
A Practical Three-Phase ILP Approach for Solving the

Examination Timetabling Problem
Feras Al-Hawari, Mahmoud Al-Ashi, Fares Abawi, and Sahel Alouneh

Computer Engineering Department, German Jordanian University, Amman, Jordan

{firas.alhawari, m.alashi, f.abawi, sahel.alouneh}@gju.edu.jo

Abstract: A practical mathematical programming based approach is introduced for solving the

examination timetabling problem at the German Jordanian University (GJU), whereby the complex

process of acquiring a feasible examination timetable is simplified by subdividing it into three smaller sub-

problems (phases). Accordingly, the exams are initially allocated to time slots in phase one, the time slots

are then allotted to days in phase two, and finally in phase three the exams are assigned to rooms based

on the number of students taking each exam and capacities of the rooms. The solution for each phase is

acquired based on an integer linear programming formulation, while satisfying a set of hard constraints

that ensure comfortable exam timetables for all students and meet the desired requirements set by GJU

administrative staff. Furthermore, the solver can be controlled and launched from a student information

system named MyGJU Admin, which enabled registrars at the university to easily, quickly, and accurately

generate final exam timetables in several standard formats. Moreover, the approach was validated based

on recent GJU registration information as well as real-world benchmark data.

Keywords: Examination Timetabling, Optimization, Scheduling, Integer Linear Programming, Graph Coloring.

INTRODUCTION

Exam timetabling is a very important and time

critical task that faces registrars every semester in

most educational institutions. This task is very

complex and requires assigning a date, time, and

room to every exam while ensuring that time (e.g.,

limited number of days, certain time intervals,

fixed working hours), spatial (e.g., availability and

capacity of rooms), and other (e.g., relaxing, and

preventing conflicts in, the schedules of the

students) constraints are satisfied. With the

increasing number of students, exams, and

demands, solving the Exam Timetabling Problem

(ETP) manually is not a practical option and

hence providing a computational solution for it

attracted the attention of many researchers from

the 1960s as in [1] till recently as in [2].

The ETP is known to be as an NP-Complete

optimization problem [3] (i.e., it is unlikely to

solve it optimally in polynomial time). Therefore,

researchers tried and are still experimenting with

many different ways that are based on

mathematical models, heuristic techniques, or a

combination of different algorithms to find quick

and acceptable solutions for it. For example, in

the survey presented in [4], the exam timetabling

research was classified based on the techniques

used to solve the problem such as: graph based

[5, 6], local search based [7, 8], population based

[9, 10], and other methods. In summary, the

proposed solutions compare to each other based

on the used techniques, the hybridization of

different methods, the decomposition of the

problem into smaller sub-problems, and the hard

and soft constraints taken into consideration.

In this paper, a new technique is introduced

to solve the ETP with emphasis on issues related

to GJU and its set of rules and limiting constraints.

The proposed method has three novelties. First,

a feasible (i.e., not necessarily optimal) solution to

the problem is found by segmenting it into three

phases, which reduces the number of constraints

to be considered in each phase and hence allows

the optimizer to reach a desired solution in a

quick manner with reduced memory demands.

Noting that, an Integer Linear Programming

(ILP) [11] based approach is used to find the

solution for each phase. Second, a

comprehensive set of hard constraints is

considered to generate an exams schedule that is

comfortable to all students (e.g., a student should

not have more than two exams on the same day)

and meets the needs of the different faculties at

GJU (e.g., fixing the date of an exam, conducting

an exam in a specific set of rooms). Third, the

same exam can be allocated to one or multiple

rooms unlike most of the similar techniques.

Similarly to the method in this paper, several

other papers such as those in [12-17] discussed

integer programming based techniques to solve

the ETP. However, to the best of our knowledge,

most of those methods tried to solve the problem

in one phase, which usually results in a system of

equations with a large number of variables and

hence solving it is very CPU and memory

intensive. Unlike [12], the hard constraint to

prevent a student from having two or more exams

in the same day as in this paper was not

considered in [13-16]. In [17], a hybrid adaptive

decomposition approach was used to break the

exams into difficult and easy sets before using an

ILP approach to obtain a solution.

Some of the approaches that did not use a

mathematical ILP model (i.e., unlike the

approach in this paper) to solve the ETP will be

briefly discussed next. Such approaches either

used graph coloring, metaheuristic, hybrid, or

other methods to find a solution for the ETP.

They can also be categorized into two groups

based on whether all the hard constraints in this

paper were considered or not.

The first group of papers (i.e., the group that

considered the set of hard constraints as in this

paper) is discussed first. In [2], two column

generation algorithms were used to solve the

ETP. Whereas in [18], hyper heuristic

approaches were utilized. In [19], an adaptive

linear combination of heuristics with a heuristic

modifier under the framework of adaptive

strategies was proposed. In [20], a search

algorithm that consists of several phases is

introduced. In the first (construction) phase, a

complete solution is found using an iterative

forward search algorithm. In the later phases, a

local optimum is found using a combination of a

hill climbing algorithm and great deluge

technique. The method in [21] hybridized bin

packing heuristics to assign exams to time slots

and rooms. In [22], the solution is based on graph

coloring heuristics that were hybridized to

generate four new low level heuristics. In [23], the

ETP specified in [24] was solved using a variable

neighborhood search methodology. In [25], a

random iterative graph based hyper-heuristic was

used to produce a collection of heuristic

sequences to construct solutions of different

quality.

Next, the second group of papers (i.e., that

did not consider all hard constraints used in this

paper) is presented. For example, a hybrid bee

colony optimization approach was used in [26]. In

[27], a sequential graph coloring with the largest

enrolment first heuristic was used to construct a

conflict-free examination timetable and then a

simulated annealing heuristic was used to fit

examinations into rooms, while satisfying the

back-to-back constraint (i.e., spreading the

examinations evenly to give the students enough

revision time between examinations). In [28, 29],

hill climbing and great deluge local search were

used to solve the problem. In [30], a hybrid

harmony search algorithm was used. In [31],

decomposition as well as a graph coloring

heuristic were used. In [32], a hyper heuristic

approach was used. In [33], heuristics and a

stochastic algorithm called the roulette wheel

graph coloring were used to solve the problem. In

that the algorithm was also tested on the

examination timetabling benchmark datasets in

[34]. A graph-coloring-based method was utilized

in [6], but without considering the actual

distribution of exam sessions to rooms. In [35],

the solution of the course-timetabling problem

was used to construct an initial solution to the

examination timetable. Finally, in [5] a hybrid two

phase method was introduced to tackle the ETP.

The rest of the paper is organized as follows.

In the Method Overview section, the hard

constraints under consideration and an overview

of the proposed method are provided. In the

Method Implementation section, the adopted

nomenclature, problem setup, and decomposing

the ETP into three sub-problems are discussed.

In the AMPL Format Representation section, a

simple example is used to show how the problem

formulation is represented in AMPL format. In

the Validation and Results section, the method is

validated based on GJU registration information

(using the MyGJU Admin tool [36, 37]) and real-

world benchmark data. Finally in the Conclusions

and Future Work section, conclusions and future

work are presented.

METHOD OVERVIEW

In this section, the hard constraints under

consideration in the ETP problem formulation

are defined. Moreover, the decomposition of the

ETP into three sub-problems to be able to find a

feasible solution for it is discussed.

Hard Constraints

By definition a hard constraint must be satisfied

by the solver to obtain a feasible solution i.e., it

cannot be violated by the solver. The following

hard constraints were considered in this paper:

i. A student cannot have more than one exam

simultaneously

ii. All exams must be scheduled

iii. An exam must take place within the

available time slots and dates

iv. The number of exams to be held

simultaneously is limited due to the

limitation on room availability

v. A student cannot have more than two (or

more) exams on any given day

vi. The maximum number of time slots per

day should be respected

vii. A room cannot be occupied by two exams

at the same time

viii. An exam can be held in multiple rooms up

to a specified limit

ix. The room capacity should not be exceeded

x. Some exams can be held only on specific

days during the examination period

xi. Some exams can be allocated only to

specific rooms

Problem Decomposition

Solving the ETP in one phase can be out-of-reach

[12] as the problem formulation may contain a

large number of variables and hence results in

out-of-memory issues. Therefore, in this paper

the ETP is decomposed into three sub problems

and then practically solved in three phases.

Accordingly, a later phase depends on the results

of its preceding phase(s). A graph coloring based

ILP formulation is used to find a solution in

phases one and two. Solving a graph coloring

problem requires assigning colors to vertices such

that no two adjacent (i.e., connected with an edge)

vertices share the same color, while minimizing

the number of colors used to cover all vertices.

Based on that, phase 1 is formulated to

assign time slots (colors) to exams (vertices) such

that no two adjacent exams will be assigned the

same time slot (i.e., color). An exam is adjacent to

another exam when they share a student i.e., the

student cannot take both exams simultaneously.

Therefore, the objective of this phase is to

minimize the number of time slots used while

preventing any student from having more than

one exam simultaneously (i.e., satisfying hard

constraint i). Note that, the maximum number of

time slots is bounded by |T|, which should not

exceed the total number of exams (i.e., vertices).

Phase 2 is required to assign days (colors) to

the time slots (vertices) that were determined in

phase 1, given that a student shall not have more

than two (or more) exams in any given day i.e., a

day shall not contain more than two time slots

with exams having a common student in them.

Whereas, phase 3 is needed to assign the

exams to the available rooms, while not exceeding

the capacities of the rooms in comparison with

the number of students taking the corresponding

exams. The formulation in this phase is based on

the time slots and days that were determined in

phase 1 and phase 2, respectively.

METHOD IMPLEMENTATION

In this section, the sets and indices used in the

problem formulation are given. Furthermore, the

problem setup and ILP formulations for the three

phases are discussed. Note that, in each phase the

problem is translated into mathematical

programming equations according to the AMPL

(A Mathematical Programming Language)

program format [39] in order to be solved by the

CPLEX solver [40], while meeting the desired

hard constraints.

Sets and Indices

The sets and indices that are used in the

formulation of the three phases (sub problems)

are defined as follows:

- 𝑪 is the set of all exams

- 𝑐 is the index of an exam i.e., 𝑐  𝑪

- 𝑬 is a set that contains students taking each

exam 𝑐  𝑪

- 𝐸c is the number of students taking exam 𝑐

- 𝑻 is the set of time slots

- 𝑡 is the index of a time slot i.e., 𝑡  𝑻

- 𝑫 is the set of days

- 𝑑 is the index of a day i.e., 𝑑  𝑫

- 𝑻𝐝 is the set of time slots (tuple) allocated to

a day

- 𝑹 is the set of rooms

- 𝑟 is the index of a room i.e., 𝑟  𝑹

- 𝑷 is a set that contains the capacity of each

room 𝑟  𝑹

- 𝑃𝑟 is the capacity of room 𝑟

- 𝑺 is the set of all students enrolled in the

semester under consideration

- 𝑠 is the index of a student i.e., 𝑠  𝑺

- 𝐶s is the list of exams (tuple) that student 𝑠

is taking

- 𝑭 is the set of student exam lists (tuples)

- 𝑇s is the list of time slots (tuple) in which the

exams for student 𝑠 can be allocated

- 𝑱 is the set of student time slots lists (tuples)

- 𝑇𝑑 is a predefined value for the maximum

number of time slots per day

- 𝐶𝑡 is a predefined value for the maximum

number of exams per time slot

- 𝑹𝒂𝒄𝒄𝒄
 is a set that contains all rooms that can

be assigned to exam 𝑐

- 𝑹𝒓𝒆𝒋_𝒄 is a set that contains all rooms that

cannot be assigned to exam 𝑐

Problem Setup

The proposed method is integrated in a web-

based student information system named MyGJU

Admin [36-38]. This system enables registrars at

GJU to perform final exams scheduling as well as

many other tasks like rooms setup, course

sections management, admission, student

information management, registration, grades

processing, and graduation. Therefore, all the

data needed (e.g., exams, students, enrollments,

rooms) to populate the aforementioned sets (e.g.,

𝑪, 𝑹, 𝑺, 𝑭) that are used in the following

formulations and to solve the ETP can be first

retrieved from the corresponding MyGJU

database tables, and then fed to the solver to

obtain the desired solution.

Phase 1: Exams to Time Slots Assignment

The following formulation is used to guarantee

that no exam in each student exams tuple (i.e., in

each 𝐶𝑠) will be assigned to the same time slot

(i.e., to satisfy hard constraint i):

∀𝑠  {1, ..., |𝑭| }, ∀𝑡  {1, ..., |𝑻|}:

(∑ 𝑥𝑐,𝑡
|𝐶𝑠|
𝑐=1 ≤ 1) (1)

where the binary variable 𝑥𝑖,𝑗 = 1 when exam 𝑖 is

assigned to time slot 𝑗.

In order to guarantee that every exam will be

assigned to exactly one time slot (i.e., satisfy hard

constraints ii and iii), the following constraint set

is needed:

∀𝑐  {1, ..., |𝑪|}: (∑ 𝑥𝑐,𝑡 = 1)
|𝑇|
𝑡=1 (2)

Moreover, the number of exams in each

time slot can be guaranteed not to exceed a pre-

defined value 𝐶𝑡 (i.e., satisfy hard constraint iv),

usually set by registrars, as shown below:

∀𝑡  {1, ..., |𝑻|}: (∑ 𝑥𝑐,𝑡 ≤
|𝐶|
𝑐=1 𝐶𝑡) (3)

Furthermore, to satisfy hard constraint x, an

additional step is introduced as follows:

∀𝑐𝑖 , 𝑐𝑗  𝑪, 𝑑𝑛, 𝑑𝑚  𝑫: (𝑐𝑖 → 𝑑𝑛 ∩ 𝑐𝑗 →

 𝑑𝑚) → 𝑥𝑖,𝑡 + 𝑥𝑗,𝑡 ≤ 1 ∶ ∀ 𝑡  𝑻, i ≠ j (4)

The previous constraint denotes that, if

exam 𝑐𝑖 is to be held in day 𝑑𝑛, and exam 𝑐𝑗 is to

be held in day 𝑑𝑚, then 𝑐𝑖 and 𝑐𝑗 should not

occur in the same time slot.

Finally, if a binary variable 𝑢𝑡 is equal to one

when there is at least one course 𝑐 assigned to

time slot 𝑡 as guaranteed by:

∀𝑡  {1, ..., |𝑻|}: (∑ 𝑥𝑐,𝑡
|C|
𝑐=1 − 𝑢𝑡 ≤ 0) (5)

Then, the number of used time slots can be

minimized based on the following objective:

minimize: ∑ 𝑢𝑡
|𝑇|
𝑡=1 (6)

Phase 2: Time Slots to Days Assignment

As a preliminary step in this phase, the student

exams tuples in set 𝑭, that are used in phase 1, are

first processed to generate set 𝑱 by replacing the

exams in each tuple with the corresponding time

slots that they were associated with in phase 1.

Henceforth, if exam 𝑖 was assigned to time slot 𝑗

in the previous phase, then each occurrence of 𝑖
in any student exams tuple 𝐶s will be replaced by

𝑗 to obtain the student time slots tuple 𝑇s.

Assuming that a binary variable ℎs is equal

to one only when a student whose tuple 𝑇s has 𝑛

exams in day 𝑑. Hence, a student will not have

more than 𝑛 exams on any given day 𝑑 (i.e., satisfy

constraint v) when meeting the following:

∀𝑠  {1, ..., |𝑱|}, ∀𝑑  {1, ..., |𝑫|}:

(∑ 𝑦𝑡,𝑑
|𝑇s|
𝑡=1 − ℎs ≤ (𝑛 − 1)) (7)

where 𝑦𝑖,𝑗 = 1 when time slot 𝑖 in 𝑇s is assigned

to day 𝑗. Also, based on equation 7, if a student

had 𝑛 exams in one day, the value of his/her

corresponding ℎs will be automatically set to one.

Noting that in the case of GJU 𝑛 is equal to two.

The following equation is further used to

minimize the number of students having 𝑛 exams

per day:

minimize: ∑ ℎs
|𝑆|
𝑠=1 (8)

In addition, to guarantee that each time slot

will be assigned to one and only one day, the

following constraints need to be met:

∀𝑡  {1, ..., |𝑻|}: (∑ 𝑦𝑡,𝑑 =
|𝐷|
𝑑=1 1) (9)

Where 𝑦𝑖,𝑗 = 1 when time slot 𝑖 is assigned to day

𝑗.

Moreover, the number of time slots per day

can be limited to a pre-defined value 𝑇𝑑 (i.e.,

satisfy constraint vi), usually set by registrars, as

follows:

∀𝑑  {1, ..., |𝑫|}: (∑ 𝑦𝑑,𝑡 ≤ |𝑇|
𝑡=1 𝑇𝑑) (10)

To further satisfy hard constraint x, the time

slots that were assigned to certain exams

previously must be linked to certain days

according to the formula below:

(𝑥𝑐,𝑡𝑖
= 1 ∩ 𝑐 → 𝑑𝑗) → 𝑦𝑡𝑖,𝑑𝑗

= 1 (11)

The previous equation denotes that if exam

𝑐 is to be held in day 𝑑𝑗 and 𝑐 was assigned to time

slot 𝑡𝑖, then 𝑡𝑖 must be a time slot in day 𝑑𝑗.

Phase 3: Exams to Rooms Assignment

The goal of this phase is to assign exams to rooms.

Hence, at the end of this phase each exam should

be assigned to room(s) at the time-slot and day

that were determined in the previous two phases,

while meeting all the desired hard constraints.

Assuming that 𝑢𝑐 is a binary variable with a

value equals to 1 when exam 𝑐 is assigned to 𝑛

rooms. Then, hard constraints viii and ix can be

met as follows:

∀𝑐  {1, ..., |𝑪|}: (∑ 𝑥𝑐,𝑟
|R|
𝑟=1 ∗ 𝑃𝑟 ≥ 𝐸𝑐) (12)

It is also worth noting that, during the

examination period, a room that fits 𝑥 students on

normal days is assigned only 𝑥/2 students. This

step is performed to avoid overcrowding the

rooms and provide students with a comfortable

examination environment.

To ensure that each exam will occur in

exactly one room (i.e., meet hard constraint vii),

the following equation needs to be satisfied:

 ∀𝑐  {1, ..., |𝑪|}: (∑ 𝑥𝑟,𝑐 =
|𝑅|
𝑟=1 1) (13)

where 𝑥i,j = 1 when room 𝑖 is to host exam 𝑗.

Moreover, to satisfy hard constraint xi an

additional equation must be added and one of

two cases may occur:

i. If a room is not to be allowed to hold a certain

exam, then:

 ∀𝑟  𝑹 ∩ 𝑟  𝑹𝒓𝒆𝒋_𝒄: 𝑥𝑐,𝑟 = 0 (14)

where 𝑹𝒓𝒆𝒋_𝒄 is the set that contains all rooms that

are not to be assigned to exam 𝑐.

ii. If an exam is only to be held in certain rooms,

then:

∀𝑟  𝑹 ∩ 𝑟 ∉ 𝑹𝒂𝒄𝒄_𝒄: 𝑥𝑐,𝑟 = 0 (15)

where 𝑹𝒂𝒄𝒄_𝒄 is the set that contains all rooms that

can be assigned to exam 𝑐.

AMPL FORMAT REPRESENTATION

A small exam timetabling problem is considered

in this section to illustrate how the variables and

equations used to formulate the sub-problems for

phase 1 and phase 2 can be represented in AMPL

format (note that the phase 3 representation is not

shown here as it can be done in a similar manner).

For example, assuming that a user would like to

schedule the four exams shown in Table 1 over a

two days period. Given that, each day contains

three time slots (i.e., a total of 6 time slots in 2

days), the exams taken by each student are as

shown in Table 2, and no student should have

more than two exams on any given day.

The phase 1 formulation can be represented

in AMPL syntax as shown in Figure 1. At line 1,

CPLEX is set as a solver. Whereas, sets 𝑻, 𝑪, and

𝑭 as well as variables 𝑥 and 𝑢𝑡 are declared at lines

2, 3, 4, 5, and 6, respectively. Sets 𝑻, 𝑪, and 𝑭 are

initialized at lines 8, 9, and 10, respectively.

Furthermore, equations 1, 2, 3, 5, and 6 are

defined at lines 11, 12, 13, 14, and 15,

respectively.

The phase 2 formulation can be represented

in AMPL syntax as shown in Figure 2. At line 2,

the CPLEX options the number of solutions and

time limit are set to 2 solutions and 120s,

respectively. Whereas, sets 𝑫, 𝑻, and 𝑱 as well as

variables 𝑥 and ℎ𝑎𝑠_2 (i.e., ℎs) are declared at

lines 3, 4, 5, 6, and 7, respectively. Also, sets 𝑫,

𝑻, and 𝑱 (given that only time slots 1-4 were

needed to solve phase 1) are initialized at lines 9,

10, and 11, respectively. Moreover, equations 7,

8, 9, and 10 are defined at lines 12, 13, 14, and

15, respectively. Also, the solver is called at line

16.

VALIDATION AND RESULTS

The proposed method was validated using the

GJU first 2016/2017 semester registration

information as well as the University of Toronto

benchmark data [41] as will be discussed in the

following two subsections.

Note that all of the experiments discussed

next were executed on a machine with an Intel

Core i7-4710MQ CPU running at 2.5GHz, with

16GB RAM, and on which a windows 10

enterprise operating system is installed. Also,

CPLEX version 12.6.3.0 was used in all cases.

Table 1: Students enrolled in each exam

Exam Student Id Count
CRS1 1, 2, 3, 4 4

CRS2 1,3,4,5,7,9 6

CRS3 3,4,5,7,8,10 6

CRS4 3,5,6,10 4

Table 2: Exams of each student

Student Id Exams
1 CRS2, CRS1

2 CRS1

3 CRS3, CRS2, CRS1, CRS4

4 CRS3, CRS2, CRS1

5 CRS3, CRS2, CRS4

6 CRS4

7 CRS3, CRS2

8 CRS3

9 CRS2

10 CRS3, CRS4

Figure 1: The representation of the variables and equations used in the formulation

of phase 1 in AMPL syntax

Figure 2: The representation of the variables and equations used in the formulation of phase 2 in AMPL syntax

Table 3: The GJU data for the first 2016/2017 semester

Enrolled students 3821

Number of rooms 323

Number of exams 403

Validation based on GJU Data

The GJU registration data (shown in Table 3) for

the first 2016/2017 academic semester was first

used in several experiments to illustrate that the

proposed method is practical i.e., fast, accurate,

stable, and requires basic hardware resources.

The first experiment was conducted to find

a default solution limit to use in the MyGJU

Admin tool in order to reduce the time registrars

need to find a feasible and acceptable final exam

timetable for any academic semester. A feasible

exam timetable must meet all the desired hard

constraints. Whereas, a timetable is considered

better (i.e., acceptable) than another one, if it

results in less students having two exams in the

same day and has a fewer number of days (i.e., a

shorter duration).

Only 296 out of 403 exams were scheduled

in this experiment due to excluding the practical

exams (i.e., laboratory exams) from the offered

exams list, as the practical exams at GJU usually

take place in their corresponding laboratories one

week ahead of the final exams period. Moreover,

only 100 rooms were used after excluding

laboratories and the rooms in the distant

buildings from the available rooms list. The

capacity of the smallest and largest used rooms

were 22 and 100 respectively.

Figure 3: User interface in MyGJU Admin to adjust solver settings, exam limits, as well as exam dates and times

Figure 4: User interface in MyGJU Admin to launch the scheduler, monitor its progress, and then view the results

Figure 5: Elapsed times to solve the ETP in the first experiment

Figure 6: Percentage of students with two exams in one day in the first experiment

Table 4: Elapsed time needed to find the optimal solution, and optimal solution, for each number of days in experiment one

10 days 12 days 14 days 16 days 18 days 20 days 22 days

Elapsed Time (s) 61420 39180 15660 5625 182 39 29

Percentage of students

with 2 exams in a day
5.89 4.12 2.16 1.32 0.69 0.33 0.08

Figure 7: Number of variables in the formulations of phase 1, phase 2, and original phase

Figure 8: Number of non-zeros in the formulations of phase 1, phase 2, and original phase

Figure 9: Elapsed times to solve the ETP using the 3-phase and 2-phase (original model) methods

Furthermore, the solver solution limit was

varied as follows: 1, 2, 5, and no limit (i.e., to find

the optimal solution). Also, a maximum number

of different exams per time slot was set to 50. In

addition, the exam days were changed as follows:

10, 12, 14, 16, 18, 20, and 22. Besides that, a

maximum of four 2 hour time slots per day (at

8:30, 11:00, 13:30, and 16:00) were allowed with

a 30 minutes recess duration in between exams.

Note that registrars adjusted the aforementioned

solver settings (e.g., number of solutions), exam

limits (e.g., maximum number of exams per

student on a single day), as well as exam times and

dates (e.g., start and end dates) from the final

exams setup screen (see Figure 3) in the MyGJU

Admin tool. While, the MyGJU Admin also

supports launching the scheduler, monitoring its

progress, and viewing the generated final exams

timetable (see Figure 4).

The elapsed times and percentages of

students with two exams in a day for the limited

solutions (i.e., 1, 2, and 5 solutions) in experiment

one are shown in Figure 5 and Figure 6,

respectively. Whereas, the elapsed times to find

the optimal (i.e., minimum) percentages of

students with two exams in a day for the number

of days in experiment one are given in Table 4.

Accordingly, an acceptable exam timetable can be

efficiently found using two solver solutions. On

the other hand, finding the optimal solution might

take many extra hours to slightly improve the

result that was obtained with two solutions in

several seconds. For example, it took about 17

hours and 6 minutes to reduce the percentage of

students with two exams in a day from 10 to 5.89

for the 10 days case, which is impractical given

that obtaining an acceptable percentage of 10 was

achieved in about 12 seconds. This fact justifies

the methodology to quickly find a feasible

timetable rather than trying to find the optimal

solution that mostly will take a very long time to

obtain and may not be much better than the

timetable that can be quickly found using two

solutions.

In the second experiment, the ETP was

solved using the original (2-phase) model using

the setup of experiment one except for fixing the

solution limit to two in all cases. Based on that,

the size of the phase 1 formulation in the original

model (original phase) was compared to its new

counterparts (i.e., the phase 1 and phase 2

formulations in the proposed 3-phase method)

based on the number of variables and non-zeros

in the formulations as shown in Figure 7 and

Figure 8 respectively. Whereas, the elapsed times

shown in Figure 9 illustrate that the 3-phase

approach outperformed the original method in all

cases. Hence, the results of this experiment assert

the fact that sub-dividing the ILP problem into

three smaller sub-problems proved to be a key

factor to enable a solver, such as CPLEX, to

produce feasible solutions for an NP-complete

problem in relatively short times and with

reduced memory demands.

In the third experiment, the solver was used

to schedule all the offered exams including the

practical exams (i.e., 403 exams) using all rooms

(i.e., 323 rooms). In this case, a feasible final exam

timetable was found in about 42 seconds (based

on one solution limit), with 9.9% of the students

having two exams in the same day, and a

minimum exam period of 12 days (note that an

exam week at GJU usually spans six days, which

brings the exams period in this case to two weeks).

Hence, the practicality of the approach was

proven again performance and feasibility wise

although it was applied to an instance that had 107

exams more than the current number of

scheduled exams at GJU.

In the fourth experiment, the dates of the

GERL101 and NE101 exams were fixed as shown

in Figure 10. The setup of experiment one was

also used in this experiment except for fixing the

solution limit to two in all cases. The result in

Figure 11 illustrates that the method found a

solution without altering the fixed two exam dates

(i.e., it satisfied hard constraint x). Moreover, the

results in Figure 12 and Figure 13 show that

satisfying hard constraint x had a minor effect on

the performance and accuracy of the obtained

solutions.

Note that in all experiments the reported

times did not only account for the time needed to

find a feasible solution, but they also included

preprocessing time (e.g., parsing the data files,

querying the needed information from the

database) as well as display time (e.g., generating

output files for display). Nevertheless, the

reported solution times were remarkably short

and the solver did not encounter any out of

memory problems while finding the solutions.

Validation based on Benchmark Data

The proposed method was further verified by

using it to solve eleven real-world exam

timetabling problem instances (shown in Table 5)

from the University of Toronto (UT) benchmark

data sets [34, 40]. The number of exams and

students for each problem instance are shown in

the second and third rows in Table 5,

respectively. Since the UT benchmark data does

not contain room information, the solver utilized

the 100 GJU rooms (that were used in experiment

one in the previous subsection) to assign exams

into rooms in phase three. The overall capacity of

those rooms is 3736 and that was enough to fit all

exams in rooms for each instance. It is also worth

noting that ahead of each solution, a script was

used to parse and preprocess the UT benchmark

data files (i.e., the exams and student enrollments

files) in order to map and import the generated

output files into the corresponding database

tables that will be later accessed by the ETP

solver.

Figure 10: Fixing the dates for the GERL101 and NE101 exams in the MyGJU Admin

Figure 11: The fixed exam dates are not altered in the found solutions in experiment four

Figure 12: Elapsed times of experiments one and four with

solution limit equal 2
Figure 13: Percentage of students with two exams in one day

in experiments one and four with solution limit equal 2

Table 5: Number of exams and students in the UT benchmark data

 C
a

r
le

to
n

9
1

C
a

r
le

to
n

9
2

E
a
r
lH

a
ig

8
3

E
d

H
E

C
9

2

S
t.A

n
d

r
e
w

s8
3

T
r
e
n

t9
2

T
o
r
o

n
to

A
S

9
2

T
o
r
o

n
to

E
9
2

Y
o

r
k

M
ills8

3

L
S

E
9

1

K
in

g
F

a
h

d
9

3

No. of exams 682 543 190 81 139 261 622 184 182 382 462

No. of students 12990 12908 1045 1472 298 3641 13558 819 910 1772 3270

Table 6: Minimum number of days and percentages of students with 2 exams in one day for all UT instances solutions

C
a

r
le

to
n

9
1

C
a

r
le

to
n

9
2

E
a
r
lH

a
ig

8
3

E
d

H
E

C
9

2

S
t.A

n
d

r
e
w

s8
3

T
r
e
n

t9
2

T
o
r
o

n
to

A
S

9
2

T
o
r
o

n
to

E
9
2

Y
o

r
k

M
ills8

3

L
S

E
9

1

K
in

g
F

a
h

d
9

3

Schedule Days 13 13 12 9 8 11 13 8 12 9 12

% of students with 2 exams in one day 7.62 5.62 11.55 7.55 3.56 9.26 7.45 2.20 9.51 5.32 7.3

Figure 14: Elapsed times for solving the UT smaller problem instances Figure 15: Elapsed times for solving the UT

larger problem instances

The setup used in experiment one in the

previous subsection was also used to solve each

problem instance in this experiment, except for

fixing the solution limit to 2 and solving for

different number of days in order to find solutions

that satisfy hard constraint v (i.e., a student cannot

have more than two exams on any given day) with

the least number of days. Accordingly, the

minimum number of days to solve each instance

while satisfying constraint v, as well as the

percentage of students having two exams in one

day for each respective solution are shown in rows

two and three in Table 6, respectively.

Furthermore, for readability purposes, the

elapsed times to solve the corresponding smaller

and larger problem instances are shown in Figure

14 and Figure 15, respectively.

Based on those results, the proposed

method was capable of finding a solution for each

problem instance while satisfying hard constraint

v. Given that, satisfying constraint v was not

considered in the first attempts to solve those

cases by other researchers. Furthermore, it

succeeded in finding the desired solutions despite

the fact that it was performing an extra phase to

assign exams to rooms. Moreover, it scheduled all

exams in less than or almost two weeks. Whereas,

the solutions elapsed times varied from 4.7s up to

712s (i.e., about 12 minutes) to solve the smallest

(i.e., St.Andrews83 that included 298 students

and 139 exams) and largest (i.e., TorontoAS92

that contained 13558 students and 622 exams)

instances, respectively. Hence, it solved instances

that are smaller or almost equal in size compared

to the GJU instance size in a matter of seconds.

While, it found solutions for instances that are

almost four times the size of the GJU instance in

a matter of minutes. Accordingly, the method can

support the exam timetabling demands of the

GJU staff for years to come with accuracy, speed,

and basic hardware resources. Moreover, it can

provide the majority of students with very

comfortable exam schedules. As based on the

percentages in Table 6, more than 90% of the

students in 10 instances had a maximum of only

one exam in any given day. Nevertheless, the rest

of the students were also guaranteed not to have

more than two exams in one day.

CONCLUSIONS & FUTURE WORK

The proposed method for solving the ETP and

integrating it in the MyGJU Admin tool helped

registrars at GJU maintain a comfortable

examination environment, as well as meet faculty

and student demands, as it enabled them to:

- Obtain a solution for the ETP using

machines with basic storage and processing

power.

- Control the solver and its parameters from

the MyGJU Admin tool in order to easily

7.6
5 4.7

16.2

12 11.4
9.56

25.2

0

5

10

15

20

25

30

El
ap

se
d

 T
Im

e
(s

) 613
562

712

0

100

200

300

400

500

600

700

800

El
ap

se
d

 T
im

e
(s

)

generate feasible final exams timetables that

can be saved in various standard formats.

- Generate a feasible final exam timetable in a

matter of seconds compared to several days

and hundreds of iterations when they used

to do it manually.

- Announce the final exam timetable several

weeks ahead of the examination period,

which allows instructors and students to plan

ahead and prepare themselves for the

exams.

- Hold some exams on specific dates, or in

certain rooms, in order to meet the faculties’

demands.

- Produce a comfortable timetable for all

students as the method allows enforcing a

hard constraint to prevent a student from

having more than two exams in the same

day.

The ability of the proposed method to

practically solve the ETP is mainly due to

decomposing it into three smaller sub-problems

(phases), which drastically decreased the number

of variables used in the formulation and hence

reduced the demand on the processing and

storage resources. Another advantage of

modularizing the problem is the simplification of

its formulation, which makes it readable and

easier to understand.

In the near future, the skills acquired while

working on the ETP will also be used to automate

the course scheduling problem at GJU.

REFERENCES
1. Broder S. Final examination scheduling.

Communications of the ACM 1964, 7(8): 494-498.

2. Woumans G, De Boeck L, Beliën J and Creemers S.

A column generation approach for solving the

examination-timetabling problem. European Journal of

Operational Research 2016, 253(1): 178-194.

3. Cooper T and Kingston J. The complexity of timetable

construction problems. Practice and Theory of

Automated Timetabling (Lecture Notes in Computer

Science) 1996, 1153: 283-295.

4. Qu R, Burke E, McCollum B, Merlot L, and Lee S. A

survey of search methodologies and automated system

development for examination timetabling. Journal of

scheduling 2009, 12(1): 55-89.

5. Burke E, Elliman D and Weare R. A university

timetabling system based on graph colouring and

constraint manipulation. Journal of Research on

Computing In Education 1994, 27(1): 1-18.

6. Malkawi M, Hassan M and Hassan O. A new exam

scheduling algorithm using graph colouring. The

International Arab Journal of Information Technology

2008, 5(1): 80-86.

7. Burke E, Kendall G and Soubeiga E. A tabu-search

hyper-heuristic for timetabling and rostering. Journal of

Heuristics 2003, 9: 451-470.

8. Thompson J and Dowsland K. A robust simulated

annealing based examination timetabling system.

Computers & Operations Research 1998, 25: 637-648.

9. Eley M. Ant algorithms for the exam timetabling

problem. International Conference on the Practice and

Theory of Automated Timetabling 2006, 364-382.

10. Kordalewski D, Liu C and Salvesen K. Solving an exam

scheduling problem using a genetic algorithm.

Department of Statistics, University of Toronto,

Toronto, Canada, TR-2009-1, 2009.

11. Williams H. Logic and Integer Programming.

International Series in Operations Research &

Management Science, Springer, Germany, 2009.

12. Al-Yakoob S, Sherali H and Al-Jazzaf M. A mixed-

integer mathematical modeling approach to exam

timetabling. Computational Management Science

2010, 7(1): 19-46.

13. Arbaoui T, Boufflet J and Moukrim A. Preprocessing

and an improved MIP model for examination

timetabling. Annals of Operations Research 2015,

229(1): 19-40.

14. Komijan A and Koupaei M. A new binary model for

university examination timetabling: a case study.

Journal of Industrial Engineering International 2012,

8(1):1-7.

15. Wang S, Bussieck M, Guignard M, Meeraus A and

O’Brien F. Term-end exam scheduling at United States

military academy/west point. Journal of Scheduling

2010, 13(4): 375-391.

16. Kahar M and Kendall G. The examination timetabling

problem at Universiti Malaysia Pahang: Comparison of

a constructive heuristic with an existing software

solution. European Journal of Operational Research

2010, 207(2):557-565.

17. Qu R, He F and Burke E. Hybridizing integer

programming models with an adaptive decomposition

approach for exam timetabling problems. Proceedings

of the 4th Multidisciplinary International Scheduling:

Theory and Applications 2009, 435-446.

18. Qu R, Pham N, Bai R and Kendall G. Hybridising

heuristics within an estimation distribution algorithm

for examination timetabling. Applied Intelligence 2015,

42(4):679-693.

19. Rahman S, Bargiela A, Burke E, Özcan E, McCollum

B and McMullan P. Adaptive linear combination of

heuristic orderings in constructing examination

timetables. European Journal of Operational Research

2014, 232(2):287-297.

20. Müller T. Real-life examination timetabling. Journal of

Scheduling 2016, 19(3):257-270.

21. Soghier A and Qu R. Adaptive selection of heuristics

for assigning time slots and rooms in exam timetables.

Applied Intelligence 2013, 39(2):438-450.

22. Sabar N, Ayob M, Qu R and Kendall G. Graph

coloring constructive hyperheuristic for examination

timetabling problems. Applied Intelligence 2011,

37(1): 1–11.

23. Burke E, Eckersley A, McCollum B, Petrovic S and Qu

R. Hybrid variable neighbourhood approaches to

university exam timetabling. European Journal of

Operational Research 2010, 206(1):46-53.

24. McCollum, B, McMullan, P, Parkes, A, Burke, E and

Qu, R. A new model for automated examination

timetabling. Annals of Operations Research 2012,

194(1):291-315.

25. Qu R, Burke E and McCollum B. Adaptive automated

construction of hybrid heuristics for exam timetabling

and graph colouring problems. European Journal of

Operational Research 2009, 198(2):392-404.

26. Alzaqebah M and Abdullah S. Hybrid bee colony

optimization for examination timetabling problems.

Computers & Operations Research 2015, 54:142-154.

27. Mujuni E and Mushi A. Solving the examination

timetabling problem using a two-phase heuristic: the

case of Sokoine University of agriculture. Journal of

Information and Computing Science 2015, 10(3): 220-

227.

28. Mandal A and Kahar MNM. Solving examination

timetabling problem using partial exam assignment with

great deluge algorithm. IEEE International

Conference on Computer, Communications, and

Control Technology (I4CT) 2015, 530-534.

29. Mandal A and Kahar MNM. Solving examination

timetabling problem using partial exam assignment with

hill climbing search. IEEE Symposium on Computer

Applications & Industrial Electronics (ISCAIE) 2015,

84-89.

30. Al-Betar M, Khader A and Doush I (2014). Memetic

techniques for examination timetabling. Annals of

Operations Research 2014, 218(1):23-50.

31. Akbulut A and Ylilmaz G. University exam scheduling

system using graph coloring algorithm and RFID

technology. International Journal of Innovation,

Management and Technology 2013, 4(1):66.

32. Demeester P, Bilgin B, De Causmaecker P and Berghe

G. A hyperheuristic approach to examination

timetabling problems: benchmarks and a new problem

from practice. Journal of Scheduling 2012, 15(1):83-

103.

33. Sabar N, Ayob M, Kendall G and Qu R. Roulette wheel

graph colouring for solving examination timetabling

problems. COCOA 2009, 463-470.

34. Carter M, Laporte G and Lee S. Examination

timetabling: algorithmic strategies and applications.

Journal of Operational Research Society 1996, 47(3):

373–383.

35. Dimopoulou M and Miliotis P. Implementation of a

university course and examination timetabling system.

European Journal of Operational Research 2001,

130(1):202-213.

36. Al-Hawari F, Alufieshat A, Alshawabkeh M, Barham H

and Habahbeh M. The software engineering of a three-

tier web-based student information system (MyGJU),

Computer Applications in Engineering Education

2017, 25(2):242-263.

37. F. Al-Hawari. MyGJU student view and its online and

preventive registration flow. International Journal of

Applied Engineering Research, 2017, 12(1):119-133.

38. F. Al-Hawari. Analysis and design of an accounting

information system. International Research Journal of

Electronics and Computer Engineering, 2017 Jun,

3(2):16-21.

39. Fourer R, Gay D and Kernighan B. AMPL–a modeling

language for mathematical programming, Duxbury

Press, USA, 2002.

40. CPLEX Optimizer. IBM. http://www-

01.ibm.com/software/commerce/optimization/cplex-

optimizer/, accessed 26 March 2016.

41. University of Toronto Benchmark Data. The

University of Nottingham, School of Computer Science

Page. http://www.cs.nott.ac.uk/~pszrq/data.htm,

accessed 24 June 2017.

