
Felix Maximilian Bauer- Doctor of Engineering
- PostDoc at Forschungszentrum Jülich
Felix Maximilian Bauer
- Doctor of Engineering
- PostDoc at Forschungszentrum Jülich
About
14
Publications
3,463
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
93
Citations
Introduction
Current institution
Additional affiliations
September 2021 - present
Education
October 2018 - July 2021
Publications
Publications (14)
Drought is a serious constraint on crop growth and production of important staple crops such as maize. Improved understanding of the responses of crops to drought can be incorporated into cropping system models to support crop breeding, varietal selection, and management decisions for minimizing negative impacts. We investigate the impacts of diffe...
Background and Aims
The global supply of phosphorus is decreasing. At the same time, climate change reduces the availability of water in most regions of the world. Insights on how decreasing phosphorus availability influences plant architecture are crucial to understanding its influence on plant functional properties, such as the root system’s wat...
Improved understanding of crops’ response to soil water stress is important to advance soil-plant system models and to support crop breeding, crop and varietal selection, and management decisions to minimize negative impacts. Studies on eco-physiological crop characteristics from leaf to canopy for different soil water conditions and crops are ofte...
The global supply of phosphorus is decreasing. At the same time, climate change reduces the water availability in most regions of the world. Insights on how decreasing phosphorus availability influences plant architecture is crucial to understand its influence on plant functional properties, such as the root system's water uptake capacity. In this...
E-infrastructures deliver basic supercomputing and storage capabilities but can benefit from innovative higher-level services that enable use-cases in critical domains, such as environmental and agricultural science.This work describes methods to distribute virtual scenes to the GPU nodes of a modular supercomputer for data generation.High informat...
The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that se...
Drought is a serious constraint to crop growth and production of important staple crops such as maize. Improved understanding of the responses of crops to drought can be incorporated into cropping system models to support crop breeding, varietal selection and management decisions for minimizing negative impacts. We investigate the impacts of differ...
In plant science it is an established method to obtain structural parameters of crops using image analysis. In recent years, deep learning techniques have improved the underlying processes significantly. However, since data acquisition is time and resource consuming, reliable training data is currently limiting. To overcome this bottleneck, synthet...
Non‐invasive imaging of processes within the soil–plant continuum, particularly root and soil water distributions, can help optimize agricultural practices such as irrigation and fertilization. In this study, in‐situ time‐lapse horizontal crosshole ground penetrating radar (GPR) measurements and root images were collected over three maize crop grow...
The production of crops secure the human food supply, but climate change is bringing new challenges. Dynamic plant growth and corresponding environmental data are required to uncover phenotypic crop responses to the changing environment. There are many datasets on above-ground organs of crops, but roots and the surrounding soil are rarely the subje...
Root systems of crops play a significant role in agroecosystems. The root system is essential for water and nutrient uptake, plant stability, symbiosis with microbes, and a good soil structure. Minirhizotrons have shown to be effective to noninvasively investigate the root system. Root traits, like root length, can therefore be obtained throughout...
Root systems of crops play a significant role in agro-ecosystems. The root system is essential for water and nutrient uptake, plant stability, symbiosis with microbes and a good soil structure. Minirhizotrons, consisting of transparent tubes that create windows into the soil, have shown to be effective to non-invasively investigate the root system....