
778 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Stochastic Congestion Game for Load
Balancing in Mobile-Edge Computing

Fenghui Zhang and Michael Mao Wang

Abstract—Mobile-edge computing can reduce task execution
delay and improve the Quality of Experience (QoE) for the
network edge users. However, when there are multiple indepen-
dent cloudlets in the network with the mobile users offloading
tasks randomly, how to maintain the load balancing of the inde-
pendent cloudlets, how to improve the quality of service and
users’ QoE are still issues need to be solved. To this end, we study
these issues from the perspective of game theory and propose
decentralized learning algorithms. First, we turn the cloudlets
load-balancing issue into a competition that each user minimizes
its task execution time, and then a stochastic congestion game
with incomplete information is proposed. Second, based on the
existence proof of the Nash equilibria by using potential game
theory, we propose a multiuser decentralized learning algorithm
to obtain the pure Nash equilibrium strategy of each user. Then,
an ordinary differential equation is derived to prove the con-
vergence of the algorithm. Finally, we propose two application
scenarios, one is for static users and the other is for dynamic
users, and then the performances of the algorithm in a static
scenario is tested. In order to adapt to dynamic scenarios, and
further improve the performance and reduce communication
costs, we propose a decentralized learning algorithm with ter-
mination condition. The experiments show that this algorithm
can improve the load balancing of the multicloudlet system, and
enhance the quality of service.

Index Terms—Incomplete information, load balancing, mobile-
edge computing (MEC), potential game, stochastic game.

I. INTRODUCTION

W ITH the proliferation of smartphones and Internet-of-
Things (IoT) devices, more and more new mobile

applications, such as interactive gaming, face recognition,
and augmented reality have emerged and drawn increasing
interests [1]. These sophisticated applications usually require
significant amounts of computation resources and energy
which, however, cannot be directly afforded by most mobile
devices due to their limited computation resources and bat-
tery capacities [2], [3]. Mobile cloud computing which allows
mobile devices to offload tasks to cloud can significantly

Manuscript received May 27, 2020; accepted June 30, 2020. Date of pub-
lication July 8, 2020; date of current version January 7, 2021. This work
was supported in part by the National Natural Science Foundation of China
under Grant 61771128; in part by the Natural Science Foundation of Anhui
Province under Grant 1908085MF213; and in part by the Key Project of Anhui
Education Department under Grant KJ2018A0411. (Corresponding author:
Michael Mao Wang.)

Fenghui Zhang is with the School of Information Science and Engineering,
Southeast University, Nanjing 211102, China (e-mail: fhzhang@seu.edu.cn).

Michael Mao Wang is with the School of Information Science
and Engineering, Southeast University, Nanjing 211102, China (e-mail:
wangmao@seu.edu.cn).

Digital Object Identifier 10.1109/JIOT.2020.3008009

reduce execution time and energy consumption. However, the
long distance between users and remote cloud server causes
that many individual round trips take hundreds to thousands
of milliseconds, which makes it difficult to run delay-sensitive
applications in the remote clouds [4]. Therefore, in order
to reduce the transmission delay, an alternative is to deploy
cloudlets at the edge of the network to provide cloud com-
puting services for nearby mobile devices, i.e., mobile-edge
computing (MEC) [5].

With MEC, mobile devices can offload tasks to proxi-
mate cloudlets, which will significantly reduce transmission
delay and improve user’s Quality of Experience (QoE). Due
to the enormous advantages of MEC, many cloud comput-
ing providers (CCPs) construct their cloudlets at the edge
of networks. In some areas where there are massive IoT
devices or mobile users, different CCPs may establish their
cloudlets at the network edge, which are independent of each
other [6], [7]. Consequentially, it brings the users more con-
venience, for they have more choices to select the favorite
cloudlet for task offloading. However, another scenario will
appear, where most of the users choose one or two cloudlets,
while the other cloudlets are idle. This is because the inde-
pendent users will not negotiate with each other before task
offloading. Under this scenario, the users’ QoE will reduce
significantly for the average waiting time becomes longer,
and it will also cause the waste of computing resources. At
the same time, due to the mobility and state uncertainty of
users, the number of offloading events is stochastic in differ-
ent time slots. Until now, this is still an open issue need to be
resolved, the main questions are how to maintain load balanc-
ing between cloudlets in a distributed manner? how to improve
users’ QoE with a lower cost?

Recently, different approaches are proposed to improve the
load balancing between cloudlets, e.g., optimization, game,
and auction [7]–[11]. However, these approaches require a
controller in the system and need frequent communication
between controller, cloudlet, and mobile device. In fact, the
controller does not always exist in the system and the mobile
devices always offload their randomly generated tasks without
communicating with other devices. Hence, under this scenario,
how to maintain load balancing is a huge challenge. To this
end, we describe the process of cloudlets load balancing as
a competition that the independent users decide their task
offloading strategies to improve their utility. Then, a stochastic
congestion game with incomplete information is employed to
describe this competition. After that, a decentralized learning
algorithm is proposed to improve the service quality of the

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8859-8873
https://orcid.org/0000-0002-6557-8212

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 779

system and the user’s QoE. We also propose a decentralized
learning algorithm with the termination condition to further
improve the system performance. The main contributions of
this article can be summarized as follows.

1) We consider the load-balancing issue under the scenario
that multiuser offload tasks to multicloudlet randomly
when all of them are independent. Based on the random
analysis of the system, we model the load balancing of
cloudlets and service quality improvement as a stochas-
tic congestion game with incomplete information that
users compete with each other to maximize their utility.

2) We rigorously prove that this stochastic congestion game
is a potential game, and thus the existence of Nash
equilibrium is guaranteed. Then a decentralized learn-
ing algorithm is proposed to solve the game. We prove
the proposed algorithm converges to Nash equilibrium
by describing it as an ordinary differential equation.

3) In order to adapt to dynamic scenarios and further
improve system performance, we investigate the con-
vergence characteristics of the game, and then a decen-
tralized learning algorithm with termination condition is
proposed. This algorithm can significantly reduce system
communication costs and achieve load balancing of the
cloudlets.

4) Different parameters are used to test the convergence of
the algorithms. Compared with the existing approaches,
the equilibrium strategy obtained from this game can
improve system load balancing without a coordinator.

The remainder of this article is organized as follows. After
reviewing the related works in Section II, we introduce the
system model in Section III, the existence of Nash equilibrium
points is proved in Section IV. In Section V, a decentralized
learning algorithm is proposed and its convergence is analyzed.
The application of the game is presented and its performance
is demonstrated in Section VI. In Section VII, a decentralized
learning algorithm with termination condition is proposed to
further improve the system performance. Finally, Section VIII
concludes this article with future works.

II. RELATED WORKS

In MEC, multiple cloudlets may be deployed at the edge
of the network to provide cloud computing services. Ensuring
that each cloudlet has high resource utilization is an important
guarantee for MEC service quality. Therefore, load balanc-
ing as an important direction has attracted more and more
attention. Optimization and scheduling are commonly used
methods. For example, in [12], Dong et al. utilized a heuristic
task clustering method and a glowworm swarm optimization
algorithm to achieve long-term load balancing of edge data
centers. Lin and Tsai [13] proposed a hierarchical edge-cloud
SDN controller system to enhance network scalability and
reduce computation delay. Similarly, Sotiriadis et al. [14]
designed a dynamic reconfiguration system to ensure the load
balancing of each cloud. Dai et al. [7] formulated the joint
load balancing and offloading issue as a linear program-
ming problem to maximize system utility. Moreover, in [15]
and [16], multiple scheduling algorithms are tested to mea-
sure the performance of load balancing. However, in these

approaches, a powerful central control node is needed to
schedule and allocate tasks.

Having an appropriate task offloading scheme can also
improve system performance and QoE of users. Delgado and
Labeau [17] proposed a delay-aware load-balancing algorithm
to reduce the multiaccess wireless network delay, but it is only
applicable to a scenario where one user offloads tasks. In [10],
Hong et al. proposed a multihop cooperative computation-
offloading game for discrete multiple devices to minimize
the latency and energy consumption. In [18] and [19], a
Stackelberg game is used to formulate the interaction between
a cloudlet and users to maximize the cloudlet revenue and
minimize the cost of users. Jin et al. [11] proposed an
auction approach to stimulate the cloudlet to provide more
resources. These approaches can improve the QoE of users
and encourage the cloudlet to provide resources, but only
one cloudlet is included in the system. Zhang et al. [20]
proposed a software-defined networking-based load-balancing
task offloading scheme in FiWi enhanced vehicular edge com-
puting networks. Sthapit et al. [8] used a network of queues
and linear programming to solve load balancing in mobile
ad hoc clouds. Lyu et al. [21] proposed a heuristic offload-
ing decision algorithm to maximize system utility. In these
schemes, users need to negotiate with each other to ensure a
better task offload scheme which requires frequent information
interaction between them.

In order to improve the overall system performance and the
QoE of users. Dai et al. [7] proposed a resource allocation
scheme in a multiuser multiserver vehicle edge computing
system. Zhang et al. [22] presented a real-time distributed
algorithm to achieve the maximum utility of the overall
system. Du et al. [23] formulated a dual-side optimization
to minimize the cost of vehicles and the MEC server at the
same time. In [9] and [24], an optimization method was used
for resource allocation in the edge computing system. In these
approaches, a central controller is needed to coordinate the
actions of multiple cloudlets and users. However, in some
edge computing systems, the central controller does not exist.
Meanwhile, due to the limitation of distance and energy, users
will offload the randomly generated tasks without negotiation
with others. Under this scenario, how to maintain load balanc-
ing is a huge challenge. To this end, we propose a stochastic
congestion game to solve the load imbalance issue caused
thereby.

III. SYSTEM MODEL AND STOCHASTIC CONGESTION

GAME

In this section, we first introduce the composition of the
system, and then give the task execution model of cloudlet.
After that, we use cloudlet execution time to describe the cost
of users who offload tasks to it. Finally, a stochastic congestion
game with incomplete information is proposed to characterize
the process of users’ competition.

A. System Model

As shown in Fig. 1, we consider an MEC system consist-
ing of multiple base stations, cloudlets, and a large number of

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

780 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

users. The set of cloudlets is M = {1, . . . , M}, while j is the
index of cloudlet. The cloudlets are independent of each other
owned by different CCPs. There are a set of N = {1, . . . , N}
users in the communication range of these base stations, while
i is the index of users. The users can choose any of the
cloudlets for offloading, once the selection is decided, they will
offload tasks to the corresponding cloudlet. Although users
are distributed in different cells and have different wireless
resource environments, the workload of each cloudlet depends
only on the number of users, the calculation of tasks, and the
offloading action. Once these are determined, the workload of
the cloudlet has been determined. Therefore, in this article,
we only consider the impact of the user’s offloading action
on the cloudlet’s load balancing, ignoring the user’s wireless
transmission.

In the system, not every user has to offload tasks in each
time slot, if it has, then it will offload. We define a user who
offloads tasks in a time slot as an active user. Therefore, the
number of active users in each time slot is stochastic. Each
offloaded task has two properties which are data size (in bits)
and computing size (in CPU cycles). The data size of each task
is independently and identically distributed in every time slot
with the mean value zi for user i [25]. We further consider the
data processing density as g (in cycles/b), which is the number
of CPU cycles required for processing a unit bit data. The
value of g depends on the application type which is considered
to be independent and identically distributed with mean value
gi for user i [26]. The maximum value of the data size zi is
zmax and the maximum value of the processing density gi is
gmax.

We consider that the task execution of cloudlets is per-
formed in a time-slot manner. At the beginning of each time
slot, the active users offload tasks to their preference cloudlets,
then the cloudlets execute these tasks and return. For in each
time slot, the number of active users is stochastic and the
offloading actions are uncertain, the workload of each cloudlet
may be quite different. We use cj to denote the CPU process-
ing capability of cloudlet j. Thus, if there are n tasks arrive
and each of them has the same workload G, the time required
to complete all of the tasks is (nG/cj) [27]. When the number
of tasks increases, the total workloads become heavier, and
then the total execution time of the cloudlet becomes longer.
So when all the users offload tasks to cloudlet j, the total
execution time for cloudlet j is

rj =
∑N

i=1 zigi

cj
. (1)

B. Stochastic Congestion Game With Incomplete Information

After the cloudlets complete all tasks, they append the exe-
cution time behind the results and transmit to users. Since
each user enjoys a low computational delay, they will offload
tasks to the cloudlet with shorter execution time. However, the
users do not know if other users have tasks to be offloaded, nor
do they know about other users’ offloading strategies. Thus,
each time slot the number of active users is stochastic, we can
use the stochastic congestion game to model this scenario.
Furthermore, all users are independent, they do not know the

Fig. 1. Task offloading in the multicloudlet system.

payoff of the other users, and even more, they do not know
if other users are existent, therefore, this game is a stochastic
congestion game with incomplete information. In the game,
each user has a strategy vector, which is a probability distri-
bution of the actions. When the elements in the strategy vector
are 0 or 1, the strategy is a pure strategy, we use �i to denote
the pure strategy set of user i. We use ai to denote an action
of player i, and ϕj(ai) to denote an event that user i offloads
tasks to cloudlet j, so the ϕj(ai) can be represented as

ϕj(ai) =
{

1, if ai = j
0, if ai �= j.

(2)

For the convenience of analysis, we define a probability
space as (�,D,P), where � is a sample space, D is a minimal
σ -algebra on subsets of �, and P is a probability measure on
(�,D). In the game, � is the set of users N , an element of D
represent a user is active or inactive. We use di = 1 to denote
the user i is an active user, while using di = 0 to denote the
user i is an inactive user who have no task to offload. Let w(t)
denote an event in the probability space (�,D,P) in time
slot t. So in an event w(t), the execution time of cloudlet j is

rj(a|w(t)) =
∑N

i=1 ϕj(ai)dizigi

cj
(3)

where a represents action vector for all users, when di = 0,
ai = 0. We define lj as the total workloads which are offloaded
to cloudlet j in an event w(t), so

lj(a|w(t)) =
{

N∑

i=1

diϕ(ai)gizi|ai = j

}

. (4)

It is practical to consider that each user enjoys a low compu-
tational delay. So we can define the execution time of cloudlet
as the cost of a user. For an event w(t), when user i takes action
ai, its cost function can be described as

ṽi(ai, a−i|w(t)) =
M∑

j=1

ϕj(ai)rj(ai, a−i|w(t))

=
M∑

j=1

ϕj(ai)
lj
cj

(5)

where ṽi is an instant cost for user i in an event w(t), a−i

represents the action of all other users except user i. w(t) rep-
resents an specific event, which is random at different time

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 781

slots. We define the event-based utility of user i as

ũi(ai, a−i|w(t)) = U − ṽi(ai, a−i|w(t)) (6)

where ũi denotes the instant utility in an event w(t), U rep-
resents the maximum tolerable cost of the users. It can be
deemed that if the cost exceeds U, users will not offload tasks.
In this article, we assume that U > max [ṽi(ai, a−i|w(t))], for
the users always benefit from task offloading.

Since the game is a stochastic game, we cannot obtain the
optimal action in a time slot, however, through the average
long-term utility, we can achieve the optimal strategy. The
average utility of user i can be expressed as

ui(ai, a−i) = E
[
ũi(ai, a−i|w(t))

]

= lim
T→∞

1

T

T∑

t=1

[
U − ṽi(ai, a−i|w(t))

]

= U − lim
T→∞

1

T

T∑

t=1

[
ṽi(ai, a−i|w(t))

]
. (7)

Thus, we can formulate this noncooperative stochastic
congestion game with incomplete information as G =
{N ,M, {�i}i∈N , {Ui}i∈N }. Then, the proposed game can be
expressed as

max
ai∈Ai

ui(ai, a−i)

s.t. (2)−(4)

∀i ∈ N , j ∈ M (8)

where N and M represent the set of users and the set of
cloudlets, respectively. �i indicates the pure strategy set of
user i, Ui denotes the set of the ith user’s utility and Ai

represents its action set.

IV. NASH EQUILIBRIUM ANALYSIS

Before solving this stochastic congestion game, we should
determine whether the game has Nash equilibria. Hence, in
this section, we present the definition of Nash equilibrium
point and the potential game. Then, we prove that the cloudlet
selection game is a potential game that has Nash equilibria.

Definition 1: A cloudlet selection profile a∗ = {a∗
1, . . . , a∗

N}
is a pure strategy Nash equilibrium point of the noncooper-
ative game, if no player can improve its utility by deviating
unilaterally

ui
(
a∗

i , a∗−i

) ≥ ui
(
ai, a∗−i

)
. (9)

When a game is a potential game, it means that the devi-
ation in the utility of every single user is consistent with the
deviation in the potential function [28]. If a game is an exact
potential game, it must satisfy Definition 2.

Definition 2: A game is an exact potential game if the devi-
ation in the utility of an arbitrary player i can be reflected by
the deviation in function �(a1, . . . , aN)

ui(ai, a−i) − ui(xi, a−i) = �(ai, a−i) − �(xi, a−i)

∀i ∈ N , ai, xi ∈ Ai. (10)

In Theorem 1, we will find a potential function
�(a1, . . . , aN) to prove this game is an exact potential game.

Theorem 1: The cloudlet selection game is an exact poten-
tial game which has at least one pure strategy Nash equilibrium
point.

Proof: We construct a potential function of this conges-
tion game as

�(ai, a−i) = NU − lim
T→∞

1

T

T∑

t=1

M∑

j=1

(
l1j + · · · + lkj

cj

)

(11)

where l1j and lkj denote the workloads of cloudlet j when one
and k users offload tasks to it, respectively, where k ≤ N.

Generally, we use ai to represent that user i offloads task to
cloudlet m, m ∈ M, while using another action xi to represent
the action of offloading task to the cloudlet m+1, m+1 ≤ M.
So when the other users do not change their action a−i, the
potential function is

�(ai, a−i)

= NU − lim
T→∞

1

T

T∑

t=1

M∑

j=1

(
l1j + · · · + lkj

cj

)

= NU − lim
T→∞

1

T

T∑

t=1

⎡

⎣
m−1∑

j=1

(
l1j + · · · + lkj

cj

)

+ l1m + · · · + lkm
cm

+ l1m+1 + · · · + lkm+1

cm+1

+
M∑

j=m+2

(
l1j + · · · + lkj

cj

)⎤

⎦. (12)

When the user i takes action xi, the potential function is

�(xi, a−i)

= NU − lim
T→∞

1

T

T∑

t=1

M∑

j=1

(
l1j + · · · + lkj

cj

)

= NU − lim
T→∞

1

T

T∑

t=1

⎡

⎣
m−1∑

j=1

(
l1j + · · · + lkj

cj

)

+ l1m + · · · + lk−1
m

cm
+ l1m+1 + · · · + lk+1

m+1

cm+1

+
M∑

j=m+2

(
l1j + · · · + lkj

cj

)⎤

⎦. (13)

So when the user i change its action, the deviation of the
potential function is

�(ai, a−i) − �(xi, a−i) = lim
T→∞

1

T

T∑

t=1

(
lk+1
m+1

cm+1
− lkm

cm

)

. (14)

When the user i changes its action, the deviation of its
utility is

ui(ai, a−i) − ui(xi, a−i)

= U − lim
T→∞

1

T

T∑

t=1

[
ṽi(ai, a−i|w(t))

]− U

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

782 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

+ lim
T→∞

1

T

T∑

t=1

[
ṽi(xi, a−i|w(t))

]

= lim
T→∞

1

T

T∑

t=1

(
lk+1
m+1

cm+1
− lkm

cm

)

. (15)

Then, we can obtain the following equation:

ui(ai, a−i) − ui(xi, a−i) = �(ai, a−i) − �(xi, a−i). (16)

While ai and xi can be any actions of user i, so for each
user and its action, (16) holds. Therefore, the deviation in the
utility of any player i is equal to the deviation in potential
function �. This congestion game is an exact potential game
with � serving as the potential function. According to [28],
any global or local maxima of the potential function constitute
a pure strategy Nash equilibrium point of this game. Therefore,
Theorem 1 is proven.

In the system, we consider the cost of a cloudlet in an
event is the execution time, thus the cost of cloudlet j can
be expressed as

C̃j(a|w(t)) =
∑N

i=1 ϕj(ai)dizigi

cj
= lj

cj
. (17)

If there is a controller in the system to coordinate the
action of users for minimizing the maximum execution time
of these cloudlets. Then, the edge computing system can reach
its optimal service quality. The optimization equation can be
expressed as

min
a1,...,aN

max

(
l1
c1

, . . . ,
lj
cj

, . . . ,
lM
cM

)

s.t. (2)−(4)

∀ai ∈ Ai ∀j ∈ M, i ∈ N . (18)

Theorem 2: The optimal pure Nash equilibrium strategy of
the game can minimize the maximum execution time of the
cloudlet in an event w(t).

Proof: From (8), we know that the object of each user is
to maximize the average long-term utility. Since the maximum
tolerable cost U is fixed, so we can rewrite (8) in an event as

min
ai∈Ai

ṽi(ai, a−i|w(t))

s.t. (2)−(4)

∀i ∈ N , j ∈ M. (19)

The above equation means user i chooses its offloading
action to minimize the execution time of cloudlet j. As in (5), it
is to minimize (lj/cj). While in the game all users will offload
tasks to the cloudlet which has the minimum execution time,
consequentially, the maximum execution time of the cloudlets
will be reduced, which is also the object of (18). The differ-
ence between them is that the behavior of (19) is distributed,
and the behavior of (18) is centralized. However, this potential
game may have many pure strategy Nash equilibria, only the
optimal actions can achieve the object of (18).

In order to show Theorem 2 clearly, we demonstrate two
instances in Fig. 2. In the simulation, the number of active
users is 80, each task has the same g and z, and there are four

(a) (b)

Fig. 2. Comparisons of the game approach and optimization approach in an
event. (a) Task allocation of the two methods is the same. (b) Task allocation
of the two methods is inconsistent.

cloudlets in the network edge. Fig. 2(a) shows a case that by
using the game approach, the number of tasks in each cloudlet
is equal to that by using the optimization approach. Fig. 2(b)
shows a case that the number of tasks in each cloudlet is
inconsistent between the game approach and the optimization
approach. But we can see that the average difference is only
about 1 task between the two approaches. Although the effects
of the two approaches are inconsistent in most cases, the game
can also achieve favorable task allocation if the optimization
approach cannot be used.

From Theorem 2, we know that the optimal pure Nash
equilibrium strategy of the game can minimize the maximum
execution time of the cloudlet in an event w(t), which means
that the optimal equilibrium can achieve globe optimal. Since
the object of the game is load balancing of the system, it is
also quite important to find the upper bound of the maximum
deviation between different cloudlets’ execution time when the
game is at an equilibrium point.

We first assume that the game has already converged to Nash
equilibrium. At the equilibrium point, there are nj users offload
tasks to cloudlet j and their workload is sj

1, . . . , sj
nj . We con-

sider i is the index of user and sj
1 ≤ . . . ≤ sj

nj . Therefore, the

execution time of cloudlet j is [(
∑nj

i=1 sj
i)/cj] and we assume

[(
∑n1

i=1 s1
i)/c1] ≥ . . . ≥ [(

∑nM
i=1 sM

i)/cM]. According to the
definition of Nash equilibrium, no player can improve its util-
ity by deviating unilaterally from the Nash equilibrium point.
Thus, if a user deviates from equilibrium, i.e., the user offloads
its tasks s1

1 to cloudlet j, according to the definition of Nash
equilibrium, we can get

∑n1
i=1 s1

i

c1
≤
∑nj

i=1 sj
i + s1

1

cj
(20)

which means if the user offloads workload s1
1 to other

cloudlets, its waiting time will become longer. Accordingly,
we know that s1

1 is the smallest workload of cloudlet 1, if
the workload s1

1 is offloaded to cloudlet M with the shortest
execution time, (20) still holds. So, we can get

∑nM
i=1 sM

i

cM
≤
∑n1

i=1 s1
i

c1
≤
∑nM

i=1 sM
i + s1

1

cM
. (21)

We know the maximum difference in the execution time
of the cloudlets is [(

∑n1
i=1 s1

i)/c1]− [(
∑nM

i=1 sM
i)/cM], which is

less than or equal to [(
∑nM

i=1 sM
i +s1

1)/cM]−[(
∑nM

i=1 sM
i)/cM] =

(s1
1/cM) according to (21). Therefore, when the game is in

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 783

Algorithm 1 Decentralized Learning Algorithm for Multiuser
Task Offloading
Require: zi, gi, cj, U, the initial mixed strategy for each user

{p1(0), . . . , pN (0)}
Ensure: Action of each user {a1, . . . , aN }

While The mixed strategy pi is not a pure strategy ei
1: At time slot t, each active user i selects the offloading action ai(t)
according to its current strategy vector pi(t). The inactive users keep silent.
2: After offloading, the active users evaluate their utility ũi according to (6).
3: All active users update their strategy vector according to the following
rule

pi(t + 1) = pi(t) + bũi(t)(eai − pi(t)),
where 0 < b < 1 is a step size, eai is a unit vector of appropriate dimen-
sion with M component unity. When user i offload task to cloudlet j, The
corresponding position of eai is 1, and other position are 0. Meanwhile, the
inactive mobile users keep their strategy vector unchanged.
4: Update t = t + 1.
End while
The active users select actions with a corresponding position of 1 in their
strategy vector.

Nash equilibrium, the upper bound of the maximum deviation
of these cloudlets’ execution time is (s1

1/cM), where s1
1 is the

minimum workload offloaded to the cloudlet with the longest
execution time, and cM is the CPU processing capability of
the cloudlet with the shortest execution time.

V. DECENTRALIZED LEARNING APPROACH AND THE

CONVERGENCE

In this stochastic congestion game with incomplete
information, a user is not conscious of the states and actions
of the others. For each of them will choose cloudlet according
to its own preference, there may be many users choose one
cloudlet for task offloading while the other cloudlets are idle.
This will induce load imbalance, which will reduce the quality
of service for the edge computing system. To solve this issue,
we propose a decentralized learning approach. The basic idea
of the algorithm is to gradually learn from the initial mixed
strategy to obtain the pure Nash equilibrium strategy for each
user. Let pi(t) = {pi1(t), . . . , piM(t)} denote the mixed strat-
egy vector of the ith user,

∑M
j=1 pij = 1. pij(t) denotes the

probability that the ith user chooses the jth action at time slot
t. pi(0) is the initial mixed strategy of player i, which can be
an arbitrarily distributed vector according to the ith user pref-
erence. Each play of the game consists that each active user
automatically chooses an action independently and randomly
according to its current strategy vector. The learning algorithm
adopted by each user is given in Algorithm 1.

A. Convergence Analysis

We first rewrite the update rule of step 3 in Algorithm 1

pi(t + 1) = pi(t) + bũi(t)
(
eai − pi(t)

)

=
{

pi(t) + bũi(t)(1 − pi(t)), if ai = j
pi(t) − bũi(t)pi(t), if ai �= j.

(22)

The first case is the update rule of the strategy element that
the user selects the corresponding action, another case is the
update rule of the other strategy elements.

From (22), we know that the algorithm is following the
Markov process, which means the current strategy update is

only related to the previous time slot. Therefore, the pro-
cedure for proving the convergence of the algorithm has
three steps. First, an ordinary differential equation is derived,
whose performance can approximate the asymptotic behav-
ior of the algorithm. Second, we prove that the stationary
points of the ordinary differential equation are Nash equi-
librium points of the game. Third, we prove that the algo-
rithm converges to the stationary points rather than to other
points.

The algorithm is an iterative process, so we can
rewrite (22) as

P(t + 1) = P(t) + bG
[
P(t), a(t), ũ(t)

]
(23)

where P(t) = {p1, . . . , pN}, P(t) ∈ P . pi denotes the strategy
vector of user i, a(t) = {ai(t), . . . , aN(t)} represents all the
players’ action at time slot t, ũ(t) = {ũi(t), . . . , ũN(t)} repre-
sents the utility of the player under a(t), b is step size of the
algorithm. G(·) is a incremental function specified by (22).

Consider a piecewise-constant interpolation of P(t), Pb(·) is
defined as

Pb(k) = P(t) k ∈ [bt, b(t + 1)) (24)

where Pb(·) is right continuous and have left hand limits.
According to [29, Th. 3.1], we can derive the following
theorem.

Theorem 3: With a sufficiently small step size b → 0,
the sequence of interpolated processes {Pb(·)} will converge
weakly to the solution of the following ordinary differential
equation:

dP

dt
= f (P) (25)

the initial state P(0) is an arbitrary probability distribution,
and f (P) is the mean of interpolated equation G(·)

f (P) = E
[
G
(
P(t), a(t), ũ(t)

)|P(t) = P
]
. (26)

Therefore, the algorithm can be represented as (25). We
define P is a stationary point when the differential equa-
tion (dP/dt) = 0. Then we prove that the stationary points
of this ordinary differential equation are Nash equilibrium
points.

Theorem 4: All Nash equilibria of the game are stationary
points of the ordinary differential equation when the step size
b is sufficiently small.

Proof: According to Theorem 3, we can get

dpij

dt
= fij(P) (27)

where pij is the probability that user i offloads tasks to cloudlet
j, 0 ≤ pij ≤ 1.

By using (22) and (26), we can get

fij(P) = pij
(
1 − pij

)
E
[
ũi(ai(t), a−i(t))|P(k) = P, ai(t) = j

]

+
M∑

j′=1,j′ �=j

pij′
(−pij

)
E
[
ũi(ai(t), a−i(t))|P(k) = P

ai(t) = j′, ai(t) �= j
]

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

784 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

= pij

⎛

⎝
M∑

j=1

pij − pij

⎞

⎠hij(P) +
M∑

j′=1,j′ �=j

pij′
(−pij

)
hij′(P)

= pij

M∑

j′=1

pij′
[
hij(P) − hij′(P)

]
(28)

where j, j′ ∈ M. hij(P) denotes the expected utility of user
i when it offloads task to cloudlet j, while the other users
i′ employ the mixed strategy under each action ai′j with
probability pi′j

hij(P) =
∑

a1,...,ai−1,ai+1,...,aN

ũi
(
a1, . . . , ai−1, aij, ai+1, . . . , aN

)

×
∏

i′ �=i,i′∈N
pi′j. (29)

By using (27) and (28), the ordinary differential (25) in
Theorem 3 can be rewritten as

dpij

dt
= pij

M∑

j′=1

pij′
[
hij(P) − hij′(P)

]

∀i ∈ N , j, j′ ∈ M. (30)

From (30), we can get the following equation:

dpij

dt
= pij

[
hij(P) − gi(P)

]
(31)

where hij(P) is (29), and gi(P) is the average utility when user
i adopts mixed strategy

gi(P) =
∑

a1,...,aN

ũ(a1, . . . , aN)
∏

i∈N
pij (32)

when (dpij/dt) = 0, hij(P) − gi(P) = 0. According to
[30, Th. 3.1], when hij(P) = gi(P), P is the Nash equilibrium
point of the game. Then Nash equilibrium point is stationary
point of the ordinary differential equation.

From Theorem 3, we know that in the algorithm, the
asymptotic behavior of P(t) can be regarded as an ordinary dif-
ferential equation. Theorem 4 shows that the stationary points
of this ordinary differential equation are Nash equilibrium
points. Then we will prove that this algorithm is convergent
and eventually converges to the stationary points rather than
to other points.

Theorem 5: If there exists a bounded differential function
F, such that for some positive constant c

∂F

∂pij
(P) = c · hij(P). (33)

Then the learning algorithm converges to the stationary points.
Proof: We first prove that there exists a bounded equation

that makes the algorithm converge to stationary points. Then,
we prove that the bounded equation is the potential equation
of the game

dF

dt
=

∑

i∈N ,j∈M

∂F(P)

∂pij

dpij

dt
. (34)

Substituting (30) into (34)

dF

dt
=

∑

i∈N ,j∈M

∂F(P)

∂pij
pij

∑

j′∈M
pij′
[
hij(P) − hij′(P)

]

= c
∑

i∈N

∑

j∈M
hij(P)pij

∑

j′∈M
pij′
[
hij(P) − hij′(P)

]

= c
∑

i∈N

∑

j∈M

∑

j′∈M
pijpij′

[(
hij(P)

)2 − hij′(P)hij(P)
]

(35)

when j = j′, (hij(P))2 − hij′(P)hij(P) = 0, so we can
rewrite (35) as

dF

dt
= c

∑

i∈N

∑

j∈M

∑

j′∈M,j′>j

pijpij′
[(

hij(P)
)− hij′(P)

]2

≥ 0. (36)

Thus, F is nondecreasing along the trajectories of the ordi-
nary differential equation, so the algorithm is convergent until
(dF/dt) = 0

When
dF

dt
= 0

then pijpij′
[(

hij(P)
)− hij′(P)

] = 0

fij(P) = 0.

Therefore, P is a stationary point of the ordinary differential
equation.

We define the potential equation of the game for the mixed
strategy is

�̄(a1, . . . , aN) = E[�(a1, . . . , aN)|P]

=
∑

aij,j∈{M+1}

∑

a1,...,ai−1,ai+1,...,aN

ũi

× (
a1, . . . , ai−1, aij, ai+1 . . . , aN

) ∏

i′ �=i,i′∈N
pi′j.

(37)

Then, we can get

∂�̄(a1, . . . , aN)

∂pij
=

∑

a1,...,ai−1,ai+1,...,aN

ũi

× (
a1, . . . , ai−1, aij, ai+1, . . . , aN

)

×
∏

i′ �=i,i′∈N
pi′j

= hij(P). (38)

Therefore, the potential function with mixed strategies
�̄(a1, . . . , aN) can be deemed as the function F, which has
bounds. From Theorems 3 and 4, we conclude that the
algorithm finally converges to the Nash equilibrium points.

According to the analysis in [31]–[33], for a single user,
each computation is the update of the strategy vector according
to (22), so the number of computations is M. If the num-
ber of iterations is S, the total computational complexity is
MS. Therefore, the complexity of the algorithm is extremely
low and suitable for IoT devices with lower computational
capabilities.

VI. APPLICATION AND PERFORMANCE ANALYSIS

OF THE ALGORITHM

In this section, we first give the application of the decen-
tralized learning algorithm in a static scenario. Then, we
conduct simulations to validate the proposed algorithm and
its performances.

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 785

(a) (b) (c)

Fig. 3. Convergence of the decentralized learning algorithm. (a) Convergence of a user’s strategy. (b) Influence of the step size b on the convergence of the
algorithm. (c) Convergence of cloudlets’ execution time.

A. Application of the Algorithm

In the coverage area of the base stations, if users need to
offload tasks, they will choose one of the cloudlets for offload-
ing according to their strategy vector. After the cloudlets finish
all the tasks, they return the results to the users who offload
tasks to them. In the result, a byte is added which repre-
sents the total execution time of the corresponding cloudlet.
After the user receives the result, it updates the strategy vec-
tor according to (22). When another task is generated, it will
offload according to the new strategy vector, until the vector
gradually evolves into a unit vector. Then the user offloads
tasks according to the unit vector.

B. Simulation Assumptions

We set up an MEC scenario by using MATLAB where a
number of N users are randomly scattered in the coverage of
these base stations, N ∈ [50, 80]. For easier observation, we
set the probability of active users is equal to each other as 0.6
per time slot, i.e., in a time slot each user has a probability
of 0.6 to offload task. Each user has a different average data
size zi at interval [0.15, 0.25] (in Mb), the computing size for
each task is at interval [2, 5] (in K cycles/b) [25]. There are
4 cloudlets connected to the base stations, each of them has
different computing ability at interval [3, 4] (in Ghz), which
are belonged to different CCPs.

C. Convergence of the Algorithm

The convergence of the algorithm is shown in Fig. 3. In the
simulations, the number of users is 80, the step size b is 0.1.
Fig. 3(a) shows the convergence of a user’s strategy vector. We
can see that with the iteration of the algorithm the probability
for the user selecting cloudlet 3 gradually becomes 1, and the
probability for selecting other cloudlets gradually becomes 0.
Since other users use the same algorithm, their strategy vectors
also gradually converge to a unit vector. The element with a
value of 1 in the vector is the cloudlet they will offload.

As we know in the algorithm, the users perform task offload-
ing with a certain probability in each iteration, which indicates
that when the more iterations of the algorithm, each user will
conduct the more offloading attempts. So to reduce the number
of iterations is also the object of the algorithm. In Fig. 3(b), we

use step size b to reduce the number of iterations. As we can
see from it, with b gradually increases, the number of itera-
tions gradually decreases. When b = 0.4, it just uses about 20
iterations when the algorithm achieves the Nash equilibrium.
Although the set of each simulation is the same, with differ-
ent step size the algorithm may converge to different Nash
equilibrium points. This is because the game has many Nash
equilibrium points. When solving the game, the update speed
of the strategy vector is determined by the step size and the
different update speeds of strategies will lead to the different
probability of strategy selection. Accordingly, different step
size may cause the strategy vector to converge to different
Nash equilibrium points. Fig. 3(b) shows a special case, when
b = 0.1 the Nash equilibrium strategy of the user is to offload
tasks to cloudlet 2, while b is 0.2, 0.3, and 0.4, the Nash equi-
librium strategy is to offload tasks to cloudlet 4. However,
despite converging to different Nash equilibrium points with
different step size b, the conclusion is determined that the
number of iterations decreases as the step size increases.

Fig. 3(c) demonstrates the convergence of cloudlets’ execu-
tion time. We can see that with the iteration of the algorithm
the execution time of each cloudlet gradually stabilizes. After
the convergence of the algorithm, the execution times of the
cloudlets are approximately equal to each other. The execu-
tion time of cloudlets 3 and 4 is about 3 s, while the execution
time of cloudlets 1 and 2 is about 2.97 s. Therefore, by using
the algorithm in each time slot, system load balancing can be
achieved.

D. Performance Analysis

In order to verify the pure Nash equilibrium strategy
obtained from the algorithm, we compare the average utility
of users in Fig. 4. In each time slot, users offload tasks with a
certain probability, so the amount of tasks performed by each
cloudlet is random in each time slot. Therefore, in order to
show the experiments more clearly, we display the average
utility of the users for every ten time slots and 100 time slots
in Fig. 4(a) and (b), respectively. Although the average utility
of users is still a random value, from Fig. 4(a), we can see
that the utility of each user by using the pure Nash equilibrium
strategy is higher than by using the original mixed strategy in
most of time slots. This is because when the original mixed

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

786 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

(a) (b)

Fig. 4. Comparison of each user’s average utility under different approaches. Comparison of each user’s average utility every (a) ten time slots and (b) 100
time slots.

(a) (b)

Fig. 5. Total execution time of the cloudlets under different schemes. Comparison of the total execution time of the cloudlets every (a) ten time slots and
(b) 100 time slots.

strategy is adopted, each user will offload tasks only according
to its preference, which may cause some cloudlets overload,
resulting in longer running time. In Fig. 4(a), the two straight
lines represent the average utility of the users over the entire
execution cycle. We can see that by using the pure equilibrium
strategy obtained from the game, each user acquires a higher
utility than the original mixed strategy. Fig. 4(b) shows that
the average utility of each user getting from the pure equilib-
rium strategy is higher than from the original mixed strategy
every 100 time slots in most cases. In Fig. 4(b), there are only
one of the ten tests is lower than the original mixed strategy.
Therefore, from Fig. 4, we can conclude that by using the
stochastic congestion game approach each user can improve
the average utility.

Fig. 5 shows the total execution time of the cloudlets, while
Fig. 5(a) and (b) demonstrates the total execution time for
every ten time slots and 100 time slots, respectively. From

Fig. 5(a), we also can see that by using pure equilibrium strat-
egy, the total execution time of all the cloudlets is lower than
by using the original mixed strategy. Fig. 5(a) and (b) shows
that when using pure equilibrium strategy, the total execution
time is lower in most cases not only in every ten time slots but
also in 100 time slots. This is because the pure equilibrium
strategy obtained from the game can improve the execution
efficiency of the cloudlet system and thus reduce execution
time.

We know that there is no coordinator in the cloudlet
system, if it has, the coordinator can optimize task assign-
ment, and then the cloudlet system can achieve the optimal
service quality. In Fig. 6, the execution time of the cloudlet
system is compared between the three approaches, which are
using the original mixed strategy, stochastic game, and an
optimization approach, respectively. As we can see from it,
when the number of users increases, the execution time of

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 787

Fig. 6. Comparison of the system’ total execution time under different
approaches.

the cloudlet system becomes longer. When there is a coor-
dinator in the system and optimization method is used, the
system can achieve the optimal execution time among the three
approaches. By using the Nash equilibrium strategy obtained
from the stochastic game, the task execution time is lower
than by using the original mixed strategy. Although by using
stochastic game, the system will spend more time than there is
a coordinator in the system, the huge advantage is that by using
stochastic game, the system has little communication cost and
does not require a coordinator, which is more suitable for the
independent cloudlet system.

VII. DECENTRALIZED LEARNING APPROACH WITH

TERMINATION CONDITION AND THE PERFORMANCE

From Fig. 6, we know that with Algorithm 1 the system
spends more time than by using a coordinator. From Fig. 5, the
workload of the cloudlets still has large fluctuations between
different time slots. In addition, in a dynamic scenario, when
the number of users in the system changes significantly, the
performance of Algorithm 1 will deteriorate. So we need to
further improve the system performance. An alternative is to
apply the game in each slot. However, to achieve Nash equi-
librium, the users need to negotiate with the cloudlets multiple
times in each time slot, which will occupy a lot of communica-
tion resources. From Fig. 3(b), we know that when b = 0.1, it
may need about 300 iterations to reach the Nash equilibrium.
Even though a larger step size b = 4 can be used, it also needs
about 20 iterations to reach the Nash equilibrium, which means
the user needs about 20 negotiations with cloudlet. Therefore,
the key to further reducing the system execution time is to
reduce the number of iterations.

From Fig. 3(a) and (b), we can see that the probability of a
user choosing a cloudlet is monotonously rising or decreasing
when it exceeds a certain value. This feature means that when
the probability that a user selects a cloudlet is greater than a
certain value, it will largely offload tasks to the cloudlet. Thus,
based on this feature, we design a decentralized learning algo-
rithm with termination condition to further reduce the number
of iterations, which is shown in Algorithm 2. In Algorithm 2,

Algorithm 2 Decentralized Algorithm for Multiuser Tasks
Offloading With Termination Condition
Require: zi, gi, cj, U, the initial mixed strategy of each user {p1, . . . , pN },

termination condition f .
Ensure: Action of each user {a1, . . . , aN }.

While The mixed strategy pi of each active user is not a pure strategy ei
1: Each active user i selects its offloading action ai according to its current
strategy vector pi. Then they communicate to the corresponding cloudlets
about their decision.
2: The cloudlets calculate the total execution time of the tasks according
to equation (3), and then transfer the results to the active users.
3: The active users evaluate their utility ũi according to equation (6).
4: All active users update their strategy vectors according to the following
rules:
if max(pij) ≥ f , pij ∈ pi, j ∈ M then

{
pij = 1
pik = 0, k = 1, . . . , j − 1, j + 1, . . . , M

else
p′

i = pi + bũi(eai − pi)
end if
where 0 < b < 1 is a step size, p′ is the new strategy vector of user i
and eai is a unit vector of appropriate dimension with M component unity.
When user i offload task to cloudlet j, The corresponding position of eai
is 1, and other positions are 0. Meanwhile, the inactive mobile users keep
their strategy selection probabilities unchanged.
End while
In this time slot, the active users select actions with a corresponding position
of 1 in their strategy vectors.

TABLE I
IMPACT OF DIFFERENT TERMINATION CONDITIONS

the termination condition f is introduced. When the maximum
element of the mixed strategy vector is greater than f , we force
this element to 1 and other elements to 0, i.e., when the prob-
ability of a user selecting a cloudlet is greater than f , we force
the user to offload tasks to this cloudlet instead of others. After
employing f , the convergence speed is greatly improved, but
it also brings another problem, i.e., the user’s action deviates
from the equilibrium action.

Therefore, in order to verify this conclusion, we conduct a
number of experiments. The results are shown in Table I. In
the tests, the number of users is 80, the step size b = 0.4,
and the number of experiments is 100. The average devia-
tion ratio indicates that the probability of offloading to other
cloudlets compare to the total numbers. We can see that when
the termination condition becomes smaller, the average devi-
ation ratio increases. If there are 100 users offloading tasks,
when f = 0.9, there will be about nine users offloading tasks to
other cloudlets. When f = 0.6, this number increases to about
30. But the number of iterations decreases as the termination
condition f decreases. When f = 0.6, the algorithm terminates
only about four iterations, and when f = 0.9, the algorithm
takes about 17 times to terminate. The average number of
iterations also represents the average number of negotiations
between the user and the cloudlet. Therefore, when the termi-
nation condition f is smaller, the communication cost of the
system will become smaller.

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

788 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

(a)

(b)

Fig. 7. Convergence of Algorithm 2. (a) User’s action is consistent with
the equilibrium action. (b) User’s action is inconsistent with the equilibrium
action.

Fig. 7 demonstrates the convergence of Algorithm 2. In
Fig. 7(a), a case is shown that a user offloads task to the same
cloudlet as the equilibrium action, regardless of the termina-
tion conditions. Another case is shown in Fig. 7(b), which
demonstrates that at different termination condition, a user
may offload the task to other cloudlets which deviate from
equilibrium action, e.g., when f = 0.6 and f = 0.9 the action
of the user is the same as the equilibrium action, while when
f = 0.7 and f = 0.8 it will offload the task to other cloudlets.
Since each user’s action is random, it is difficult to determine
when the user’s action will deviate from the equilibrium action.
Consequently, we show the statistics of the deviation rate in
Table I.

By using Algorithm 2, users have to negotiate with cloudlets
multiple times in a task offloading. This approach will increase
communication cost, however, it can also improve the system
performance. In Fig. 8, we compare Algorithm 2 with the
optimization method. In the simulation, the number of active
users is in [50, 80]. When the number of active users increases,

Fig. 8. Comparison of the system’ total execution time between Algorithm 2
and optimization methods.

Fig. 9. Execution time of each cloudlet.

the total execution time of the cloudlet system is almost a
straight line by using the optimization method, while apply-
ing Algorithm 2, the total execution time is a polygonal line.
When the termination condition is small, the deviation between
the polyline and the line is slightly larger. We also can see that
when adopting different termination conditions f , the total exe-
cution times for the cloudlet system are approximate to the
optimization method. Compared with Fig. 6, we can conclude
that by using Algorithm 2 the system can achieve a better
performance than Algorithm 1.

Fig. 9 demonstrates the execution time of each cloudlet
under Algorithm 2 and the optimization method, where 50
active users are used. While in the proposed algorithm differ-
ent termination conditions are tested and in the optimization
method a coordinator is used. We can see that when the
optimization approach is used, the execution time of each
cloudlet is roughly equivalent, while the execution time of
each cloudlet is a little fluctuating by using Algorithm 2.
But it can also achieve an excellent load balance between
cloudlets. When termination conditions f = 0.6 is used, fluc-
tuations in execution time between cloudlets is larger than
termination condition f = 0.9. However, it can significantly

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

ZHANG AND WANG: STOCHASTIC CONGESTION GAME FOR LOAD BALANCING IN MOBILE-EDGE COMPUTING 789

Fig. 10. Comparison of different load-balancing approaches.

reduce the number of communications. Therefore, when using
Algorithm 2, considering that fluctuations in execution time
are within an acceptable range, a smaller termination condition
should be used to reduce communication costs.

Fig. 10 shows the load balancing of the cloudlets under dif-
ferent approaches, the number of active users is in [50, 80]. We
can see that with the number of active users increases, the exe-
cution time of each cloudlet increases. The execution time of
cloudlets is equal to each other approximately by using a linear
programming algorithm in [8] and [7] which can guarantee the
load balance of each cloudlet. With Algorithm 2, the execution
time of each cloudlet will fluctuate a little compare with the
linear programming algorithm. However, it can also achieve
load balancing approximately. The significant advantage of the
game approach is that it does not require a control node to
coordinate the actions of all parties, while the optimization
algorithm needs.

VIII. CONCLUSION

In this article, we adopt the stochastic congestion game
approach to resolve the issue of load balancing and service
quality improvement in a multicloudlet edge computing system
without a coordinator. We first consider the load balancing of
the cloudlets as an incomplete information multiplayer game in
which users choose offloading strategies to achieve their max-
imum utility without knowing if other users exist. Then the
pure strategy Nash equilibrium is proved to be existed by using
potential game theory. Second, we propose a decentralized
learning algorithm to solve this game. Then the convergence
of the algorithm is proved by using an ordinary differential
equation approach. After that, we provide a static application
of the algorithm and test its performance, which can reduce
the execution time of the cloudlet system with extremely low
communication cost. Finally, to adapt to dynamic scenarios
and further improve the performance, we propose a decentral-
ized learning algorithm with termination condition, which can
further reduce the execution time of the system and achieve the
load balancing approximately. In future work, we will compre-
hensively consider wireless transmission, users’ location, and

cloudlet computing capability to further improve the efficiency
of the edge computing system with multiple cloudlets.

REFERENCES

[1] C.-K. Tham and B. Cao, “Stochastic programming methods for workload
assignment in an ad hoc mobile cloud,” IEEE Trans. Mobile Comput.,
vol. 17, no. 7, pp. 1709–1722, Jul. 2018.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[3] P. Wang, C. Yao, Z. Zheng, G. Sun, and L. Song, “Joint task assign-
ment, transmission, and computing resource allocation in multilayer
mobile edge computing systems,” IEEE Internet Things J., vol. 6, no. 2,
pp. 2872–2884, Apr. 2019.

[4] K. Xie et al., “Distributed multi-dimensional pricing for efficient appli-
cation offloading in mobile cloud computing,” IEEE Trans. Services
Comput., vol. 12, no. 6, pp. 925–940, Nov./Dec. 2019.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[6] T. Q. Dinh, Q. D. La, T. Q. S. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6353–6367, Dec. 2018.

[7] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[8] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood,
“Computational load balancing on the edge in absence of cloud and fog,”
IEEE Trans. Mobile Comput., vol. 18, no. 7, pp. 1499–1512, Jul. 2019.

[9] Y. Wu, Y. He, L. P. Qian, J. Huang, and X. Shen, “Optimal resource allo-
cations for mobile data offloading via dual-connectivity,” IEEE Trans.
Mobile Comput., vol. 17, no. 10, pp. 2349–2365, Oct. 2018.

[10] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “QoS-aware coop-
erative computation offloading for robot swarms in cloud robotics,” IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 4027–4041, Apr. 2019.

[11] A. Jin, W. Song, and W. Zhuang, “Auction-based resource allocation
for sharing cloudlets in mobile cloud computing,” IEEE Trans. Emerg.
Topics Comput., vol. 6, no. 1, pp. 45–57, Jan. 2018.

[12] Y. Dong, G. Xu, Y. Ding, X. Meng, and J. Zhao, “A ‘joint-me’ task
deployment strategy for load balancing in edge computing,” IEEE
Access, vol. 7, pp. 99658–99669, 2019.

[13] F. P. Lin and Z. Tsai, “Hierarchical edge-cloud SDN controller system
with optimal adaptive resource allocation for load-balancing,” IEEE Syst.
J., vol. 14, no. 1, pp. 265–276, Mar. 2020.

[14] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load bal-
ancing for dynamic virtual machine reconfiguration based on vertical
and horizontal scaling,” IEEE Trans. Services Comput., vol. 12, no. 2,
pp. 319–334, Mar./Apr. 2019.

[15] A. Hussain, M. Aleem, M. A. Islam, and M. A. Iqbal, “A rigorous eval-
uation of state-of-the-art scheduling algorithms for cloud computing,”
IEEE Access, vol. 6, pp. 75033–75047, 2018.

[16] L. Liu, S. Chan, G. Han, M. Guizani, and M. Bandai, “Performance
modeling of representative load sharing schemes for clustered servers
in multiaccess edge computing,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4880–4888, Jun. 2019.

[17] O. Delgado and F. Labeau, “Delay-aware load balancing over multipath
wireless networks,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7485–7494, Aug. 2017.

[18] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Commun. Lett., vol. 7, no. 3, pp. 420–423, Jun. 2018.

[19] K. Wang, F. C. M. Lau, L. Chen, and R. Schober, “Pricing mobile
data offloading: A distributed market framework,” IEEE Trans. Wireless
Commun., vol. 15, no. 2, pp. 913–927, Feb. 2016.

[20] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in vehicular
edge computing networks: A load-balancing solution,” IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

[21] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Trans. Veh.
Technol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[22] F. Zhang, R. Deng, and H. Liang, “An optimal real-time distributed algo-
rithm for utility maximization of mobile ad hoc cloud,” IEEE Commun.
Lett., vol. 22, no. 4, pp. 824–827, Apr. 2018.

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

790 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

[23] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu, “Computation offloading
and resource allocation in vehicular networks based on dual-side cost
minimization,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1079–1092,
Feb. 2019.

[24] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5506–5519, Aug. 2018.

[25] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems,” IEEE
J. Sel. Areas Commun., vol. 33, no. 12, pp. 2510–2523, Dec. 2015.

[26] S. Chen, Y. Wang, and M. Pedram, “A semi-Markovian decision pro-
cess based control method for offloading tasks from mobile devices
to the cloud,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2013, pp. 2885–2890.

[27] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “A distributed
computation offloading strategy in small-cell networks integrated with
mobile edge computing,” IEEE/ACM Trans. Netw., vol. 26, no. 6,
pp. 2762–2773, Dec. 2018.

[28] D. Monderer and L. S. Shapley, “Potential games,” Games Econ. Behav.,
vol. 14, no. 1, pp. 124–143, 1996.

[29] P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning
of Nash equilibria in multi-person stochastic games with incomplete
information,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 24, no. 5,
pp. 769–777, May 1994.

[30] J. Wang, The Theory of Games. Oxford, U.K.: Clarendon, 1988.
[31] J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, and Y. Qian, “Distributed

Q-learning aided heterogeneous network association for energy-efficient
IIoT,” IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2756–2764,
Apr. 2020.

[32] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. Chen, and L. Hanzo,
“Thirty years of machine learning: The road to Pareto-optimal wireless
networks,” IEEE Commun. Surveys Tuts., early access, Jan. 13, 2020,
doi: 10.1109/COMST.2020.2965856.

[33] H. Zhang, C. Jiang, J. Wang, L. Wang, Y. Ren, and L. Hanzo,
“Multicast beamforming optimization in cloud-based heterogeneous ter-
restrial and satellite networks,” IEEE Trans. Veh. Technol., vol. 69, no. 2,
pp. 1766–1776, Feb. 2020.

Fenghui Zhang is currently pursuing the Ph.D.
degree with the School of Information Science and
Engineering, Southeast University, Nanjing, China.

He also an Associate Professor with the School
of Electronics and Information Engineering, West
Anhui University, Lu’an, China. He was a Visiting
Scholar with the Institute of Technology Tallaght,
Dublin, Ireland, in 2013, and the University of
Alberta, Edmonton, AB, Canada, in 2017. His
research interests include mobile cloud computing
and vehicular network.

Mr. Zhang serves as an Editor for the International Journal of Wireless
Communications and Mobile Computing. He also serves as a reviewer for
several IEEE journals and conferences.

Michael Mao Wang received the master’s degree
in biomedical engineering and the Ph.D. degree in
electrical engineering and computer science from
the University of Kentucky, Lexington, KY, USA,
in 1992 and 1995, respectively.

He was a Distinguished Member of Technical
Staff with the Motorola Advanced Radio Technology
Group, Arlington Heights, IL, USA, from 1995 to
2003, and joined Qualcomm Research, San Diego,
CA, USA, in 2003. He became a Professor with
the School of Information Science and Engineering

and the National Mobile Communications Research Laboratory, Southeast
University, Nanjing, China, in 2015. He is also an Adjunct Professor with the
School of Electronic and Optical Engineering, Nanjing University of Science
and Technology, Nanjing. He holds more than 90 U.S., patents and has over
40 IEEE journal publications. His research interests include communication
theory and wireless networking.

Authorized licensed use limited to: Southeast University. Downloaded on May 07,2021 at 13:32:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/COMST.2020.2965856

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

