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Abstract: A practical mathematical programming based approach is introduced for solving the 

examination timetabling problem at the German Jordanian University (GJU), whereby the complex 

process of acquiring a feasible examination timetable is simplified by subdividing it into three smaller sub-

problems (phases). Accordingly, the exams are initially allocated to time slots in phase one, the time slots 

are then allotted to days in phase two, and finally in phase three the exams are assigned to rooms based 

on the number of students taking each exam and capacities of the rooms. The solution for each phase is 

acquired based on an integer linear programming formulation, while satisfying a set of hard constraints 

that ensure comfortable exam timetables for all students and meet the desired requirements set by GJU 

administrative staff. Furthermore, the solver can be controlled and launched from a student information 

system named MyGJU Admin, which enabled registrars at the university to easily, quickly, and accurately 

generate final exam timetables in several standard formats. Moreover, the approach was validated based 

on recent GJU registration information as well as real-world benchmark data. 
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INTRODUCTION 

Exam timetabling is a very important and time 

critical task that faces registrars every semester in 

most educational institutions. This task is very 

complex and requires assigning a date, time, and 

room to every exam while ensuring that time (e.g., 

limited number of days, certain time intervals, 

fixed working hours), spatial (e.g., availability and 

capacity of rooms), and other (e.g., relaxing, and 

preventing conflicts in, the schedules of the 

students) constraints are satisfied. With the 

increasing number of students, exams, and 

demands, solving the Exam Timetabling Problem 

(ETP) manually is not a practical option and 

hence providing a computational solution for it 

attracted the attention of many researchers from 

the 1960s as in [1] till recently as in [2]. 

The ETP is known to be as an NP-Complete 

optimization problem [3] (i.e., it is unlikely to 

solve it optimally in polynomial time). Therefore, 

researchers tried and are still experimenting with 

many different ways that are based on 

mathematical models, heuristic techniques, or a 

combination of different algorithms to find quick 

and acceptable solutions for it. For example, in 

the survey presented in [4], the exam timetabling 

research was classified based on the techniques 

used to solve the problem such as: graph based 

[5, 6], local search based [7, 8], population based 

[9, 10], and other methods. In summary, the 

proposed solutions compare to each other based 

on the used techniques, the hybridization of 

different methods, the decomposition of the 

problem into smaller sub-problems, and the hard 

and soft constraints taken into consideration. 

In this paper, a new technique is introduced 

to solve the ETP with emphasis on issues related 

to GJU and its set of rules and limiting constraints. 

The proposed method has three novelties.  First, 

a feasible (i.e., not necessarily optimal) solution to 

the problem is found by segmenting it into three 

phases, which reduces the number of constraints 

to be considered in each phase and hence allows 

the optimizer to reach a desired solution in a 

quick manner with reduced memory demands. 

Noting that, an Integer Linear Programming 

(ILP) [11] based approach is used to find the 

solution for each phase. Second, a 

comprehensive set of hard constraints is 

considered to generate an exams schedule that is 

comfortable to all students (e.g., a student should 

not have more than two exams on the same day) 

and meets the needs of the different faculties at 

GJU (e.g., fixing the date of an exam, conducting 

an exam in a specific set of rooms). Third, the 

same exam can be allocated to one or multiple 

rooms unlike most of the similar techniques. 

Similarly to the method in this paper, several 

other papers such as those in [12-17] discussed 

integer programming based techniques to solve 

the ETP. However, to the best of our knowledge, 

most of those methods tried to solve the problem 

in one phase, which usually results in a system of 

equations with a large number of variables and 

hence solving it is very CPU and memory 

intensive. Unlike [12], the hard constraint to 



  

prevent a student from having two or more exams 

in the same day as in this paper was not 

considered in [13-16]. In [17], a hybrid adaptive 

decomposition approach was used to break the 

exams into difficult and easy sets before using an 

ILP approach to obtain a solution. 

Some of the approaches that did not use a 

mathematical ILP model (i.e., unlike the 

approach in this paper) to solve the ETP will be 

briefly discussed next. Such approaches either 

used graph coloring, metaheuristic, hybrid, or 

other methods to find a solution for the ETP. 

They can also be categorized into two groups 

based on whether all the hard constraints in this 

paper were considered or not. 

The first group of papers (i.e., the group that 

considered the set of hard constraints as in this 

paper) is discussed first. In [2], two column 

generation algorithms were used to solve the 

ETP. Whereas in [18], hyper heuristic 

approaches were utilized. In [19], an adaptive 

linear combination of heuristics with a heuristic 

modifier under the framework of adaptive 

strategies was proposed. In [20], a search 

algorithm that consists of several phases is 

introduced. In the first (construction) phase, a 

complete solution is found using an iterative 

forward search algorithm. In the later phases, a 

local optimum is found using a combination of a 

hill climbing algorithm and great deluge 

technique. The method in [21] hybridized bin 

packing heuristics to assign exams to time slots 

and rooms. In [22], the solution is based on graph 

coloring heuristics that were hybridized to 

generate four new low level heuristics. In [23], the 

ETP specified in [24] was solved using a variable 

neighborhood search methodology. In [25], a 

random iterative graph based hyper-heuristic was 

used to produce a collection of heuristic 

sequences to construct solutions of different 

quality. 

Next, the second group of papers (i.e., that 

did not consider all hard constraints used in this 

paper) is presented. For example, a hybrid bee 

colony optimization approach was used in [26]. In 

[27], a sequential graph coloring with the largest 

enrolment first heuristic was used to construct a 

conflict-free examination timetable and then a 

simulated annealing heuristic was used to fit 

examinations into rooms, while satisfying the 

back-to-back constraint (i.e., spreading the 

examinations evenly to give the students enough 

revision time between examinations). In [28, 29], 

hill climbing and great deluge local search were 

used to solve the problem. In [30], a hybrid 

harmony search algorithm was used. In [31], 

decomposition as well as a graph coloring 

heuristic were used. In [32], a hyper heuristic 

approach was used. In [33], heuristics and a 

stochastic algorithm called the roulette wheel 

graph coloring were used to solve the problem. In 

that the algorithm was also tested on the 

examination timetabling benchmark datasets in 

[34]. A graph-coloring-based method was utilized 

in [6], but without considering the actual 

distribution of exam sessions to rooms. In [35], 

the solution of the course-timetabling problem 

was used to construct an initial solution to the 

examination timetable. Finally, in [5] a hybrid two 

phase method was introduced to tackle the ETP. 

The rest of the paper is organized as follows. 

In the Method Overview section, the hard 

constraints under consideration and an overview 

of the proposed method are provided. In the 

Method Implementation section, the adopted 

nomenclature, problem setup, and decomposing 

the ETP into three sub-problems are discussed. 

In the AMPL Format Representation section, a 

simple example is used to show how the problem 

formulation is represented in AMPL format. In 

the Validation and Results section, the method is 

validated based on GJU registration information 

(using the MyGJU Admin tool [36, 37]) and real-

world benchmark data. Finally in the Conclusions 

and Future Work section, conclusions and future 

work are presented. 

METHOD OVERVIEW 

In this section, the hard constraints under 

consideration in the ETP problem formulation 

are defined. Moreover, the decomposition of the 

ETP into three sub-problems to be able to find a 

feasible solution for it is discussed. 

Hard Constraints 

By definition a hard constraint must be satisfied 

by the solver to obtain a feasible solution i.e., it 

cannot be violated by the solver. The following 

hard constraints were considered in this paper: 

i. A student cannot have more than one exam 

simultaneously 

ii. All exams must be scheduled 

iii. An exam must take place within the 

available time slots and dates  

iv. The number of exams to be held 

simultaneously is limited due to the 

limitation on room availability 

v. A student cannot have more than two (or 

more) exams on any given day 

vi. The maximum number of time slots per 

day should be respected 



  

vii. A room cannot be occupied by two exams 

at the same time 

viii. An exam can be held in multiple rooms up 

to a specified limit 

ix. The room capacity should not be exceeded 

x. Some exams can be held only on specific 

days during the examination period 

xi. Some exams can be allocated only to 

specific rooms 
 

Problem Decomposition 

Solving the ETP in one phase can be out-of-reach 

[12] as the problem formulation may contain a 

large number of variables and hence results in 

out-of-memory issues. Therefore, in this paper 

the ETP is decomposed into three sub problems 

and then practically solved in three phases. 

Accordingly, a later phase depends on the results 

of its preceding phase(s). A graph coloring based 

ILP formulation is used to find a solution in 

phases one and two. Solving a graph coloring 

problem requires assigning colors to vertices such 

that no two adjacent (i.e., connected with an edge) 

vertices share the same color, while minimizing 

the number of colors used to cover all vertices.  

Based on that, phase 1 is formulated to 

assign time slots (colors) to exams (vertices) such 

that no two adjacent exams will be assigned the 

same time slot (i.e., color). An exam is adjacent to 

another exam when they share a student i.e., the 

student cannot take both exams simultaneously. 

Therefore, the objective of this phase is to 

minimize the number of time slots used while 

preventing any student from having more than 

one exam simultaneously (i.e., satisfying hard 

constraint i). Note that, the maximum number of 

time slots is bounded by |T|, which should not 

exceed the total number of exams (i.e., vertices).  

Phase 2 is required to assign days (colors) to 

the time slots (vertices) that were determined in 

phase 1, given that a student shall not have more 

than two (or more) exams in any given day i.e., a 

day shall not contain more than two time slots 

with exams having a common student in them.  

Whereas, phase 3 is needed to assign the 

exams to the available rooms, while not exceeding 

the capacities of the rooms in comparison with 

the number of students taking the corresponding 

exams. The formulation in this phase is based on 

the time slots and days that were determined in 

phase 1 and phase 2, respectively. 

 

 

METHOD IMPLEMENTATION 

In this section, the sets and indices used in the 

problem formulation are given. Furthermore, the 

problem setup and ILP formulations for the three 

phases are discussed.  Note that, in each phase the 

problem is translated into mathematical 

programming equations according to the AMPL 

(A Mathematical Programming Language) 

program format [39] in order to be solved by the 

CPLEX solver [40], while meeting the desired 

hard constraints. 

Sets and Indices 

The sets and indices that are used in the 

formulation of the three phases (sub problems) 

are defined as follows: 

- 𝑪  is the set of all exams 

- 𝑐 is the index of an exam i.e.,  𝑐  𝑪 

- 𝑬 is a set that contains students taking each 

exam 𝑐  𝑪 

- 𝐸c is the number of students taking exam 𝑐 

- 𝑻  is the set of time slots  

- 𝑡  is the index of a time slot i.e.,  𝑡  𝑻 

- 𝑫 is the set of days  

- 𝑑 is the index of a day i.e.,  𝑑  𝑫 

- 𝑻𝐝 is the set of time slots (tuple) allocated to 

a day 

- 𝑹 is the set of rooms  

- 𝑟 is the index of a room i.e.,  𝑟  𝑹 

- 𝑷 is a set that contains the capacity of each 

room 𝑟  𝑹 

- 𝑃𝑟 is the capacity of room 𝑟 

- 𝑺 is the set of all students enrolled in the 

semester under consideration 

- 𝑠 is the index of a student i.e.,  𝑠  𝑺 

- 𝐶s is the list of exams (tuple) that student 𝑠 

is taking 

- 𝑭 is the set  of student exam lists (tuples) 

- 𝑇s is the list of time slots (tuple) in which the 

exams for student 𝑠 can be allocated 

- 𝑱 is the set of student time slots lists (tuples) 

- 𝑇𝑑 is a predefined value for the maximum 

number of time slots per day 

- 𝐶𝑡 is a predefined value for the maximum 

number of exams per time slot 

- 𝑹𝒂𝒄𝒄𝒄
 is a set that contains all rooms that can 

be assigned to exam 𝑐 

- 𝑹𝒓𝒆𝒋_𝒄 is a set that contains all rooms that 

cannot be assigned to exam 𝑐 
 

Problem Setup 

The proposed method is integrated in a web-

based student information system named MyGJU 

Admin [36-38]. This system enables registrars at 



  

GJU to perform final exams scheduling as well as 

many other tasks like rooms setup, course 

sections management, admission, student 

information management, registration, grades 

processing, and graduation.  Therefore, all the 

data needed (e.g., exams, students, enrollments, 

rooms) to populate the aforementioned sets (e.g., 

𝑪, 𝑹, 𝑺, 𝑭) that are used in the following 

formulations and to solve the ETP can be first 

retrieved from the corresponding MyGJU 

database tables, and then fed to the solver to 

obtain the desired solution. 
 

Phase 1: Exams to Time Slots Assignment 

The following formulation is used to guarantee 

that no exam in each student exams tuple (i.e., in 

each 𝐶𝑠) will be assigned to the same time slot 

(i.e., to satisfy hard constraint i): 

∀𝑠  {1, ..., |𝑭| }, ∀𝑡  {1, ..., |𝑻|}:  

(∑ 𝑥𝑐,𝑡 
|𝐶𝑠|
𝑐=1 ≤ 1)     (1) 

where the binary variable 𝑥𝑖,𝑗 = 1 when exam 𝑖 is 

assigned to time slot 𝑗. 

In order to guarantee that every exam will be 

assigned to exactly one time slot (i.e., satisfy hard 

constraints ii and iii), the following constraint set 

is needed: 

∀𝑐  {1, ..., |𝑪|}:    (∑ 𝑥𝑐,𝑡  =  1)
|𝑇|
𝑡=1     (2) 

Moreover, the number of exams in each 

time slot can be guaranteed not to exceed a pre-

defined value 𝐶𝑡 (i.e., satisfy hard constraint iv), 

usually set by registrars, as shown below:  

∀𝑡  {1, ..., |𝑻|}:    (∑ 𝑥𝑐,𝑡  ≤ 
|𝐶|
𝑐=1 𝐶𝑡 )    (3) 

Furthermore, to satisfy hard constraint x, an 

additional step is introduced as follows: 

∀𝑐𝑖 , 𝑐𝑗   𝑪, 𝑑𝑛, 𝑑𝑚  𝑫: (𝑐𝑖 →  𝑑𝑛  ∩  𝑐𝑗 →

 𝑑𝑚) →  𝑥𝑖,𝑡 +  𝑥𝑗,𝑡 ≤ 1 ∶ ∀ 𝑡   𝑻, i ≠ j       (4) 

The previous constraint denotes that, if 

exam 𝑐𝑖 is to be held in day 𝑑𝑛, and exam 𝑐𝑗 is to 

be held in day 𝑑𝑚, then 𝑐𝑖 and 𝑐𝑗 should not 

occur in the same time slot. 

Finally, if a binary variable 𝑢𝑡 is equal to one 

when there is at least one course 𝑐 assigned to 

time slot 𝑡 as guaranteed by:  

∀𝑡  {1, ..., |𝑻|}:    (∑ 𝑥𝑐,𝑡
|C|
𝑐=1 − 𝑢𝑡 ≤ 0)     (5) 

Then, the number of used time slots can be 

minimized based on the following objective: 

minimize: ∑ 𝑢𝑡
|𝑇|
𝑡=1      (6) 

 

 

Phase 2: Time Slots to Days Assignment 

As a preliminary step in this phase, the student 

exams tuples in set 𝑭, that are used in phase 1, are 

first processed to generate set 𝑱 by replacing the 

exams in each tuple with the corresponding time 

slots that they were associated with in phase 1. 

Henceforth, if exam 𝑖 was assigned to time slot 𝑗 

in the previous phase, then each occurrence of 𝑖 
in any student exams tuple 𝐶s will be replaced by 

𝑗 to obtain the student time slots tuple 𝑇s. 

Assuming that a binary variable ℎs   is equal 

to one only when a student whose tuple 𝑇s has 𝑛 

exams in day 𝑑. Hence, a student will not have 

more than 𝑛 exams on any given day 𝑑 (i.e., satisfy 

constraint v) when meeting the following: 

∀𝑠  {1, ..., |𝑱|}, ∀𝑑  {1, ..., |𝑫|}:  

(∑ 𝑦𝑡,𝑑
|𝑇s|
𝑡=1 − ℎs ≤ (𝑛 − 1))      (7) 

where 𝑦𝑖,𝑗 = 1 when time slot 𝑖 in 𝑇s is assigned 

to day 𝑗. Also, based on equation 7, if a student 

had 𝑛 exams in one day, the value of his/her 

corresponding ℎs will be automatically set to one. 

Noting that in the case of GJU 𝑛 is equal to two. 

The following equation is further used to 

minimize the number of students having 𝑛 exams 

per day: 

minimize: ∑ ℎs
|𝑆|
𝑠=1  (8) 

In addition, to guarantee that each time slot 

will be assigned to one and only one day, the 

following constraints need to be met: 

∀𝑡  {1, ..., |𝑻|}:    (∑ 𝑦𝑡,𝑑 = 
|𝐷|
𝑑=1 1)    (9) 

Where 𝑦𝑖,𝑗 = 1 when time slot 𝑖 is assigned to day 

𝑗. 

Moreover, the number of time slots per day 

can be limited to a pre-defined value 𝑇𝑑 (i.e., 

satisfy constraint vi), usually set by registrars, as 

follows: 

∀𝑑  {1, ..., |𝑫|}:    (∑ 𝑦𝑑,𝑡  ≤ |𝑇|
𝑡=1 𝑇𝑑)    (10) 

To further satisfy hard constraint x, the time 

slots that were assigned to certain exams 

previously must be linked to certain days 

according to the formula below: 

(𝑥𝑐,𝑡𝑖
= 1 ∩ 𝑐 → 𝑑𝑗) → 𝑦𝑡𝑖,𝑑𝑗

= 1      (11) 

The previous equation denotes that if exam 

𝑐 is to be held in day 𝑑𝑗 and 𝑐 was assigned to time 

slot 𝑡𝑖, then 𝑡𝑖 must be a time slot in day 𝑑𝑗. 

 

 



  

Phase 3: Exams to Rooms Assignment 

The goal of this phase is to assign exams to rooms. 

Hence, at the end of this phase each exam should 

be assigned to room(s) at the time-slot and day 

that were determined in the previous two phases, 

while meeting all the desired hard constraints. 

Assuming that 𝑢𝑐  is a binary variable with a 

value equals to 1 when exam 𝑐 is assigned to 𝑛 

rooms. Then, hard constraints viii and ix can be 

met as follows: 

∀𝑐  {1, ..., |𝑪|}:    (∑ 𝑥𝑐,𝑟
|R|
𝑟=1 ∗ 𝑃𝑟  ≥  𝐸𝑐)    (12) 

It is also worth noting that, during the 

examination period, a room that fits 𝑥 students on 

normal days is assigned only 𝑥/2 students. This 

step is performed to avoid overcrowding the 

rooms and provide students with a comfortable 

examination environment. 

To ensure that each exam will occur in 

exactly one room (i.e., meet hard constraint vii), 

the following equation needs to be satisfied: 

 ∀𝑐  {1, ..., |𝑪|}:    (∑ 𝑥𝑟,𝑐 = 
|𝑅|
𝑟=1 1)    (13) 

where 𝑥i,j = 1 when room 𝑖 is to host exam 𝑗.  

Moreover, to satisfy hard constraint xi an 

additional equation must be added and one of 

two cases may occur: 

i. If a room is not to be allowed to hold a certain 

exam, then:  

       ∀𝑟  𝑹 ∩ 𝑟  𝑹𝒓𝒆𝒋_𝒄:   𝑥𝑐,𝑟 = 0   (14) 

where 𝑹𝒓𝒆𝒋_𝒄 is the set that contains all rooms that 

are not to be assigned to exam 𝑐. 

ii. If an exam is only to be held in certain rooms, 

then:  

∀𝑟  𝑹 ∩ 𝑟 ∉ 𝑹𝒂𝒄𝒄_𝒄:   𝑥𝑐,𝑟 = 0          (15) 

where 𝑹𝒂𝒄𝒄_𝒄 is the set that contains all rooms that 

can be assigned to exam 𝑐.  

AMPL FORMAT REPRESENTATION 

A small exam timetabling problem is considered 

in this section to illustrate how the variables and 

equations used to formulate the sub-problems for 

phase 1 and phase 2 can be represented in AMPL 

format (note that the phase 3 representation is not 

shown here as it can be done in a similar manner). 

For example, assuming that a user would like to 

schedule the four exams shown in Table 1 over a 

two days period. Given that, each day contains 

three time slots (i.e., a total of 6 time slots in 2 

days), the exams taken by each student are as 

shown in Table 2, and no student should have 

more than two exams on any given day. 

The phase 1 formulation can be represented 

in AMPL syntax as shown in Figure 1. At line 1, 

CPLEX is set as a solver. Whereas, sets 𝑻, 𝑪, and 

𝑭 as well as variables 𝑥 and 𝑢𝑡 are declared at lines 

2, 3, 4, 5, and 6, respectively. Sets 𝑻, 𝑪, and 𝑭 are 

initialized at lines 8, 9, and 10, respectively. 

Furthermore, equations 1, 2, 3, 5, and 6 are 

defined at lines 11, 12, 13, 14, and 15, 

respectively. 

The phase 2 formulation can be represented 

in AMPL syntax as shown in Figure 2. At line 2, 

the CPLEX options the number of solutions and 

time limit are set to 2 solutions and 120s, 

respectively. Whereas, sets 𝑫, 𝑻, and 𝑱 as well as 

variables 𝑥 and ℎ𝑎𝑠_2 (i.e., ℎs) are declared at 

lines 3, 4, 5, 6, and 7, respectively. Also, sets 𝑫, 

𝑻, and 𝑱 (given that only time slots  1-4 were 

needed to solve phase 1) are initialized at lines 9, 

10, and 11, respectively. Moreover, equations 7, 

8, 9, and 10 are defined at lines 12, 13, 14, and 

15, respectively. Also, the solver is called at line 

16. 

VALIDATION AND RESULTS  

The proposed method was validated using the 

GJU first 2016/2017 semester registration 

information as well as the University of Toronto 

benchmark data [41] as will be discussed in the 

following two subsections. 

Note that all of the experiments discussed 

next were executed on a machine with an Intel 

Core i7-4710MQ CPU running at 2.5GHz, with 

16GB RAM, and on which a windows 10 

enterprise operating system is installed. Also, 

CPLEX version 12.6.3.0 was used in all cases.

 



  

Table 1: Students enrolled in each exam 

Exam Student Id  Count 
CRS1 1, 2, 3, 4 4 

CRS2 1,3,4,5,7,9 6 

CRS3 3,4,5,7,8,10 6 

CRS4 3,5,6,10 4 

Table 2: Exams of each student 

Student Id Exams  
1 CRS2, CRS1 

2 CRS1 

3 CRS3, CRS2, CRS1, CRS4 

4 CRS3, CRS2, CRS1 

5 CRS3, CRS2, CRS4 

6 CRS4 

7 CRS3, CRS2 

8 CRS3 

9 CRS2 

10 CRS3, CRS4 
 

 
Figure 1: The representation of the variables and equations used in the formulation 

of phase 1 in AMPL syntax  

 
Figure 2: The representation of the variables and equations used in the formulation of phase 2 in AMPL syntax 

Table 3: The GJU data for the first 2016/2017 semester 

Enrolled students 3821 

Number of rooms 323 

Number of exams 403 

Validation based on GJU Data 

The GJU registration data (shown in Table 3) for 

the first 2016/2017 academic semester was first 

used in several experiments to illustrate that the 

proposed method is practical i.e., fast, accurate, 

stable, and requires basic hardware resources. 

The first experiment was conducted to find 

a default solution limit to use in the MyGJU 

Admin tool in order to reduce the time registrars 

need to find a feasible and acceptable final exam 

timetable for any academic semester.  A feasible 

exam timetable must meet all the desired hard 

constraints. Whereas, a timetable is considered 

better (i.e., acceptable) than another one, if it 

results in less students having two exams in the 

same day and has a fewer number of days (i.e., a 

shorter duration).  

Only 296 out of 403 exams were scheduled 

in this experiment due to excluding the practical 

exams (i.e., laboratory exams) from the offered 

exams list, as the practical exams at GJU usually 

take place in their corresponding laboratories one 

week ahead of the final exams period. Moreover, 

only 100 rooms were used after excluding 

laboratories and the rooms in the distant 

buildings from the available rooms list. The 

capacity of the smallest and largest used rooms 

were 22 and 100 respectively.  



  

 
Figure 3: User interface in MyGJU Admin to adjust solver settings, exam limits, as well as exam dates and times 

 
Figure 4: User interface in MyGJU Admin to launch the scheduler, monitor its progress, and then view the results 

 
Figure 5: Elapsed times to solve the ETP in the first experiment 

 
Figure 6: Percentage of students with two exams in one day in the first experiment 

 

 

 

 

 

 

 



  

Table 4: Elapsed time needed to find the optimal solution, and optimal solution, for each number of days in experiment one 

 

10 days 12 days 14 days 16 days 18 days 20 days 22 days 

Elapsed Time (s) 61420 39180 15660 5625 182 39 29 

Percentage of students 

with 2 exams in a day 
5.89 4.12 2.16 1.32 0.69 0.33 0.08 

 
Figure 7: Number of variables in the formulations of phase 1, phase 2, and original phase 

 
Figure 8: Number of non-zeros in the formulations of phase 1, phase 2, and original phase 

 
Figure 9: Elapsed times to solve the ETP using the 3-phase and 2-phase (original model) methods 

 

Furthermore, the solver solution limit was 

varied as follows: 1, 2, 5, and no limit (i.e., to find 

the optimal solution). Also, a maximum number 

of different exams per time slot was set to 50. In 

addition, the exam days were changed as follows: 

10, 12, 14, 16, 18, 20, and 22. Besides that, a 



  

maximum of four 2 hour time slots per day (at 

8:30, 11:00, 13:30, and 16:00) were allowed with 

a 30 minutes recess duration in between exams. 

Note that registrars adjusted the aforementioned 

solver settings (e.g., number of solutions), exam 

limits (e.g., maximum number of exams per 

student on a single day), as well as exam times and 

dates (e.g., start and end dates) from the final 

exams setup screen (see Figure 3) in the MyGJU 

Admin tool. While, the MyGJU Admin also 

supports launching the scheduler, monitoring its 

progress, and viewing the generated final exams 

timetable (see Figure 4).  

The elapsed times and percentages of 

students with two exams in a day for the limited 

solutions (i.e., 1, 2, and 5 solutions) in experiment 

one are shown in Figure 5 and Figure 6, 

respectively. Whereas, the elapsed times to find 

the optimal (i.e., minimum) percentages of 

students with two exams in a day for the number 

of days in experiment one are given in Table 4. 

Accordingly, an acceptable exam timetable can be 

efficiently found using two solver solutions. On 

the other hand, finding the optimal solution might 

take many extra hours to slightly improve the 

result that was obtained with two solutions in 

several seconds. For example, it took about 17 

hours and 6 minutes to reduce the percentage of 

students with two exams in a day from 10 to 5.89 

for the 10 days case, which is impractical given 

that obtaining an acceptable percentage of 10 was 

achieved in about 12 seconds. This fact justifies 

the methodology to quickly find a feasible 

timetable rather than trying to find the optimal 

solution that mostly will take a very long time to 

obtain and may not be much better than the 

timetable that can be quickly found using two 

solutions.  

In the second experiment, the ETP was 

solved using the original (2-phase) model using 

the setup of experiment one except for fixing the 

solution limit to two in all cases. Based on that, 

the size of the phase 1 formulation in the original 

model (original phase) was compared to its new 

counterparts (i.e., the phase 1 and phase 2 

formulations in the proposed 3-phase method) 

based on the number of variables and non-zeros 

in the formulations as shown in Figure 7 and 

Figure 8 respectively. Whereas, the elapsed times 

shown in Figure 9 illustrate that the 3-phase 

approach outperformed the original method in all 

cases. Hence, the results of this experiment assert 

the fact that sub-dividing the ILP problem into 

three smaller sub-problems proved to be a key 

factor to enable a solver, such as CPLEX, to 

produce feasible solutions for an NP-complete 

problem in relatively short times and with 

reduced memory demands. 

In the third experiment, the solver was used 

to schedule all the offered exams including the 

practical exams (i.e., 403 exams) using all rooms 

(i.e., 323 rooms). In this case, a feasible final exam 

timetable was found in about 42 seconds (based 

on one solution limit), with 9.9% of the students 

having two exams in the same day, and a 

minimum exam period of 12 days (note that an 

exam week at GJU usually spans six days, which 

brings the exams period in this case to two weeks). 

Hence, the practicality of the approach was 

proven again performance and feasibility wise 

although it was applied to an instance that had 107 

exams more than the current number of 

scheduled exams at GJU. 

In the fourth experiment, the dates of the 

GERL101 and NE101 exams were fixed as shown 

in Figure 10. The setup of experiment one was 

also used in this experiment except for fixing the 

solution limit to two in all cases. The result in 

Figure 11 illustrates that the method found a 

solution without altering the fixed two exam dates 

(i.e., it satisfied hard constraint x). Moreover, the 

results in Figure 12 and Figure 13 show that 

satisfying hard constraint x had a minor effect on 

the performance and accuracy of the obtained 

solutions.  

Note that in all experiments the reported 

times did not only account for the time needed to 

find a feasible solution, but they also included 

preprocessing time (e.g., parsing the data files, 

querying the needed information from the 

database) as well as display time (e.g., generating 

output files for display). Nevertheless, the 

reported solution times were remarkably short 

and the solver did not encounter any out of 

memory problems while finding the solutions. 

Validation based on Benchmark Data 

The proposed method was further verified by 

using it to solve eleven real-world exam 

timetabling problem instances (shown in Table 5) 

from the University of Toronto (UT) benchmark 

data sets [34, 40]. The number of exams and 

students for each problem instance are shown in 

the second and third rows in Table 5, 

respectively. Since the UT benchmark data does 

not contain room information, the solver utilized 

the 100 GJU rooms (that were used in experiment 

one in the previous subsection) to assign exams 

into rooms in phase three. The overall capacity of 

those rooms is 3736 and that was enough to fit all 



  

exams in rooms for each instance. It is also worth 

noting that ahead of each solution, a script was 

used to parse and preprocess the UT benchmark 

data files (i.e., the exams and student enrollments 

files) in order to map and import the generated 

output files into the corresponding database 

tables that will be later accessed by the ETP 

solver. 

 
Figure 10: Fixing the dates for the GERL101 and NE101 exams in the MyGJU Admin 

 
Figure 11: The fixed exam dates are not altered in the found solutions in experiment four  

  

Figure 12: Elapsed times of experiments one and four with 

solution limit equal 2 
Figure 13: Percentage of students with two exams in one day 

in experiments one and four with solution limit equal 2 

Table 5: Number of exams and students in the UT benchmark data  
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Table 6: Minimum number of days and percentages of students with 2 exams in one day for all UT instances solutions 
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% of students with 2 exams in one day 7.62 5.62 11.55 7.55 3.56 9.26 7.45 2.20 9.51 5.32 7.3 

 

  
Figure 14: Elapsed times for solving the UT smaller problem instances Figure 15: Elapsed times for solving the UT 

larger problem instances 

The setup used in experiment one in the 

previous subsection was also used to solve each 

problem instance in this experiment, except for 

fixing the solution limit to 2 and solving for 

different number of days in order to find solutions 

that satisfy hard constraint v (i.e., a student cannot 

have more than two exams on any given day) with 

the least number of days. Accordingly, the 

minimum number of days to solve each instance 

while satisfying constraint v, as well as the 

percentage of students having two exams in one 

day for each respective solution are shown in rows 

two and three in Table 6, respectively. 

Furthermore, for readability purposes, the 

elapsed times to solve the corresponding smaller 

and larger problem instances are shown in Figure 

14 and Figure 15, respectively. 

Based on those results, the proposed 

method was capable of finding a solution for each 

problem instance while satisfying hard constraint 

v. Given that, satisfying constraint v was not 

considered in the first attempts to solve those 

cases by other researchers. Furthermore, it 

succeeded in finding the desired solutions despite 

the fact that it was performing an extra phase to 

assign exams to rooms. Moreover, it scheduled all 

exams in less than or almost two weeks. Whereas, 

the solutions elapsed times varied from 4.7s up to 

712s (i.e., about 12 minutes) to solve the smallest 

(i.e., St.Andrews83 that included 298 students 

and 139 exams) and largest (i.e., TorontoAS92 

that contained 13558 students and 622 exams) 

instances, respectively. Hence, it solved instances 

that are smaller or almost equal in size compared 

to the GJU instance size in a matter of seconds. 

While, it found solutions for instances that are 

almost four times the size of the GJU instance in 

a matter of minutes. Accordingly, the method can 

support the exam timetabling demands of the 

GJU staff for years to come with accuracy, speed, 

and basic hardware resources. Moreover, it can 

provide the majority of students with very 

comfortable exam schedules. As based on the 

percentages in Table 6, more than 90% of the 

students in 10 instances had a maximum of only 

one exam in any given day. Nevertheless, the rest 

of the students were also guaranteed not to have 

more than two exams in one day. 

CONCLUSIONS & FUTURE WORK 

The proposed method for solving the ETP and 

integrating it in the MyGJU Admin tool helped 

registrars at GJU maintain a comfortable 

examination environment, as well as meet faculty 

and student demands, as it enabled them to: 

- Obtain a solution for the ETP using 

machines with basic storage and processing 

power. 

- Control the solver and its parameters from 

the MyGJU Admin tool in order to easily 
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generate feasible final exams timetables that 

can be saved in various standard formats. 

- Generate a feasible final exam timetable in a 

matter of seconds compared to several days 

and hundreds of iterations when they used 

to do it manually.  

- Announce the final exam timetable several 

weeks ahead of the examination period, 

which allows instructors and students to plan 

ahead and prepare themselves for the 

exams.  

- Hold some exams on specific dates, or in 

certain rooms, in order to meet the faculties’ 

demands. 

- Produce a comfortable timetable for all 

students as the method allows enforcing a 

hard constraint to prevent a student from 

having more than two exams in the same 

day. 

The ability of the proposed method to 

practically solve the ETP is mainly due to 

decomposing it into three smaller sub-problems 

(phases), which drastically decreased the number 

of variables used in the formulation and hence 

reduced the demand on the processing and 

storage resources. Another advantage of 

modularizing the problem is the simplification of 

its formulation, which makes it readable and 

easier to understand. 

In the near future, the skills acquired while 

working on the ETP will also be used to automate 

the course scheduling problem at GJU. 
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