Felix Weidner

Felix Weidner
  • Master of Science
  • PhD Student at Ulm University

About

10
Publications
540
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
67
Citations
Current institution
Ulm University
Current position
  • PhD Student

Publications

Publications (10)
Preprint
Full-text available
The description of gene interactions that constantly occur in the cellular environment is an extremely challenging task due to an immense number of degrees of freedom and incomplete knowledge about microscopic details. Hence, a coarse-grained and rather powerful modeling of such dynamics is provided by Boolean Networks (BNs). BNs are dynamical syst...
Article
Full-text available
Motivation Boolean networks can serve as straightforward models for understanding processes such as gene regulation, and employing logical rules. These rules can either be derived from existing literature or by data-driven approaches. However, in the context of large networks, the exhaustive search for intervention targets becomes challenging due t...
Article
Boolean networks are commonly used in systems biology to dynamically model gene regulatory interactions. Here, we present a protocol for implementing Boolean network dynamics as quantum circuits. We describe steps for accessing cloud-based quantum processing units offered by IBM and IonQ and downloading and parsing logic for gene regulatory network...
Article
Full-text available
Pancreatic neuroendocrine tumors (PanNETs) are a rare tumor entity with largely unpredictable progression and increasing incidence in developed countries. Molecular pathways involved in PanNETs development are still not elucidated, and specific biomarkers are missing. Moreover, the heterogeneity of PanNETs makes their treatment challenging and most...
Article
Full-text available
The dynamics of cellular mechanisms can be investigated through the analysis of networks. One of the simplest but most popular modeling strategies involves logic-based models. However, these models still face exponential growth in simulation complexity compared with a linear increase in nodes. We transfer this modeling approach to quantum computing...
Article
Full-text available
Motivation: Biological processes are complex systems with distinct behaviour. Despite the growing amount of available data, knowledge is sparse and often insufficient to investigate the complex regulatory behaviour of these systems. Moreover, different cellular phenotypes are possible under varying conditions. Mathematical models attempt to unrave...
Article
Full-text available
We here respond to the points raised in a recent letter to the editor on the feasibility of dynamical analyses in Boolean networks, referring to our manuscript ”Capturing dynamic relevance in Boolean networks using graph theoretical measures”.
Article
Full-text available
Controlling phenotypical landscapes is of vital interest to modern biology. This task becomes highly demanding because cellular decisions involve complex networks engaging in crosstalk interactions. Previous work on control theory indicates that small sets of compounds can control single phenotypes. However, a dynamic approach is missing to determi...
Article
Full-text available
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data....
Article
Full-text available
Motivation Interaction graphs are able to describe regulatory dependencies between compounds without capturing dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics of biological systems. However, since dynamic complexity of these models grows exponentially with their size, exhaustive anal...

Network

Cited By