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In this article, a necessary and sufficient condition and a necessary condition are established for a class
of functions involving the gamma function to be logarithmically completely monotonic on (0, ∞). As
applications of the necessary and sufficient condition, several two-sided bounding inequalities for the psi
and polygamma functions and the ratio of two gamma functions are derived.
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1. Introduction

We begin by recalling from the earlier works [3,19] that a positive function f is said to be
logarithmically completely monotonic on an open interval I if f has derivatives of all orders
on I and

(−1)n[ln f (x)](n) � 0 (n ∈ N := {1, 2, 3, · · · }). (1)

This type of functions has very close relationships with the Laplace transforms, Stieltjes
transforms and infinitely divisible completely monotonic functions. For more detailed infor-
mation, the interested reader may refer to several earlier investigations (see, for example,
[9,11,13,18–21]).

It is well known that the classical (Euler’s) gamma function �(z) is defined, for R(z) > 0, by

�(z) =
∫ ∞

0
t z−1e−tdt

(�(z) > 0
)
. (2)
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558 S. Guo et al.

The logarithmic derivative of �(z), denoted by

ψ(z) := �′(z)
�(z)

,

is called psi (or digamma) function. Moreover, its derivatives ψ(k)(z) (k ∈ N) are called the
polygamma functions.

For α ∈ R and β � 0, we define a function fα, β, ±1(x) by

fα,β,±1(x) =
(

ex�(x + β)

xx+β−α

)±1 (
x ∈ (0, ∞)

)
. (3)

About four decades ago, Kečlić and Vasić [14, Theorem 1] showed that

bb−1

aa−1
ea−b <

�(b)

�(a)
<

bb−1/2

aa−1/2
ea−b (b > a > 1) (4)

and thereby obtained the monotonic properties of the functions

ln fα,0,+1(x) and ln fα,0,+1(x)

on the semi-infinite interval (1, ∞). More recently, Anderson et al. [2, Theorem 3.2] proved that
the function f1/2, 0, +1(x) is decreasing and logarithmically convex from (0, ∞) onto

(√
2π, ∞)

and
that the function f1, 0, +1(x) is increasing and logarithmically concave from (0, ∞) onto (1, ∞)

(see also a closely-related earlier work on the subject of zero-balanced hypergeometric series
pFp−1(p ∈ N) by Saigo and Srivastava [23]). Alzer [1, Theorem 2], on the other hand, proved
that the function fα, 0, +1(x) is decreasing on (c, ∞) for c � 0 if and only if α � 1

2 and increasing
on (c, ∞) if and only if

α �

⎧⎨
⎩

c[ln c − ψ(c)] (c > 0)

1 (c = 0).
(5)

The necessary and sufficient conditions for the functions

fα,0,+1(x) and fα,0,−1(x)

to be logarithmically completely monotonic on (0, ∞) were given by Chen and Qi [4, Theorem 2].
Moreover, the function fα, β, +1(x) was proved in [4, Theorem 1] to be logarithmically completely
monotonic on (0, ∞) if

2α � 1 � β.

Using monotonic properties of the functions

f1/2,0,+1(x) and f1,0,−1(x),

the inequality (4) was extended in [4, Remark 1] from b > a > 1 to b > a > 0.
After proving the logarithmically completely monotonic property of the functions

f1/2,0,+1(x) and f1,0,−1(x),

by making use of Jensen’s inequality for convex functions, the upper and lower bounds for the
Gürland’s ratio were established as follows by Wei et al. [24]:
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Integral Transforms and Special Functions 559

For positive numbers x and y, the following inequality holds true:

xx−1/2yy−1/2(
x+y

2

)x+y−1 � �(x)�(y)[
�

(
x+y

2

)]2 � xx−1yy−1(
x+y

2

)x+y−2 (6)

the second member in (6) being called Gürland’s ratio [15].
Recently, the following new conclusions on logarithmically completely monotonic properties

of the function fα, β, +1(x) were drawn by Guo et al. [12, Theorem 1].

1. If β ∈ (0, ∞) and α � 0, then the function fα, β, +1(x) is logarithmically completely monotonic
on (0, ∞);

2. If β � 1, then the function fα, β, +1(x) is logarithmically completely monotonic on (0, ∞) if and
only if α � 1

2 .

As direct consequences of these results, one can immediately deduce the following assertions.
It is deduced immediately that, if x and y are positive numbers with x �= y, then

1. The following inequality:

I (x, y) >

[(
x

y

)α−β
�(x + β)

�(y + β)

]1/(x−y)

(7)

(x > 0; y > 0; x �= y; β � 1)

holds true if and only if α � 1
2 , where

I (a, b) := 1

e

(
bb

aa

)1/(b−a)

(a > 0; b > 0; a �= b) (8)

is the identric or exponential mean;
2. The inequality (7) for β ∈ (0, ∞) also holds true if α � 0.

Guo and Srivastava [10] established, among other results, a necessary and sufficient condition
for the function fα, β, +1(x) to be logarithmically completely monotonic on (0, ∞) for

β ∈ {0} ∪
[

1

2
+

√
3

6
, ∞

)
.

For more information on this topic, one may refer to a survey-cum-expository article by Qi
[17], in which a large number of closely-related earlier works are also cited. Some of the most
recent investigations on the subjects of this paper include the works by (for example) Chen et al.
[5,6] (see also [16,22]).

In this paper, we consider the logarithmically completely monotonic property of the function
fα, β, −1(x) on (0, ∞) and apply our result to derive several two-sided bounding inequalities for
the psi and polygamma functions and the ratio of two gamma functions are derived.

2. The main results and their applications

In this section, we first state our main results as follows.
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560 S. Guo et al.

Theorem 1 If the function fα, β, −1(x) is logarithmically completely monotonic on (0, ∞), then
either

β > 0 and α � max

{
β,

1

2

}
or

β = 0 and α � 1.

Theorem 2 If β � 1
2 , the necessary and sufficient condition for the function fα, β, −1(x) to be

logarithmically completely monotonic on (0, ∞) is that α � β.

As our first application, the following inequalities are derived by using logarithmically
completely monotonic properties of the function fα, β, ±1(x) on (0, ∞).

Theorem 3

1. For k ∈ N, each of the following two-sided inequalities:

ln x − 1

x
� ψ(x) � ln x − 1

2x
(9)

and
(k − 1)!

xk
+ k!

2xk+1
� (−1)k+1ψ(k)(x) � (k − 1)!

xk
+ k!

xk+1
(10)

holds true on (0, ∞).
2. When β > 0, the following inequalities:

ψ(x + β) � ln x + β

x
(11)

and

(−1)kψ(k−1)(x + β) � (k − 2)!
xk−1

− β(k − 1)!
xk

(12)

hold true on (0, ∞) for k � 2.
3. When β � 1

2 , the following inequalities:

ψ(x + β) � ln x and (−1)kψ(k−1)(x + β) � (k − 2)!
xk−1

(13)

hold true on (0, ∞) for k � 2.
4. When β � 1, the following inequalities:

ψ(x + β) � ln x + β − 1
2

x
(14)

and

(−1)kψ(k−1)(x + β) � (k − 2)!
xk−1

−
(
β − 1

2

)
(k − 1)!

xk
(15)

hold true on (0, ∞) for k � 2.

As our second application, the following inequalities are derived by using logarithmically
convex properties of the function fα, β, ±1(x) on (0, ∞).
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Integral Transforms and Special Functions 561

Theorem 4 Let n ∈ N and xk > 0 (1 � k � n). Suppose also that

n∑
k=1

pk = 1 (pk � 0).

If either

β > 0 and α � 0

or

β � 1 and α � 1

2
,

then
n∏

k=1
[�(xk + β)]pk

�

(
n∑

k=1
pkxk + β

) �

n∏
k=1

x
pk(xk+β−α)

k

(
n∑

k=1
pkxk

) n∑
k=1

pkxk+β−α

. (16)

If α � β � 1
2 , then the inequality (16) is reversed.

As our final application, the following inequality can be derived by using the decreasingly
monotonic property of the function fα, β, −1(x) on (0, ∞).

Theorem 5 If α � β � 1
2 , then

I (x, y) <

[(
x

y

)α−β
�(x + β)

�(y + β)

]1/(x−y)

(x > 0; y > 0; x �= y), (17)

where I(x, y), defined by (8), is the identric or exponential mean.

3. Proofs of the main results

Now, we are in a position to prove our theorems stated in Section 2.

Proof of Theorem 1. Suppose that the function fα, β, −1(x) is logarithmically completely
monotonic on (0, ∞). Then,

[ln fα,β,−1(x)(x)]′ = ln x − ψ(x + β) + β − α

x
� 0, (18)

which readily yields

β − α � x[ψ(x + β) − ln x] (0 < x < ∞). (19)

If β > 0, then

β − α � lim
x→0+[xψ(x + β) − x ln x] = 0,

that is,

α � β. (20)
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562 S. Guo et al.

Using the following asymptotic formula [7, p. 47]:

ψ(x) = ln x − 1

2x
+ O

(
1

x2

)
(x → ∞), (21)

in (19) for β > 0, we obtain

β − α � lim
x→∞ x

[
ln(x + β) − 1

2(x + β)
+ O

(
1

x2

)
− ln x

]

= lim
x→∞

[
x ln

(
1 + β

x

)]
− 1

2

= β lim
x→∞

[
x

β
ln

(
1 + β

x

)]
− 1

2

= β − 1

2
,

from which we get

α � 1

2
. (22)

By combining (20) and (22), we have

α � max

{
β,

1

2

}
(β > 0). (23)

If β = 0, by considering the equation:

fα,0,−1(x) = fα,1,−1(x)

and (23), we find that

α � max

{
1,

1

2

}
= 1.

The proof of Theorem 1 is thus completed. �

Proof of Theorem 2. By Theorem 1, the condition is necessary.
Now, if we differentiate (18) and make use of the following known results [8, p. 884]:

ψ(n)(x) = (−1)n+1
∫ ∞

0

tn

1 − e−t
e−xtdt

(
x ∈ (0, ∞)

)
and

1

xn
= 1

�(n)

∫ ∞

0
tn−1e−xtdt

(
x ∈ (0, ∞)

)
,

we find for n � 2 that

(−1)n[ln fα,β,−1(x)](n)

= (n − 2)!
xn−1

− (−1)nψ(n−1)(x + β) − (β − α)(n − 1)!
xn

=
∫ ∞

0
tn−2e−xtdt −

∫ ∞

0

tn−1

1 − e−t
e−(x+β)tdt − (β − α)

∫ ∞

0
tn−1e−xtdt

=
∫ ∞

0

[
α − β − 1

t

(
e(1−β)t t

et − 1
− 1

)]
tn−1e−xtdt. (24)
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Integral Transforms and Special Functions 563

It can be verified that
t

et − 1
<

1

e
1
2 t

(
t ∈ (0, ∞)

)
. (25)

Substituting (25) into (24) leads to

(−1)n[ln fα,β,−1(x)](n) �
∫ ∞

0

[
α − β − e(

1
2 −β)t − 1

t

]
tn−1e−xtdt (n � 2).

Since the function
e(

1
2 −β)t − 1

t

(
t ∈ (0, ∞)

)
(26)

is increasing, if

α � β � 1

2
,

then we get

(−1)n[ln fα,β,−1(x)](n) � (α − β)

∫ ∞

0
tn−1e−xtdt � 0 (n � 2). (27)

By using (21), it follows that

[ln fα,β,−1(x)(x)]′ = ln

(
1 + β

x

)
− 1

2(x + β)
+ α − β

x
+ O

(
1

x2

)
(x → ∞).

Thus, for all admissible values of α and β, we have

lim
x→∞[ln fα,β,−1(x)(x)]′ = 0. (28)

We see from (28) and (27) that, if

α � β � 1

2
,

then

[ln fα,β,−1(x)]′ � 0. (29)

We also observe from (29) and (27) that, if

α � β and n ∈ N,

then

(−1)n[ln fα,β,−1(x)](n) � 0

(
β � 1

2

)
,

which implies that the condition is also sufficient. The proof of Theorem 2 is completed. �

Proof of Theorem 3. If the function fα, β, −1(x) is logarithmically completely monotonic on
(0, ∞), then

(−1)k[ln fα,β,−1(x)](k) � 0
(
x ∈ (0, ∞); k ∈ N

)
,

which is equivalent to the following inequality:

ψ(x + β) � ln x + β − α

x
, (30)

and, for k � 2,

(−1)kψ(k−1)(x + β) � (k − 2)!
xk−1

− (β − α)(k − 1)!
xk

(
x ∈ (0, ∞); k ∈ N \ {1}). (31)

Hence, Theorem 2 implies the inequalities in (13).
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564 S. Guo et al.

If β � 1, Theorem 1 of Guo et al. [12] states that the function fα, β, +1(x) is logarithmically
completely monotonic on (0, ∞) if and only if α � 1

2 . This means that the inequalities in (30)
and (31) are reversed, and so the inequalities in (14) and (15) are valid.

If β > 0 and α � 0, Theorem 1 of Guo et al. [12] also states that the function fα, β, +1(x) is
logarithmically completely monotonic on (0, ∞). This means that the inequalities in (30) and
(31) are also reversed, and so the inequalities (11) and (12) are valid.

When β = 0, the functions

fα,0,+1(x) and fα,0,−1(x)

are logarithmically completely monotonic on (0, ∞) if and only if

α � 1

2
and α � 1,

respectively (see [4]), which (by the reasoning as above) imply the two-sided inequalities (9) and
(10). The proof of Theorem 3 is thus completed. �

Proof of Theorem 4. The first conclusion in the aforecited result of Guo et al. [12, Theorem 1]
asserts that the function fα, β, +1(x) is logarithmically convex for β > 0 and α � 0 on (0, ∞). By
combining this assertion with Jensen’s inequality for convex functions, we get

ln

⎛
⎜⎜⎜⎜⎜⎝

exp

(
n∑

k=1
pkxk

)
�

(
n∑

k=1
pkxk + β

)
(

n∑
k=1

pkxk

) n∑
k=1

pkxk+β−α

⎞
⎟⎟⎟⎟⎟⎠

�
(

n∑
k=1

pk ln
exp(xk)�(xk + β)

x
xk+β−α

k

)
(32)

(
n ∈ N; xk > 0 (1 � k � n); α � 0; β > 0

)
,

where
n∑

k=1

pk = 1 (pk � 0).

Rearranging this last inequality (32) would lead to the inequality (16).
The final conclusion in the result of Guo et al. [12, Theorem 1] asserts that the function

fα, β, +1(x) is also logarithmically convex for

β � 1 and α � 1

2
on (0, ∞). Hence, the inequality (32) is also valid for

β � 1 and α � 1

2

on (0, ∞).
Theorem 2 above implies that the function fα, β, +1(x) is logarithmically concave for

α � β � 1

2

on (0, ∞). Therefore, the inequality (32) is reversed. Our demonstration of Theorem 4 is thus
completed. �
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Integral Transforms and Special Functions 565

Proof of Theorem 5. Theorem 2 implies that the function fα, β, −1(x) is decreasing on (0, ∞) if

α � β � 1

2
.

Hence, we have
ey�(y + β)

yy+β−α
>

ex�(x + β)

xx+β−α
(y > x > 0),

which can be rearranged as follows:

�(y + β)

�(x + β)
> ex−y yy+β−α

xx+β−α
(y > x > 0)

or [(
y

x

)α−β
�(y + β)

�(x + β)

]1/(y−x)

>
1

e

(
yy

xx

)1/(y−x)

(y > x > 0). (33)

This last inequality (33) is obviously equivalent to (17). For x > y > 0, the conclusion is the same.
The proof of Theorem 5 is now completed. �
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