecture principles.

Figure 3 depicts how the IEC IIoT reference architecture – with Edge, Platform and Enterprise Levels
– can be covered by the Local Clouds, and its inter-cloud communication of the Arrowhead framework.

Figure 3: The IEC IIoT Reference Architecture mapped for Arrowhead Local Clouds [5]

While discovery, loose coupling and late binding are provided through the service oriented architecture
approach, there are no mechanisms built in for transaction logging, smart service contract handling, or
data traceability – these need to be tackled by further solutions.

2.3.2 Traceability and Reliability of IoT data

While interoperability among IoT systems can be supported by frameworks such as Arrowhead, traceabil-
ity and reliability of IoT data are still issues to be solves. Distributed ledgers and blockchain technology
can provide proper answers to these.

In this context, according to [1], Traceability is the capability of tracing and verifying the spatial and
temporal information of a data block saved in the blockchain. Each data block saved in a blockchain is
attached with a historic timestamp consequently assuring the data traceability.

Reliability of IoT data [1] is the quality of IoT data being trustworthy. It can be ensured by the
integrity enforced by cryptographic mechanisms including asymmetric encryption algorithms, hash func-
tions and digital signature, all of which are inherent in blockchains.

2.3.3 Improved Security of IoT system-of-systems through blockchains

Although it is not the basic feature of the blockchain, but its message (or transaction) initiation proce-
dure, the data gets written to the blockchain by using PKI technologies, which covers the Confidentiality
principle.

4



Due to the immutable nature of data stored at the distributed ledgers, the Integrity principle of
data security gets covered – securing against tampering, or any sorts of modifications. Furthermore, the
blockchain protects for traceability.

The Availability principle is supported by the distributed nature of the ledger, as a trusted database.

2.4 When is it beneficial to use BCT for IIoT?

Figure 4 depicts one of the rule-of-the-thumb decision diagrams on the topic.

Figure 4: Do You Need to use Blockchains? (by Jeremy Gardner, 2018)

5



2.5 Precautions for Blockchain usage

While blockchains and their related technologies can provide answers to several issues related to security,
anonymity and data privacy, trust, accelerated transactions, micropayments, cost reductions by removing
middlemen, ledgers as distributed and trusted databases, etc., they also raise issues that need to be
covered before their wide and unquestioned use in the Industrial IoT domain.

First, there is an issue with the number of transactions per second. The current, widely used
blockchains can provide a few tens of transactions per second – whereas the industrial need is more
in the thousands of transactions per second range.

Second, the mixed usage of private and public blockchains are not clearly solved in practice. While
the ecosystems of given supply chains can use private blockchains, they may not easily mix with other
blockchains of other private ecosystems, not to mention public blockchains and their access rights. More-
over, there is a scalability dilemma between public and private blockchains as well.

Third, security. It sounds unreasonable – too costly – to tamper around blockchain data; but it is
not impossible. Where the stakes are high, the weakest link of the chain can be a blockchain as well;
with its known vulnerabilities: the 51% attack, the race attack, finney attacks, hidden bugs in smart
contracts, just to mention a few.

Fourth, the legal issues. While it seems a clear advantage (in price, speed and flexibility) of not using
central authorities in a multi-stakeholder environment, we are talking about rigid company structures
with personal responsibilities, at the same time. It requires a high amount of confidence in the technology
as well as the legal consequences of tampering blockchain-stored data. As they say, you cannot solve
social issues by using technology.

3 Blockchain-related concepts

This subsection aims to provide some basic references related to Blockchains. This document merely
provides some initial definition together with citing references that further elaborate either the whole
topic or the given term. Providing a comprehensive overview of the terms is outside of the scope of this
document.

Nevertheless, readers are encouraged to check out the cited further resources and targeted tutorials
on these concepts. The cited references are deliberately chosen from various sources to show the wide
range of tutorial materials available for readers at various levels of interest.

3.1 Blockchain

As techterms.com [6] defines (with slight additions):

”A blockchain is a digital record of transactions. The name comes from its structure, in which
individual records, called blocks, are linked together in single list, called a chain. Blockchains
are used for recording transactions made with cryptocurrencies, such as Bitcoin, and have
many other applications – including smart service contracts for IoT.

Each transaction added to a blockchain is validated by multiple computers on the Internet
or on intranets of private operators. These systems, which are configured to monitor specific
types of blockchain transactions, form a peer-to-peer network. They work together to ensure
each transaction is valid before it is added to the blockchain. This decentralized network of
computers ensures a single system cannot add invalid blocks to the chain.

When a new block is added to a blockchain, it is linked to the previous block using a cryp-
tographic hash generated from the contents of the previous block. This ensures the chain is
never broken and that each block is permanently recorded. It is also intentionally difficult to
alter past transactions in blockchain since all the subsequent blocks must be altered first.”

3.1.1 A sample workflow of Blockchain-related processes

Figure 5 depicts a sample workflow.

6



Figure 5: A typical workflow of a Blockchain-related process (https://steemit.com/blockchain/)

3.1.2 Distributed Ledger Technology

The distributed ledger database is spread across several nodes (devices) on a peer-to-peer network, where
each replicates and saves an identical copy of the ledger and updates itself independently. The primary
advantage is the lack of central authority. When a ledger update happens, each node constructs the new
transaction, and then the nodes vote by consensus algorithm on which copy is correct. Once a consensus
has been determined, all the other nodes update themselves with the new, correct copy of the ledger [7].

3.1.3 Cryptographic Hash Function

The reason to apply ”hashing” on data (or the ”message”) put on the blockchain is making it secret
so only those with proper access rights can read it, and second, making it immutable: if the message
is modified, the hash value will change. After such change, it is impossible to reconstruct the original
message.

A cryptographic hash function (CHF) is a hash function that is suitable for use in cryptography. It
is a mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size (the ”hash
value”, ”hash”, or ”message digest”) and is a one-way function, that is, a function which is practically
infeasible to invert [8].

For ”An Illustrated Guide to Cryptographic Hashes” please refer to the excellent description [9] by
Steve Friedl.

7



3.1.4 Mining

Once a message is hashed, it gets broadcasted among all the mining nodes so it would become part of a
block on the chain. Mining is the process of adding transaction records to a ledger of past transactions
–, i.e., the blockchain. The blockchain serves to confirm transactions to the rest of the network as having
taken place.

As the network nodes are widely distributed, every miner in the network is expected to receive multiple
messages from multiple vendors at any given period of time. What the miner does is he combines these
messages in a single block [10].

The primary purpose of mining is to set the history of transactions in a way that is computationally
impractical to modify by any one entity. By downloading and verifying the blockchain, the nodes are
able to reach consensus about the ordering of events.

Mining is intentionally designed to be resource-intensive and difficult so that the number of blocks
found each day by miners remains steady. Individual blocks must contain a proof (e.g. proof of stake,
proof of stake, etc.) to be considered valid. This proof is verified by other blockchain nodes each time
they receive a block [11].

3.1.5 Consensus algorithms

One of the outcomes of the mining procedure is to validate the transactions of a block. As part of this,
miners are working to find a nonce that shows that the block hash satisfies an earlier-defined, well-known
target criterion.

The Proof of Work (PoW) is a popular consensus algorithm; and as such, it is aimed for resolving
the problem of reliability in a network involving multiple unreliable nodes. The PoW is deliberately
computationally intensive for miners. It is a piece of data which is difficult (costly, time-consuming)
to produce but easy for others to verify and which satisfies certain requirements. Producing a proof of
work can be a random process with low probability so that a lot of trial and error is required on average
before a valid proof of work is generated [10], [11].

There are several other consensus algorithms exists [12], one of the well known ones beside PoW
(used by e.g. Bitcoin) is Proof of Stake (used by e.g. Ethereum), where the creator of the next block
is called ”validator” (instead of miner) and is chosen via various combinations of random selection and
wealth or age (i.e., the stake).

3.1.6 Merkle Tree

In order to help compressing blockchain data for those nodes who are not interested in mining, but only
exchanging goods, writing messages on the blockchain and checking whether a transaction is valid that
is on the blockchain, the binary Merkle Hash Tree (see Figure 6) can be used.

Figure 6: Merkle Tree [10]

8



When transactions hashed into a Merkle Tree, the client merely need to have the Previous hash, the
Merkle Root, and the Nonce for Each Block header - as Figure 7 shows.

Figure 7: Transaction verification by using the Merkle Root [10]

In order to verify certain transactions made in the past, the Merkle Roots and corresponding hashes
need to be used instead of all hashes for the given transactions on the block [13].

3.2 Smart Contracts

According to Wikipedia, [14] A smart contract is a computer protocol intended to digitally facilitate,
verify, or enforce the negotiation or performance of a contract. Smart contracts allow the performance
of credible transactions without third parties. These transactions are trackable and irreversible.

There are various kinds of contractual clauses may be made partially or fully self-executing, self-
enforcing, or both. The aim of smart contracts is to provide security that is superior to traditional
contract law and to reduce other transaction costs associated with contracting. See Figure 8 for some of
the main features of smart contracts on blockchains.

Figure 8: Smart contracts on the blockchain

The idea of smart contracts were first proposed by Nick Szabo – who, by the way, has Hungarian
origins, as well.

9



4 Smart contracts using Ethereum

Within the Ethereum framework Smart Contracts are implemented in the form of Decentralized Appli-
cations - DApp. These DApps are defined using a higher level programming language that is either:

• Solidity, that is a statically typed programming language showing similarities to Javascript, C++
and other high level, object oriented languages [15]

• Vyper, which is a Python based language still under development [16]

Solidity is an object-oriented, high-level language for implementing smart contracts. Smart contracts
are programs which govern the behaviour of accounts within the Ethereum state. Solidity was influenced
by C++, Python and JavaScript and is designed to target the Ethereum Virtual Machine (EVM).
Solidity is statically typed, supports inheritance, libraries and complex user-defined types among other
features. With Solidity you can create contracts for uses such as voting, crowdfunding, blind auctions,
and multi-signature wallets.[15]

The process of how a smart contract is synthesized into ”executable code” is somewhat similar to
other well known paradigms of other high level programming languages. The contract code is compiled
to low-level, assembly like code that is executed by the Ethereum Virtual Machine (EVM). The data
and code is stored on the blockchain, the code can be called using a well known ABI that corresponds
to an API that can also be used in the higher level programming language. etc.

Smart contracts define the data and the protocol on how that data can be changed. Actually since
one key feature is that blockchains are immutable, change might not be the appropriate term for that
but more like how the data should be transformed to get in to a next valid state. This is analogous to
various well established immutable algorithms and data structures used in pure functional programming,
such as persistent list, m-trie, etc.

In the following figures we summarize a simplified concept of Smart Contract operation.

Figure 9: User constructs smart contract, VM deploys it onto the chain

10



Figure 10: User calls a function of the smart contract, VM executes code, creates transaction, mines
block onto the chain

Figure 11: Another user calls a different function, at every point of time, orange data members indicate
a valid state of the contract object

5 Introduction to the demo environment

The following tools are required in order to effectively participate in the tutorial

• Web browser supporting ECMAScript 2015

• SSH client (e.g. putty on windows, openssh on linux

• Arbitrary text editor for Solidity smart contract editing

11



The demo environment - as illustrated by Figure 12 - consists of a Web UI and back-end for managing
the training sessions and allowing that the participants can easily interact with each other’s deployed
contracts.The back-end interacts with the Etherum based blockchain network using web3 API. The
blockchain network consists only one node for now, but that doesn’t greatly affects how the endpoints
would interact with the blockchain network as long as connection is available to a node.

Figure 12: The tutorial environment

5.1 Login details

• Demo environment: https://blockchain.cnsm2019-tutorial.com/

– username: user<X> , where is <X> is a number, e.g.: user11, the number allocation will
happen at the time of starting the hands-on exercises

– password: same as the username, e.g user11

• SSH access details:

– host: blockchain.cnsm2019-tutorial.com

– port: 2222

– username: tutorial

– password: cnsm2019

5.2 Attaching to geth node

• SSH onto host specified above

• Attach to geth blockchain node by issueing command sudo ./admin/geth_attach

• the tutorial user’s password has to be given again

5.3 Most frequently used geth commands

• the geth console is a javascript REPL, any valid Javascript code is accepted. The commands below
are actually web3 API calls, for all available commands see [17]

• <variable name> = <expression> assigns the result of expression <expression> to the variable
named <variable>, e.g. block34 = eth.getBlock(34) that means assign the block object of
block 34 to the variable named block34

• to define any custom function define a Javascript function and assign it to a variable:

12

https://blockchain.cnsm2019-tutorial.com/
https://blockchain.cnsm2019-tutorial.com/


myFunction = function(param1,param2,...) {

// body of the function

}

// call the function with arguments

myFunction(arg1,arg2,...)

• eth.accounts an array of all accounts managed by this node

• After startup create this function :

findAddress = function(addr){ return eth.accounts.filter(function(account){

return new RegExp(addr+".*").test(account) }) }

this can be used to find an account starting with addr e.g. findAccount("0x10db7")

• Note: scripts can be preloaded with the --preload path/to/script.js argument when attaching
to geth if needed

• eth.getBalance(<account>) for checking the balance of an account, where <account> is a string
literal having the value of the address of an Ethereum account or a deployed smart contract, e.g.
eth.getBalance("0x9afeD102A10D54Cc6C0E5153752c69B4876A7419")

• web3.toWei(<value>,<dimension>) for getting the equivalent value in Weis of the specified
amount, where <value> is a number literal and <dimension> is a string literal having the name of
a valid etherum metic, e.g. web3.toWei(3.14,"ether")

• eth.getBlock(<block Number>) for displaying the given block’s data

• eth.getTransaction(<transaction hash>) for displaying the given transaction’s data

• eth.getGasPrice(console.log) will return the median gasPrice based on the recently mined
transaction or the default gasPrice if there hasn’t been any yet

• eth.getTransactionCount(<account>,[<block specifier>]), get the total transaction count
for acount indicated by <account>, optionally a block specifier can be supplied, e.g.:
eth.getTransactionCount("0x9afeD102A10D54Cc6C0E5153752c69B4876A7419","pending") will
get the transaction count for the given address including the pending transactions waiting in queue
to be mined onto the blockchain

• personal.signTransaction(<Transaction object>, <password>) to sign a transaction with
the senders private key represented by <Transaction object> object where the sender’s account
has <password> (string literal) as password, where a transaction has the following parameters

– from : the sender’s address

– to : the receiver’s address

– value : the amount of Weis to be transferred to the receiver from the sender with this
transaction

– gas : the amount of gas that can be consumed by the EVM for executing this transaction

– gasPrice : the price to be paid by the sender per units of gas consumed, the maximum price
of the transaction will be value + gas*gasPrice, if only fraction of the specified gas has been
used by EVM, only the proportional price has to be paid while in contrast if the supplied gas
was not enough the transaction will be reverted, but the gas price still has to be paid

– nonce : this is different from the block nonce in case of Proof-of-Work. This one indicates the
total transaction count of the user in order to prevent double spending

– data : optional field, the additional data for this transaction, the code and data members are
stored in this section of the transaction

– Example:

13



signedTransaction = personal.signTransaction({

from: "0x9afeD102A10D54Cc6C0E5153752c69B4876A7419",

to: "0x3FecF304285303Fba1C34124889Ea1256e9BB0de",

value: web3.toWei(1,"ether"),

gas: 200000,

gasPrice: 10,

nonce: eth.getTransactionCount("0

x9afeD102A10D54Cc6C0E5153752c69B4876A7419")

},"user1" )

• eth.sendRawTransaction(<Raw Transaction data>) sends and execute the provided transaction
where
<Raw Transaction data> is the raw transaction data in a hexadecimal string format, using the
signed transaction object the raw transaction can be accessed by the raw member variable, e.g.:
eth.sendRawTransaction(signedTransaction.raw)

5.4 PowerBid game

5.4.1 Description of the contract

As part of familiarizing ourselves with the concepts of smart contracts and their potential use cases in
IoT environments we are going to use a game. The game consists of a pre-implemented and simple smart
contract that is modelling an electrical power auction. The game has 2 roles: supplier and consumer.
The contract is created by the consumer where he specifies the required energy and the approximate
time window where he intends to consume the required power. The creator - i.e. the consumer - of the
contract also specifies a maximum price to pay for this amount of energy at that time window the he
also has to pay upfront as a collateral to the deal. The suppliers essentially then monitor these contracts
whether they can satisfy them while maximizing their profit then bid accordingly. This model is a sell
auction i.e. a smaller price is considered more aggressive.

The contract has been described in Solidity language and it’s latest source that is used during
this tutorial can be studied here: https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/
master/src/powerbid.sol.

The contract has the following main phases:

1. Auction Phase, where the suppliers participate in the sell auction

2. Consumption Phase, where the consumer consumes the power paid and requested

3. Withdraw Phase, where the consumer can withdraw his gain (that is the difference between the
max. price and the best price) and the supplier can withdraw the funds from the contract

Figure 13: The state diagram of the PowerBid smart contract

14

https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/powerbid.sol
https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/powerbid.sol


5.4.2 Deployment, bidding and evaluation

The deployment of contract is done by supplying the required constructor parameters in the row where
the Deploy button is present. The transaction options are sourced from the corresponding TX Options
inputs and mapped to the transaction parameters as supplied in one of the previous tasks (see listing 5.3.
The deployment is initiated by clicking the Deploy button. After successful deployment (see Figure 14)
the new contract will appear under the deployed contracts list on the left hand side and will be selected
as the active contract. In this case the transaction receipt will be logged in the bottom grey log area
while in case of error the error message has to be inspected to see what went wrong with the deployment.

Figure 14: Deployment of a Powerbid contract

The TX Options are not mandatory in case of an arbitrary smart contract but as one inspects the
constructor code (see listing 1) it can be seen that the message value must be greater than 0 Wei i.e.
the creator of this smart contract must transfer some money upfront that is in line how the auction
is modelled. The gas and gasPrice options are not mandatory, and in that case those are estimated
automatically using the web3 API.

constructor(

uint auctionPeriodSeconds,

uint consumptionPeriodSeconds,

uint requiredEnergy

) public payable {

require(requiredEnergy > 0, "required energy must be greater than 0 wh");

require(msg.value > 0 ,"max price must be greater than 0");

require(auctionPeriodSeconds > 0, "auction period must be greater than 0");

require(consumptionPeriodSeconds > 0, "consumption period must be greater than

0");

consumer = msg.sender;

...

}

Listing 1: Excerpt from the constructor of the Powerbid smart contract

As described before the gas determines the amount of operations that can be performed by the virtual
machine while executing a give smart contract API call and the gasPrice times the used gas will be the
reward of the individual who successfully places the transaction in a block onto the canonical chain. For
these exercises the gas field can be left empty, however the gasPrice should be specified as if it is missing
it will be estimated based on the last few blocks median gas price and depending on the exchange values
it can happen easily that the transaction costs more than the gained value resulting in a net balance
decrease.

It’s also worth mentioning that in case of a require expression failure in the code when the transaction
would be normally reverted the estimation will always fail with the same error message ’gas required
exceeds allowance (8000000) or always failing transaction’, while if no estimation is needed - i.e. all
options are specified, then the EVM will try to create the transaction, but it will result in a reversion
due to the failed assertion with error ’Transaction has been reverted by the EVM’ (see Figures 16 and
15). In both cases the contract’s source code has to be studied for further troubleshooting. As of the
time of this writing the require expression’s string parameter is not propagated to the user, but that
can change in the future editions of the tool-chain as a consequence it is good practice to give meaningful
diagnostics there.

15



Figure 15: Invalid parameters with estimation

Figure 16: Invalid parameters without estimation

After successful deployment the contract will show up on the left hand side listing. By clicking on
a deployed contract it’s controls will become visible. The auction and consumption time left fields are
updated automatically, but the other fields have to be queried manually by either calling the correspond-
ing API function (exposed as the adjacent button) or by clicking on the phase getter, that will call all
non-mutable API functions. The functions that mutate the contract are marked red. The suppliers can
use the bid function to place their bids.

After the auction period has ended the consumption phase begins. The consumer can end the auction
prematurely but in that case a different state transition sequence begins (see Figure 13).

After the consumption period has passed or the consumer explicitly marked the contract as consumed
by clicking on the consumePower button the contract is open for withdrawals. The amounts can be
withdrawn in any order driving the contract into the Completed state which is a terminal state.

5.4.3 Game-play summary

The high-level game-play for the two different roles can be summarized as:

• Consumer role:

1. Deploy contract after specifying the constructor parameters

2. Monitor the sell auction until the auction is ongoing.

3. Consume the power (virtually, calling the ’consumePower’ API by pressing the corresponding
button)

4. withdraw gains (Max. price - best price)

5. evaluate relative gain

• Producer/Supplier role:

1. Bid on the deployed Smart contracts

2. monitor bid state based on the visual feedback and/or polling the contracts

3. place further bids as desired

4. wait for consumer to consume the power

5. withdraw the price amount from the contracts that has been win by the user

6. evaluate relative gain

5.4.4 Typical values to use

• gasPrice : set to 10 Wei, otherwise the balance could drain quickly

• Consumer role (contract creation):

– value: somewhere betwee 900-1000 finneys

16



– auctionPeriodSeconds: 300 (seconds) so that will be enough time for bidding

– consumptionPeriodSeconds: 60 (seconds) is enough

– requiredEnergy : set it to 100000

• Supplier role:

– when bidding don’t go lower than 80% of the maxPrice

5.5 Implement a number guessing game

5.5.1 Specification

The game participants are guessing numbers. The winner is who choose the smallest number. If a
number has been chosen by more than 1 person it is not considered as a valid guess. 1 person can only
guess once. The creator offers a prize that (greater than 0 Wei) is to be won by the winner. If at the end
of the game there are no valid guesses the creator is considered the winner. Only the winner must be
able to withdraw the prize. At construction time the owner should be able to specify the total number
of guesses that will limit the number of individuals who are able to play the game. The prize mustn’t
be possible to be withdrawn before the game ends. The results should only be possible to be queried
through the programmatic API when the game is over.

The contract template can be downloaded from: https://raw.githubusercontent.com/fecjanky/
iot_sc_tutorial/master/src/NumberGuessing_template.sol

One can use the Remix IDE for developing smart contracts that includes the solidity compiler and also
a test network to deploy and interact with the contract. It is available under http://remix.ethereum.
org/

5.5.2 Potential solution

Since Solidity is nearly a Turing-complete programming language, several higher level abstractions can
be built therefore there is no single solution for the specification above. A reference solution can be
found here:
https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/NumberGuessing.sol

A key element of this solution is to provide iterability over the built-in mapping type through a linear
index to lookup key mapping. Furthermore, this sample solution illustrates the usage of storage and
memory variable references.

Acknowledgements

This Tutorial has been initially compiled for the audience of the
15th International Conference on Network and Service Management – technically co-sponsored by IFIP,
IEEE Communication Society, IEEE Computer Society, and ACM.

In connection to this work, the authors have received funding from the EU ECSEL JU under the H2020
Framework Programme, JU grant nr. 737459 (Productive4.0 project, www.productive40.eu). Part of this
work was supported by the Higher Education Excellence Program of the Ministry of Human Capacities,
Hungary, in the frame of Artificial Intelligence research area of Budapest University of Technology and
Economics (BME FIKP-MI/SC).

17

https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/NumberGuessing_template.sol
https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/NumberGuessing_template.sol
http://remix.ethereum.org/
http://remix.ethereum.org/
https://raw.githubusercontent.com/fecjanky/iot_sc_tutorial/master/src/NumberGuessing.sol


References

[1] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things: A Survey,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 8076–8094, 2019.

[2] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani, “Applications of
Blockchains in the Internet of Things: A Comprehensive Survey,” IEEE Communications Surveys
and Tutorials, vol. 21, no. 2, pp. 1676–1717, 2018.

[3] P. Varga and S. Plosz and G. Soos and Cs. Hegedus, “Security Threats and Issues in Automation
IoT,” in IEEE International Workshop on Factory Communication Systems - a Conference (WFCS
2017), (Trondheim, Norway), 2017.

[4] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson, J. Delsing, , and I. M. de Soria,
“Making System of Systems Interoperable - the Core Components of the Arrowhead Technology
Framework,” Journal of Network and Computer Applications, vol. 80, pp. 85–95, 2017.

[5] Cs. Hegedus and P. Varga and A. Franko, “Secure and Trusted Inter-Cloud Communications in
the Arrowhead Framework,” in 1st IEEE International Conference on Industrial Cyber-Physical
Systems (ICPS), (St.Petersburg, Russia), 2018.

[6] TechTerms.com, “Blockchain.” https://techterms.com/definition/blockchain, 2019.

[7] R. Maull, P. Godsiff, C. Mulligan, A. Brown, and B. Kewell, “Distributed ledger technology: Appli-
cations and implications,” Briefings in Entrepreneurial Finance, vol. 26, no. 5, pp. 481–489, 2017.

[8] Wikipedia, “Cryptographic hash function.” https://en.wikipedia.org/wiki/Cryptographic hash function,
2019.

[9] Steve Friedl, “Unixwiz.net tech tips: An illustrated guide to cryptographic hashes.”
http://www.unixwiz.net/techtips/iguide-crypto-hashes.html, 2005.

[10] Tutorialspoint, “Blockchain - bitcoin - mining.” https://techterms.com/definition/blockchain, 2019.

[11] Bitcoin Wiki, “Mining.” https://en.bitcoin.it/wiki/Mining, 2019.

[12] L. M. Bach and B. Mihaljevic and M. Zagar, “Comparative analysis of blockchain consensus algo-
rithms,” in 41st International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), (Opatija, Croatia), 2018.

[13] IOTA Ecosystem, “Iota tutorial 18 - merkle tree.” https://ecosystem.iota.org/tutorials/iota-
tutorial-18, 2018.

[14] Wikipedia, “Smart contract.” https://en.wikipedia.org/wiki/Smart contract, 2019.

[15] Solidity, “Solidity documentation.” https://solidity.readthedocs.io/en/v0.5.12/, 2019.

[16] Vyper, “Vyper documentation.” https://vyper.readthedocs.io/en/latest/installing-vyper.html,
2019.

[17] web3.js, “web3.js API documentation.” https://web3js.readthedocs.io/en/v1.2.1/getting-
started.html, 2019.

18


	Introduction
	Motivation: using Blockchains for Industrial IoT
	General considerations
	IoT security: a brief overview on issues and solutions
	Special features of Blockchains to be utilized by IIoT
	Interoperability across IoT devices, IoT systems and industrial sectors
	Traceability and Reliability of IoT data
	Improved Security of IoT system-of-systems through blockchains

	When is it beneficial to use BCT for IIoT?
	Precautions for Blockchain usage

	Blockchain-related concepts
	Blockchain
	A sample workflow of Blockchain-related processes
	Distributed Ledger Technology
	Cryptographic Hash Function
	Mining
	Consensus algorithms
	Merkle Tree

	Smart Contracts

	Smart contracts using Ethereum
	Introduction to the demo environment
	Login details
	Attaching to geth node
	Most frequently used geth commands
	PowerBid game
	Description of the contract
	Deployment, bidding and evaluation
	Game-play summary
	Typical values to use

	Implement a number guessing game
	Specification
	Potential solution



