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Abstract
In the paper, necessary and sufficient conditions are presented for a function involving the divided
difference of the psi function to be completely monotonic and for a function involving the ratio of two
gamma functions to be logarithmically completely monotonic. From these, some double inequalities are
derived for bounding polygamma functions, divided differences of polygamma functions and the ratio of
two gamma functions.
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1. Introduction
A function f is called completely monotonic on an interval I ⊆ R if f has derivatives
of all orders on I and

(−1)k f (k)(x) ≥ 0 (1.1)

holds for all k ≥ 0 on I. For our own convenience, in what follows, the class of
completely monotonic functions on I is denoted by C[I]. The class of completely
monotonic functions may be characterized by [14, p. 161, Theorem 12b] which reads
that a necessary and sufficient condition that f (x) should be completely monotonic for
0 < x < ∞ is that

f (x) =

∫ ∞

0
e−xtdα(t), (1.2)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞. This means
that f ∈ C[(0,∞)] if and only if f is a Laplace transform of the measure µ.

A function f is said to be logarithmically completely monotonic on an interval
I ⊆ R if it has derivatives of all orders on I and its logarithm log f satisfies

(−1)k(log f (x))(k) ≥ 0 (1.3)
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for k ∈ N on I. In what follows, the set of all logarithmically completely monotonic
functions on I will be denoted by L[I]. The logarithmically completely monotonic
functions on (0,∞) are characterized in [1] as the infinitely divisible completely
monotonic functions studied in [4].

The inclusive relationship L[I] ⊂ C[I] has been proved in several papers. For
detailed information, please refer to [6, Section 1.5], [9, Section 1.3], [10, Section 1]
and closely related references therein. Furthermore, it was discovered in [1] that every
Stieltjes transform belongs to L[(0,∞)], where a function f defined on (0,∞) is called
a Stieltjes transform if it can be expressed in the form

f (x) = a +

∫ ∞

0

1
s + x

dµ(s) (1.4)

for some nonnegative number a and some nonnegative measure µ on [0,∞) satisfying∫ ∞
0

1
1+s dµ(s) < ∞. For more information on this topic, please refer to [11].
The classical Euler’s gamma function may be defined for x > 0 by

Γ(x) =

∫ ∞

0
tx−1e−tdt. (1.5)

The logarithmic derivative of Γ(x), denoted by ψ(x) =
Γ′(x)
Γ(x) , is called the psi function,

and ψ(k)(x) for k ∈ N are called the polygamma functions. The special functions Γ(x),
ψ(x) and ψ(k)(x) for k ∈ N are fundamental and important and have many applications
in mathematical sciences.

In [7, Thorem 1.3], the following necessary and sufficient conditions were estab-
lished: The function

ψ(x) − log x +
α

x
(1.6)

belongs to C[(0,∞)] if and only if α ≥ 1, and so is the negative of (1.6) if and only
if α ≤ 1

2 . For more information on equivalences of these necessary and sufficient
conditions, please refer to [2, 5], [8, pp.1977–1978, Section 1.5], and the review
articles [6, 9] and plenty of references cited therein.

In order to alternatively verify the monotonicity and convexity of the function(
Γ(x + t)
Γ(x + s)

)1/(t−s)
− x (1.7)

for x ∈ (−α,∞), where s and t are real numbers and α = min{s, t}, the following
complete monotonicity of the divided difference of the psi functions was discovered
in [5, 8]: For real numbers s and t and α = min{s, t}, the function

δs,t(x) =


ψ(x + t) − ψ(x + s)

t − s
−

2x + s + t + 1
2(x + s)(x + t)

, s , t

ψ′(x + s) −
1

x + s
−

1
2(x + s)2 , s = t

(1.8)

for |t − s| < 1 and its negative −δs,t(x) for |t − s| > 1 belong to C[(−α,∞)]. For the
history, background, and recent developments of the study of the function (1.7), please
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refer to [3, 8], [6, Section 3.9, Section 3.20.1 and Section 6.1] and closely related
references therein.

Now we generalize the function δs,t(x) in (1.8) by introducing a parameter λ as
follows. For real numbers s and t, define

δs,t;λ(x) =


ψ(x + t) − ψ(x + s)

t − s
−

2x + s + t + 2λ
2(x + s)(x + t)

, s , t

ψ′(x + s) −
1

x + s
−

λ

(x + s)2 , s = t
(1.9)

on (−α,∞), where λ ∈ R and α = min{s, t}. It is clear from (1.8) and (1.9) that
δs,t;1/2(x) = δs,t(x).

Motivating both by the necessary and sufficient conditions for the function (1.6)
to belong to C[(0,∞)] and by the complete monotonicity of the function (1.8), we
naturally pose a question: What are the necessary and sufficient conditions such
that the function (1.9) belongs to C[(−α,∞)]? This question is answered by our
Theorem 1.1 below.

Theorem 1.1. Let s and t be real numbers and let α = min{s, t}.
1. For |t − s| < 1,

(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≤ 1
2 ;

(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≥ 1 − |t−s|
2 ;

2. For |t − s| > 1,
(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≤ 1 − |t−s|

2 ;
(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ ≥ 1

2 ;
3. For |t − s| = 1,

(a) δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ < 1
2 ;

(b) −δs,t;λ(x) ∈ C[(−α,∞)] if and only if λ > 1
2 ;

(c) the function δs,t;λ(x) is identically zero if and only if λ = 1
2 .

As a direct application of Theorem 1.1, the logarithmically complete monotonicity
results of a function involving the ratio of two gamma functions can be deduced as
follows.

Theorem 1.2. For real numbers s and t, define

Hs,t;λ(x) =


(x + t)λ/(t−s)−1/2

(x + s)λ/(t−s)+1/2

(
Γ(x + t)
Γ(x + s)

)1/(t−s)
, s , t

1
x + t

exp
(
ψ(x + t) +

λ

x + t

)
, s = t

(1.10)

on (−α,∞), where λ ∈ R and α = min{s, t}. The following conclusions are valid:
1. For |t − s| < 1,

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ ≥ 1 − |t−s|
2 ;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ ≤ 1
2 ;
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2. For |t − s| > 1,

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ ≥ 1
2 ;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ ≤ 1 − |t−s|
2 ;

3. For |t − s| = 1,

(a) Hs,t;λ(x) ∈ L[(−α,∞)] if and only if λ > 1
2 ;

(b) (Hs,t;λ(x))−1 ∈ L[(−α,∞)] if and only if λ < 1
2 ;

(c) the function Hs,t;λ(x) identically equals 1 on (−α,∞) if and only if λ = 1
2 .

As consequences of Theorem 1.1 and Theorem 1.2, the following double inequal-
ities are immediately derived for the polygamma functions, the divided differences of
polygamma functions, and the ratio of two gamma functions.

Theorem 1.3. The following statements are true:

1. For x > 0, the double inequality

β1
k!

xk+1 < (−1)k+1ψ(k)(x) −
(k − 1)!

xk < γ1
k!

xk+1 (1.11)

holds if and only if β1 ≤
1
2 and γ1 ≥ 1.

2. Let a and b be positive numbers and k ∈ N.

(a) For 0 < |b − a| < 1, the double inequality

(k − 1)!
2

( 1
ak +

1
bk

)
+ β2

(k − 1)!
b − a

( 1
ak −

1
bk

)
<

(−1)k−1(ψ(k−1)(b) − ψ(k−1)(a)
)

b − a

<
(k − 1)!

2

( 1
ak +

1
bk

)
+ γ2

(k − 1)!
b − a

( 1
ak −

1
bk

)
(1.12)

holds if and only if β2 ≤
1
2 and γ2 ≥ 1 − |b−a|

2 ;
(b) For |b − a| > 1, the double inequality (1.12) is reversed if and only if

β2 ≤ 1 − |b−a|
2 and γ2 ≥

1
2 .

3. Let a and b be positive numbers and k ∈ N.

(a) For 0 < |b − a| < 1, the double inequality

aβ3/(b−a)+1/2

bβ3/(b−a)−1/2 <
(
Γ(b)
Γ(a)

)1/(b−a)
<

aγ3/(b−a)+1/2

bγ3/(b−a)−1/2 (1.13)

holds if and only if β3 ≥ 1 − |b−a|
2 and γ3 ≤

1
2 ;

(b) For |b − a| > 1, the double inequality (1.13) is reversed if and only if
β3 ≤ 1 − |b−a|

2 and γ3 ≥
1
2 .

4. Let s and t be real numbers, α = min{s, t}, and x ∈ (ρ,∞) ⊂ (−α,∞).
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(a) For 0 < |t − s| < 1, the double inequality

(ρ + t)β4/(t−s)−1/2

(ρ + s)β4/(t−s)+1/2

(
Γ(ρ + t)
Γ(ρ + s)

)1/(t−s) (x + s)β4/(t−s)+1/2

(x + t)β4/(t−s)−1/2 <
(
Γ(x + t)
Γ(x + s)

)1/(t−s)

<
(ρ + t)γ4/(t−s)−1/2

(ρ + s)γ4/(t−s)+1/2

(
Γ(ρ + t)
Γ(ρ + s)

)1/(t−s) (x + s)γ4/(t−s)+1/2

(x + t)γ4/(t−s)−1/2 (1.14)

holds if and only if β4 ≤
1
2 and γ4 ≥ 1 − |t−s|

2 ;
(b) For |t − s| > 1, the inequality (1.14) is reversed if and only if β4 ≥

1
2 and

γ4 ≤ 1 − |t−s|
2 .

Remark 1.4. We remark that taking a = x + 1
2 and b = x + 1 in the right-hand side

of (1.13) yields(
Γ(x + 1)

Γ(x + 1/2)

)2
<

(x + 1/2)3/2

(x + 1)1/2 =

(
1 −

1
2(x + 1)

)1/2(
x +

1
2

)
(1.15)

on
(
− 1

2 ,∞
)
, which is obviously better than the inequality(

Γ(x + 1)
Γ(x + 1/2)

)2
< x +

1
2

(1.16)

on
(
− 1

2 ,∞
)
. The inequality (1.16) is a long standing upper bound obtained in [12].

For more information about the inequality (1.16), see [6, pp. 21–22, Section 3.1].

Remark 1.5. There have been some similar but different results to our Theorems 1.2
and 1.3. For details, see the newly published paper [10] or related contents in [6, 9].

2. Proofs of theorems

Now we are in a position to prove our theorems.

Proof of Theorem 1.1. For |s − t| = 1, then from (1.9), it is equivalent to discuss the
complete monotonicity of the function

δs,s+1;λ(x) =
1 − 2λ

2(x + s)(x + s + 1)
,

which follows obviously from the fact that the product of finitely many completely
monotonic functions is still completely monotonic.

For s = t, it is equivalent to discuss the complete monotonicity of the function

ψ′(x) −
1
x
−
λ

x2

on (0,∞), which can be derived directly from [2, Theorem 2] and [7, Thorem 1.3]
mentioned above.
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For s , t and s − t , ±1, the function δs,t;λ(x) can be rewritten as

δs,t;λ(x) =
1

t − s

∫ t

s
ψ′(x + u)du −

1
2

((
1 −

2λ
t − s

) 1
x + t

+

(
1 +

2λ
t − s

) 1
x + s

)
.

Differentiating consecutively and employing the well-known formulas

ψ(k)(x) = (−1)k+1
∫ ∞

0

tk

1 − e−t e−xtdt (2.1)

and
1
xr =

1
Γ(r)

∫ ∞

0
tr−1e−xtdt (2.2)

for k ∈ N and positive numbers x > 0 and r > 0 yield

δ(k)
s,t;λ(x) =

1
t − s

∫ t

s
ψ(k+1)(x + u)du

−
(−1)kk!

2

((
1 −

2λ
t − s

) 1
(x + t)k+1 +

(
1 +

2λ
t − s

) 1
(x + s)k+1

)
=

(−1)k

t − s

∫ t

s

∫ ∞

0

vk+1

1 − e−v e−(x+u)vdvdu

−
(−1)k

2

((
1 −

2λ
t − s

) ∫ ∞

0
vke−(x+t)vdv+

(
1 +

2λ
t − s

) ∫ ∞

0
vke−(x+s)vdv

)
= (−1)k

∫ ∞

0

( 1
t − s

∫ t

s

v
1 − e−v e−uvdu

−
1
2

((
1 −

2λ
t − s

)
e−tv+

(
1 +

2λ
t − s

)
e−sv

))
vke−xvdv

= (−1)k
∫ ∞

0

( e−sv − e−tv

(t − s)(1 − e−v)
−

e−sv + e−tv

2
−
λ(e−sv − e−tv)

t − s

)
vke−xvdv

= (−1)k
∫ ∞

0

(( 1
1 − e−v − λ

)e−sv − e−tv

t − s
−

e−sv + e−tv

2

)
vke−xvdv

= (−1)k
∫ ∞

0

( 1
1 − e−v − λ −

(t − s)(e−sv + e−tv)
2(e−sv − e−tv)

)e−sv − e−tv

t − s
vke−xvdv

= (−1)k
∫ ∞

0

( 1
1 − e−v −

t − s
2 tanh((t − s)v/2)

− λ
)e−sv − e−tv

t − s
vke−xvdv

for k ∈ {0} ∪ N. Therefore, if

λ ≤
1

1 − e−v −
t − s

2 tanh((t − s)v/2)

=
2ev tanh((t − s)v/2) − (t − s)(ev − 1)

2(ev − 1) tanh((t − s)v/2)
, λ(v, t − s) (2.3)

for all v ∈ (0,∞), then (−1)kδ(k)
s,t;λ(x) ≥ 0 and δs,t;λ(x) ∈ C[(−α,∞)]; if the inequal-

ity (2.3) reverses, then (−1)kδ(k)
s,t;λ(x) ≤ 0 and −δs,t;λ(x) ∈ C[(−α,∞)].
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Straightforward computation gives

∂λ(v, r)
∂v

=
1
4

r2 csch2
(rv

2

)
−

ev

(ev − 1)2 =
1
v2

((rv
2

)2
csch2

(rv
2

)
−

( v
2

)2
csch2

( v
2

))
.

Since the function x csch x is strictly positive and decreasing on (0,∞), it follows that

∂λ(v, r)
∂v

< 0, if r > 1,
> 0, if 0 < r < 1.

Accordingly, the function λ(v, r) is increasing for 0 < r < 1 and decreasing for r > 1
on (0,∞). Using L’Hôspital’s rule yields

lim
v→0+

λ(v, r) = lim
v→0+

ev(2 tanh(rv/2) + r
(
sech2(rv/2) − 1

))
2ev tanh(rv/2) + r(ev − 1) sech2(rv/2)

=
1
2
.

It is easy to see that

lim
v→∞

λ(v, r) = 1 −
|t − s|

2
.

Since the function λ(v, r) is even with respect to the variable r ∈ R with r , 0, for
0 < |t − s| < 1, we have

1
2
< λ(v, s − t) < 1 −

|t − s|
2

. (2.4)

The inequality (2.4) is reversed for |t − s| > 1. Consequently,
1. the function δs,t;λ(x) is completely monotonic on (−α,∞) if either λ ≤ 1

2 and
0 < |t − s| < 1 or λ < 1 − |t−s|

2 and |t − s| > 1;
2. the function −δs,t;λ(x) is completely monotonic on (−α,∞) if either λ ≥ 1 − |t−s|

2
and 0 < |t − s| < 1 or λ ≥ 1

2 and |t − s| > 1.
Conversely, if the function δs,t;λ(x) is completely monotonic, then δs,t;λ(x) ≥ 0 on

(−α,∞), which can be rearranged as

λ ≤ (x + s)(x + t)
( 1
t − s

∫ t

s
ψ′(x + u)du −

1
2

( 1
x + s

+
1

x + t

))
, λs,t(x).

In the proof of [8, p. 1981, Lemma 2.4], it was cited that

1
2x2 −

1
6x3 <

1
x
− ψ′(x + 1) <

1
2x2 −

1
6x3 +

1
30x5 (2.5)

for x > 0. From the left-hand side inequality in (2.5) it follows that

λs,t(x) < (x + s)(x + t)

×

( 1
t − s

∫ t

s

( 1
x + u

+
1

2(x + u)2 +
1

6(x + u)3

)
du −

1
2

( 1
x + s

+
1

x + t

))
=

(x + s)(x + t)
t − s

ln
x + s
x + t

− x +
1
2
−

s + t
2

+
(x + t)2 − (x + s)2

12(t − s)(x + s)(x + t)
→

1
2
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as x→ ∞. Similarly, using the right-hand side inequality in (2.5) yields

λs,t(x) > (x + s)(x + t)
( 1
t − s

∫ t

s

( 1
x + u

+
1

2(x + u)2

+
1

6(x + u)3 −
1

30(x + u)5

)
du −

1
2

( 1
x + s

+
1

x + t

))
→

1
2

as x→ ∞. As a result, we have the limit

lim
x→∞

λs,t(x) =
1
2
.

Since xψ(x) = xψ(x + 1) − 1, then

lim
x→0+

(xψ(x)) = −1.

From this it follows using a standard argument that

lim
x→(−α)+

λs,t(x) = 1 −
|s − t|

2
.

Therefore, if |t − s| < 1, then

λ ≤ lim
x→∞

λs,t(x) =
1
2
< 1 −

|s − t|
2

= lim
x→(−α)+

λs,t(x)

and if |t − s| > 1, then

λ ≤ lim
x→(−α)+

λs,t(x) = 1 −
|s − t|

2
< lim

x→∞
λs,t(x) =

1
2
.

The necessity for the function −δs,t;λ(x) to be completely monotonic can be
similarly reasoned by repeating the above procedure. The proof of Theorem 1.1 is
complete. �

Proof of Theorem 1.2. This follows from the fact that (log Hs,t;λ(x))′ = δs,t;λ(x) as
defined in Theorem 1.1 and the definition of the logarithmically completely monotonic
functions. �

Proof of Theorem 1.3. The double inequalities in (1.11) may be deduced readily from
the complete monotonicity of the function δ0,0;λ(x) turned out in Theorem 1.1.

With the help of the complete monotonicity of the function δs,t;λ(x) for s , t, it
easily follows that the double inequality

β2
(k − 1)!

t − s

( 1
(x + s)k −

1
(x + t)k

)
<

(−1)k−1(ψ(k−1)(x + t) − ψ(k−1)(x + s)
)

t − s

−
(k − 1)!

2

( 1
(x + s)k +

1
(x + t)k

)
< γ2

(k − 1)!
t − s

( 1
(x + s)k −

1
(x + t)k

)
(2.6)
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holds on (−α,∞) if and only if β2 ≤
1
2 and γ2 ≥ 1− |s−t|

2 for 0 < |t− s| < 1, and that the
double inequality (2.6) is reversed if and only if β2 ≤ 1− |s−t|

2 and γ2 ≥
1
2 for |t− s| > 1.

Setting x + s as a and x + t as b in (2.6) produces (1.12).
As early as in 1948, by applying Hölder’s integral inequality to the definition (1.5)

of the gamma function Γ(x) and using the well-known formula Γ(x+1) = xΓ(x), it was
established in [13] that the classical asymptotic relation

lim
x→∞

Γ(x + s)
xsΓ(x)

= 1 (2.7)

holds for real s and x. This implies that

Hs,t;λ(x) =
(x + t)λ/(t−s)

(x + s)λ/(t−s) ·
x

√
(x + s)(x + t)

(
xs−t Γ(x + t)

Γ(x + s)

)1/(t−s)
→ 1 (2.8)

as x → ∞ for s , t. By virtue of Theorem 1.2, when 0 < |t − s| < 1, the function
Hs,t;λ(x) is decreasing on (−α,∞) if and only if λ ≥ 1 − |t−s|

2 and it is increasing
on (−α,∞) if and only if λ ≤ 1

2 . Hence, employing the limit (2.8) implies that the
inequality

(x + t)λ/(t−s)−1/2

(x + s)λ/(t−s)+1/2

(
Γ(x + t)
Γ(x + s)

)1/(t−s)
> 1 (2.9)

holds on (−α,∞) if and only if λ ≥ 1 − |t−s|
2 and reverses on (−α,∞) if and only if

λ ≤ 1
2 . Similarly, when |t − s| > 1, the function Hs,t;λ(x) is decreasing on (−α,∞) if

and only if λ ≥ 1
2 and it is increasing on (−α,∞) if and only if λ ≤ 1 − |t−s|

2 . This leads
to the conclusion that the reversed version of the inequality (2.9) is valid. Finally, the
double inequality

(x + s)β3/(t−s)+1/2

(x + t)β3/(t−s)−1/2 <
(
Γ(x + t)
Γ(x + s)

)1/(t−s)
<

(x + s)γ3/(t−s)+1/2

(x + t)γ3/(t−s)−1/2 (2.10)

holds on (−α,∞) if and only if β3 ≥ 1 − |t−s|
2 and γ3 ≤

1
2 for 0 < |t − s| < 1; the double

inequality (2.10) is reversed if and only if β3 ≤ 1 − |t−s|
2 and γ3 ≥

1
2 for |t − s| > 1.

Furthermore, replacing x + s by a and x + t by b reproduces (1.13).
The double inequality (1.14) comes from the fact that the inequality Hs,t;λ(ρ) >

Hs,t;λ(x) holds on (ρ,∞) if and only if either λ ≥ 1 − |t−s|
2 for 0 < |t − s| < 1 or λ ≥ 1

2
and |t − s| ≥ 1, and that it is revered if and only if either λ ≤ 1

2 for 0 < |t − s| < 1 or
λ ≤ 1 − |t−s|

2 and |t − s| ≥ 1. The proof of Theorem 1.3 is complete. �
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