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ABSTRACT

Mitigating missing data, multiples, and erroneous migra-
tion amplitudes are key factors that determine image quality.
Curvelets, little “plane waves,” complete with oscillations in
one direction and smoothness in the other directions, sparsify
a property we leverage explicitly with sparsity promotion.
With this principle, we recover seismic data with high fidelity
from a small subset !20%" of randomly selected traces. Simi-
larly, sparsity leads to a natural decorrelation and hence to a
robust curvelet-domain primary-multiple separation for
North Sea data. Finally, sparsity helps to recover migration
amplitudes from noisy data. With these examples, we show
that exploiting the curvelet’s ability to sparsify wavefrontlike
features is powerful, and our results are a clear indication of
the broad applicability of this transform to exploration
seismology.

INTRODUCTION

In this letter, we demonstrate that the discrete curvelet transform
!Candès et al., 2006a; Hennenfent and Herrmann, 2006b" can be
used to reconstruct seismic data from incomplete measurements, to
separate primaries and multiples, and to restore migration ampli-
tudes. The crux of the method lies in the combination of the curvelet
transform, which attains a fast decay for the magnitude-sorted cur-
velet coefficients, with a sparsity-promoting program. By them-
selves, sparsity-promoting programs are not new to the geosciences
!Sacchi et al., 1998". However, sparsity promotion with the curvelet
transform is new. The curvelet transform’s unparalleled ability to de-
tect wavefrontlike events that are locally linear and coherent means
it is particularly well suited to seismic data processing problems. In
this paper, we show examples including data regularization !Hen-

nenfent and Herrmann, 2006a, 2007a", primary-multiple separation
!Herrmann et al., 2007a", and migration-amplitude recovery !Her-
rmann et al., 2007b". Application of this formalism to wavefield ex-
trapolation is presented elsewhere !Lin and Herrmann, 2007".

CURVELETS

Curvelets are localized “little plane-waves” !see Hennenfent and
Herrmann, 2006b and the online ancillary material for an introduc-
tion on this topic" that are oscillatory in one direction and smooth in
the other direction!s". They are multiscale and multidirectional. Cur-
velets have an anisotropic shape — they obey the so-called parabol-
ic-scaling relationship, yielding a width! length2 for the support of
curvelets in the physical domain. This anisotropic scaling is neces-
sary to detect wavefronts and explains their high compression rates
on seismic data and images !Candès et al., 2006a; Herrmann et al.,
2007b", as long as these data sets can be represented as functions
with events on piecewise, twice-differentiable curves. Then, the
events become linear at the fine scales, justifying an approximation
by the linearly shaped curvelets. Even seismic data with caustics,
pinch outs, faults, or strong amplitude variations fit this model,
which amounts to a preservation of the sparsity attained by curve-
lets.

Curvelets represent a specific tiling of the 2D/3D frequency do-
main into strictly localized wedges. Because the directional sam-
pling increases every-other scale doubling, curvelets become more
anisotropic at finer scales. Curvelets compose multidimensional
data according to f ! CTCf, with C and CT the forward and inverse
discrete curvelet transform matrices !defined by the fast discrete
curvelet-transform #FDCT$ with wrapping, a type of periodic exten-
sion #see Candès et al., 2006a; Ying et al., 2005$". The symbol T rep-
resents the transpose, which is equivalent to the inverse for this
choice of curvelet transform. This transform has a moderate redun-
dancy !a factor of roughly eight in 2D data and 24 in 3D data" and a
computational complexity of O!n log n", with n the length of f. Even
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though CTC ! I, with I the identity matrix, the converse is not true,
i.e., CCT%I. This ambiguity can be removed by adding sparsity pro-
motion as a constraint.

COMMON PROBLEM FORMULATION BY
SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic data and
images have a sparse representation x0 in the curvelet domain. To ex-
ploit this property, our forward model reads

y ! Ax0 " n , !1"

with y a vector of noisy and possibly incomplete measurements, A
the modeling matrix that includes CT, and n a zero-centered, white
Gaussian noise. Because of the redundancy of C and/or the incom-
pleteness of the data, the matrix A cannot readily be inverted. How-
ever, as long as the data y permit a sparse vector x0, the matrix A can
be inverted by a sparsity-promoting program !Candès et al., 2006b;
Donoho, 2006":

P": #x̃ ! arg minx$x$1 s.t. $Ax # y$2 # "

f̃ ! STx̃
% , !2"

in which " is a noise-dependent tolerance level, ST the inverse trans-
form, and f̃ the solution calculated from the vector x̃ !the tilde de-
notes a vector obtained by nonlinear optimization" minimizing P".
The difference between x̃ and x0 is proportional to the noise level.

Nonlinear programs P" are not new to seismic data processing as
in spiky deconvolution !Taylor et al., 1979; Santosa and Symes,
1986" and Fourier transform-based interpolation !Sacchi et al.,
1998". The curvelets’ high compression rate makes the nonlinear
program P" perform well when CT is included in the modeling opera-
tor. Despite its large scale and nonlinearity, the solution of the
convex problem P" can be approximated with a limited !$250"
number of iterations of a threshold-based cooling method derived
from work by Figueiredo and Nowak !2003", Daubechies et al.
!2004", and Elad et al. !2005". At each iteration, the descent update
&x←x " AT!y # Ax"', minimizing the quadratic part of equation
2, is followed by a soft thresholding #x←T%!x" with T%!x"
ªsgn!x" ·max!0, (x( # (%("$ for decreasing-threshold levels %. This
soft thresholding on the entries of the unknown curvelet vector cap-
tures the sparsity and the cooling, which speeds up the algorithm and
allows additional coefficients to fit the data.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly sampled
data with missing traces is a setting where a curvelet-based method
will perform well. As with other transform-based methods, sparsity
is used to reconstruct the wavefield by solving P". It is also shown
that the recovery performance can be increased when information on
the major primary arrivals is included in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data
corresponds to the inversion of the picking operator R. This operator
models missing data by inserting zero traces at source-receiver loca-
tions where data are missing, passing recorded traces unchanged.
The task of the recovery is to undo this operation by filling in the zero
traces. Because seismic data are sparse in the curvelet domain, the
missing data can be recovered by compounding the picking operator
with the curvelet-modeling operator, i.e., AªRCT. With this defini-
tion for the modeling operator, solving P" corresponds to seeking the
sparsest curvelet vector whose inverse curvelet transform, followed
by the picking, matches the data at the nonzero traces. Applying the
inverse transform !with SªC in P"" gives the interpolated data. For
details on the conditions that determine successful recovery, refer to
Hennenfent and Herrmann !2007a, b" and Herrmann and Hennen-
fent !2007".

An example of curvelet-based recovery is presented in Figure 1,
which shows the results of decimating, and then reconstructing, a
seismic data set. The original shot and receiver spacings were 25 m,
and 80% of the traces were thrown out at random !see Figure 1b".
Comparing the ground truth in Figure 1a with the recovered data in
Figure 1c shows a successful recovery in case the high frequencies
are removed.Aside from sparsity in the curvelet domain, no prior in-
formation was used during the recovery, which is quite remarkable.
Part of the explanation lies in the curvelet’s ability to locally exploit
the 3D geometry of the data, and this suggests why curvelets are suc-
cessful for complex data sets where other methods may fail.

a) b)

c) d)

Figure 1. Comparison between 3D curvelet-based recovery by spar-
sity-promoting inversion with and without focusing. !a" Fully sam-
pled real North Sea data shot gather. !b" Randomly subsampled shot
gather from a 3D data volume with 80% of the traces missing in the
receiver and shot directions. !c" Curvelet-based recovery. !d" Curve-
let-based recovery with focusing. Notice the improvement !denoted
by the arrows" from the focusing with the primary operator.
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Focused recovery

In practice, additional information on the to-be-recovered wave-
field is often available. For instance, one may have access to the pre-
dominant primary arrivals or to the velocity model. In that case, the
recently introduced focal transform !Berkhout and Verschuur,
2006", which deconvolves the data with an estimate of the primaries,
incorporates this additional information into the recovery process.
Application of this primary operator, !P adds a wavefield interac-
tion with the surface, mapping primaries to first-order, surface-relat-
ed multiples !Verschuur and Berkhout, 1997; Herrmann, 2007". In-
version of this operator strips the data off one interaction with the
surface, focusing primary energy to !directional" sources. This fo-
cusing correponds to a collapse of the 3D primary events to an ap-
proximate line source, which has a sparser representation in the cur-
velet domain.

By compounding the nonadaptive, data-independent, curvelet
transform with the data-adaptive focal transform, i.e., AªR!PCT,
the recovery can be improved by solving P". The solution of P" now
entails the inversion of !P, yielding the sparsest set of curvelet coef-
ficients that matches the incomplete data when convolved with the
primaries. Applying the inverse curvelet transform, followed by
convolution with !P, yields the interpolation, i.e., ST ª !PCT.
Comparing the curvelet recovery with the focused curvelet recovery
!Figure 1c and d" shows an overall improvement in the recovered de-
tails.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and primary-multiple separation. In practice,
the second step appears difficult, and adaptive least-squares, !2-
matched filtering techniques are known to lead to residual multiple
energy, high-frequency jitter, and deterioration of the primaries
!Herrmann et al., 2007a". By employing the curvelet’s ability to de-
tect wavefronts with conflicting dips !e.g., caustics", a nonadaptive,
independent of the total data, separation scheme can be defined that
is robust with respect to moderate errors in the multiple prediction.
The nonlinear program P", with y defined by the total data, can be
adapted to separate multiples from primaries by replacing the !1

norm by a weighted !1 norm, i.e., $x$1"$x$1,w ! )&(w&x&(, with &
running over all curvelets and w a vector with positive weights. By
defining these weights proportional to the magnitude of the curvelet
coefficients of the 2D surface-related multiple elimination !SRME"-
predicted multiples, the solution of P" with AªCT removes multi-
ples. Primaries and multiples naturally separate in the curvelet do-
main, and the weighting further promotes this separation while
solving P". The weights that are fixed during the optimization
penalize the entries in the curvelet vector for which the predicted
multiples are significant. The emphasis on the weights versus the
data misfit !the proportionality constant" is user defined. The
estimate for the primaries is obtained by inverse curvelet transform-
ing of the curvelet vector that minimizes P" for the weighted !1

norm!A ! STªCT".
Figure 2 shows an example of 3D curvelet-based, primary-multi-

ple separation of a North Sea data set with the weights set according
to the curvelet-domain magnitudes of the SRME-predicted multi-
ples multiplied by 1.25. Comparison between the estimates for the
primaries from adaptive subtraction by !2-matched filtering !Vers-
chuur and Berkhout, 1997" and from our nonlinear and nonadaptive
curvelet-based separation shows an improvement in !1" the elimina-

tion of the focused multiple energy below shot location 1000 m, in-
duced by out-of-plane scattering caused by small 3D variations in
the multiple-generating reflectors and !2" an overall improved conti-
nuity and noise reduction. This example demonstrates that the multi-
scale and multiangular curvelet domain can be used to separate pri-
maries and multiples given an inaccurate prediction for the multi-
ples. However, the separation goes at the expense of a moderate loss
of primary energy, which compares favorably with the loss associat-
ed with !2-matched filtering !see also Herrmann et al., 2007a".

MIGRATION-AMPLITUDE RECOVERY

Restoring migration amplitudes is another area where curvelets
can be shown to play an important role. In this application, the pur-
pose is to replace computationally expensive amplitude-recovery
methods, such as least-squares migration !Nemeth et al., 1999; Kuhl
and Sacchi, 2003", by amplitude scaling !Guitton, 2004". This scal-
ing can be calculated from a demigrated-migrated reference vector
close to the actual reflectivity.

In order to exploit curvelet sparsity, we propose to scale in the cur-
velet domain. This choice seems natural because migrated images
suffer from spatially varying and dip-dependent amplitude deterio-
ration that can be accommodated by curvelets. The advantages of
this approach are manifold and include !1" a correct handling of re-
flectors with conflicting dips and !2" a stable curvelet sparsity-pro-

a) b)

c) d)

Figure 2. 3D primary-multiple separation with P" for the North Sea
data set. !a" Near-offset section including multiples. !b" The SRME-
predicted multiples. !c" The estimated primaries according to
12-matched filtering. !d" The estimated primaries obtained with P".
Notice the improvement, in areas with small 3D effects !ellipsoid"
and residual multiples.
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moting inversion of the diagonal that restores the amplitudes and re-
moves the clutter by exploiting curvelet sparsity on the model.

The method is based on the approximate identity: KTKr
*CTDrCr, with K and KT the demigration and migration operators,
respectively, and Dr a reference-model specific scaling !Herrmann et
al., 2007b". By defining the modeling matrix as AªCT+Dr, P" can
be used to recover the migration amplitudes from the migrated im-
age. Possible spurious sideband effects and erroneously detected
curvelets !Candès and Guo, 2002" are removed by supplementing
the !1 norm in P" with an anisotropic-diffusion norm !Fehmers and
Höcker, 2003". This norm enhances the continuity along the imaged
reflectors and removes spurious artifacts.

Results for the SEG AA’data set !O’Brien and Gray, 1996; Amin-
zadeh et al., 1997" are summarized in Figure 3. These results are ob-
tained with a reverse-time, wave-equation, finite-difference migra-
tion code !Symes, 2007". To illustrate the recovery performance,
idealized seismic data are generated by demigration, followed by
adding white Gaussian noise, yielding a signal-to-noise ratio !S/N"
of only 3 dB. These data are subsequently migrated and used as in-
put. Despite the poor S/N, the image in Figure 3a contains the most
reflectors, which can be explained by the redundancy of the data, the
migration operator’s sophistication !diffractions at the bottom of the
salt are handled correctly", and the perfect match between the demi-

gration and migration operators. However, the noise gives rise to
clutter, and there is dimming of the amplitudes, in particular for steep
dips under the salt. Nonlinear recovery removes most of this clutter
and, more importantly, the amplitudes for the subsalt steep-dipping
events are mostly restored. This idealized example shows how cur-
velets can be used to recover the image amplitudes. As long as the
background velocity model is sufficiently smooth and the reflectivi-
ty sufficiently sparse, this recovery method can be expected to per-
form well even for more complex images.

CONCLUSIONS

The presented examples show that problems in data acquisition
and imaging can be solved with a common-problem formulation
during which sparsity in the curvelet domain is promoted. For
curved, wavefrontlike features that oscillate in one direction and that
are smooth in the other direction!s", curvelets attain high compres-
sion rates, while other transforms do not necessarily achieve sparsity
for these geometries. Seismic images of sedimentary basins and
seismic-wave arrivals in the data both behave in this fashion, so that
curvelets are particularly valuable for compression. It is this com-
pression that underlies the success of our sparsity-promoting formu-
lation. First, we showed on real data that missing data can be recov-
ered by solving a nonlinear optimization problem, where the data
misfit and the !1-norm on the curvelet coefficients are simultaneous-
ly minimized. This recovery is further improved with a combined
curvelet-focal transform. Sparsity also proved essential during the
primary-multiple separation. In this case, it leads to a form of decor-
relation of primaries and multiples, reducing the probability of hav-
ing large, overlapping curvelet entries between these different
events. Finally, the sparsity of curvelets on the image itself was ex-
ploited to recover the migration amplitudes of the synthetic subsalt-
imaging example. Through these three examples, the successful ap-
plication of curvelets, enhanced with sparsity-promoting inversion,
opens new perspectives on seismic data processing and imaging.
The ability of curvelets to detect wavefrontlike features is key to our
success and opens an exciting new outlook toward future develop-
ments in exploration seismology.
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