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Abstract

In the paper, the authors establish an integral representation of the Catalan numbers, connect the Catalan numbers with
the (logarithmically) complete monotonicity, and pose an open problem on the logarithmically complete monotonicity of a
function involving ratio of gamma functions.
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1. Introduction

It is known [22] that, in combinatorics, the Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers that
occur in tree enumeration problems of the type, “In how many ways can a regular n-gon be divided into n − 2 triangles if
different orientations are counted separately?” The solution is the Catalan number Cn−2. They are named after the Belgian
mathematician Eugène Charles Catalan. The first few Catalan numbers Cn for 0 ≤ n ≤ 11 are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786.

Explicit formulas of Cn for n ≥ 0 include
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1
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(
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)
=
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and

Cn =
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, (1)

where

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

is the classical Euler gamma function and
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is the generalized hypergeometric series defined for complex numbers ai ∈ C and bi ∈ C\{0,−1,−2, . . . }, for positive integers
p, q ∈ N, and in terms of the rising factorials

(x)n =

{
x(x+ 1)(x+ 2) · · · (x+ n− 1), n ≥ 1,

1, n = 0.

The asymptotic form for the Catalan numbers is

Cx ∼
4x

√
π

(
x−3/2 − 9

8
x−5/2 +

145

128
x−7/2 + · · ·

)
.

For more information on the Catalan numbers Cn, please also refer to the monographs [1, 2] and the website https:

//en.wikipedia.org/wiki/Catalan_number and references therein.
In this paper, motivated by the explicit expression (1) and by virtue of an integral representation of the gamma function

Γ(x), we establish an integral representation of the Catalan numbers Cx for x ≥ 0.
Our main result can be stated as the following theorem.

Theorem 1. For x ≥ 0, we have

Cx =
e3/24x(x+ 1/2)x√
π (x+ 2)x+3/2

exp

[∫ ∞
0

β(t)
(
e−t/2 − e−2t)e−xt d t

]
, (2)

where

β(t) =
1

t
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− 1

t
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1

2

)
.

2. A remark and an open problem

Before proving Theorem 1, we give a remark on the formula (2) and pose an open problem as follows.
Recall from [4, Chapter XIII], [20, Chapter 1], and [24, Chapter IV] that an infinitely differentiable function f is said to

be completely monotonic on an interval I if it satisfies

0 ≤ (−1)kf (k)(x) <∞

on I for all k ≥ 0. Recall from [8, 9] that an infinitely differentiable and positive function f is said to be logarithmically
completely monotonic on an interval I if

0 ≤ (−1)k[ln f(x)](k) <∞

hold on I for all k ∈ N. For more information on logarithmically completely monotonic functions, please refer to [10, 11, 14, 19].
The formula (2) can be rearranged as

ln

[ √
π (x+ 2)x+3/2

e3/24x(x+ 1/2)x
Cx

]
=

∫ ∞
0

β(t)
(
e−t/2 − e−2t)e−xt d t. (3)

Since the function β(t) is positive on (0,∞), see [3, 15, 25] and references therein, the right hand side of (3) is a completely
monotonic function on (0,∞). This means that the function

(x+ 2)x+3/2

4x(x+ 1/2)x
Cx, x > 0 (4)

is logarithmically completely monotonic on (0,∞). Because any logarithmically completely monotonic function must be
completely monotonic, see [11] and references therein, the function (4) is also completely monotonic on (0,∞).

The function (4) can be rewritten as

(x+ 2)x+3/2Γ(x+ 1/2)

(x+ 1/2)xΓ(x+ 2)
, x > 0. (5)

Hence, the logarithmically complete monotonicity of (4) implies the logarithmically complete monotonicity of (5). The
function (5) is a special case of the function

Γ(x+ a)

(x+ a)x
(x+ b)x+b−a

Γ(x+ b)
(6)

for a, b ∈ R, a 6= b, and x ∈ (−min{a, b},∞). It seems that the function (6) does not appear in the expository and survey
articles [6, 7, 11, 12, 13] and plenty of references therein. Therefore, we naturally pose an open problem below.

Open Problem 1. What are the necessary and sufficient conditions on a, b ∈ R such that the function (6) is (logarithmically)
completely monotonic in x ∈ (−min{a, b},∞)?

https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Catalan_number
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3. Proof of Theorem 1

Now we are in a position to give a proof of Theorem 1.
Let

h(x) = (2 ln 2)x− ln
√
π + ln Γ

(
x+

1

2

)
− ln Γ(x+ 2), x > 0. (7)

Employing the formula [23, (3.22)]
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)

+
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As a result, we acquire
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3

2
+ ln

(x+ 1/2)x
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+
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0
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}
=
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exp
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β(t)
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]
.

The proof of Theorem 1 is complete.

Remark 1. This paper is a companion of the articles [5, 16, 17, 18] and a slightly revised version of the preprint [21].
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