Felipe Olivares E.

Felipe Olivares E.
Universidad de Atacama · Instituto de Astronomía y Ciencias Planetarias - INCT

Dr. rer. nat.
Rapid spectroscopy of Transients associated with Gravitational wave Events

About

186
Publications
33,272
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,010
Citations
Additional affiliations
April 2013 - October 2016
Universidad Andrés Bello
Position
  • PostDoc Position
October 2008 - April 2012
Max Planck Institute for Extraterrestrial Physics
Position
  • PhD Student
March 2006 - July 2008
University of Chile
Position
  • Master's Student
Education
March 2002 - December 2005
University of Chile
Field of study
  • Physics and Astronomy

Publications

Publications (186)
Article
Full-text available
A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. H...
Article
Full-text available
Context. After the discovery of the first connection between γ-ray bursts (GRBs) and supernovae (SNe) almost two decades ago, tens of SN-like rebrightenings have been discovered and about seven solid associations have been spectroscopically confirmed to date. Aims. We determine the luminosity, evolution, and origin of three SN rebrightenings in GRB...
Article
Full-text available
We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly w...
Article
Full-text available
The supernovae (SNe) of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the nature of their progenitors and the characteristics of the explosions, investigation of proxim...
Article
Full-text available
(...) Since 1998, only half a dozen spectroscopically confirmed associations have been discovered and XRF 100316D associated with the type-Ic SN 2010bh at z = 0.059 is among the latest. We began observations with GROND 12 hours after the GRB trigger and continued until 80 days after the burst. GROND provided excellent photometric data in six filter...
Preprint
Full-text available
A dedicated gamma-ray burst (GRB) afterglow observing program was performed between 2007 and 2016 with GROND, a seven-channel optical and near-infrared imager at the 2.2m telescope of the Max-Planck Society at ESO/La Silla. In this first of a series of papers, we describe the GRB observing plan, providing first readings of all so far unpublished GR...
Article
In the last 15 years, more than 2700 meteorites have been recovered and officially classified from the Atacama Desert. Although the number of meteorites collected in the Atacama has risen, the physical and climatic properties of the dense collection areas (DCAs) have not been fully characterized. In this article, we compiled the published data of a...
Conference Paper
Full-text available
Introduction: Chondrules are mm-sized igneous spheroids formed by the solidification of melt droplets via a still elusive mechanism [1]. The most abundant chondrules are ferromagnesian porphyritic chondrules classified as type I and type II based on oxidation state [2], with high and low Mg# (= 100 × molar ratio Mg/(Mg+Fe)), respectively. In terms...
Article
Full-text available
We present 170 optical spectra of 35 low-redshift stripped-envelope core-collapse supernovae observed by the Carnegie Supernova Project-I between 2004 and 2009. The data extend from as early as –19 days (d) prior to the epoch of B -band maximum to +322 d, with the vast majority obtained during the so-called photospheric phase covering the weeks aro...
Preprint
Full-text available
We present 170 optical spectra of 35 low-redshift stripped-envelope core-collapse supernovae observed by the Carnegie Supernova Project-I between 2004 and 2009. The data extend from as early as -19 days (d) prior to the epoch of B-band maximum to +322 d, with the vast majority obtained during the so-called photospheric phase covering the weeks arou...
Article
Full-text available
On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-Ame...
Article
Chondrules are commonly surrounded by fine-grained rims (FGRs) whose origin remains highly debated; both nebular and parent body settings are generally proposed. Deciphering their origin, however, is of fundamental importance as they could clarify the matrix–chondrule relationship and thus constrain the formation and transport conditions of chondru...
Article
Context. Microlensing provides a unique opportunity to detect non-luminous objects. In the rare cases that the Einstein radius θ_E and microlensing parallax π_E can be measured, it is possible to determine the mass of the lens. With technological advances in both ground- and space-based observatories, astrometric and interferometric measurements ar...
Preprint
Full-text available
We present the photometric analysis of Gaia19bld, a high-magnification ($A\approx60$) microlensing event located in the southern Galactic plane, which exhibited finite source and microlensing parallax effects. Due to a prompt detection by the Gaia satellite and the very high brightness of $I = 9.05~$mag at the peak, it was possible to collect a com...
Article
Full-text available
We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region...
Preprint
Full-text available
On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star-black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using DECam on the CTIO Blanco 4-m telescope. Target of opportunity interrupts were issued on 8...
Article
The formation of planetesimals was a key step in the assemblage of planetary bodies, yet many aspects of their formation remain poorly constrained. Notably, the mechanism by which chondrules—submillimetric spheroids that dominate primitive meteorites—were incorporated into planetesimals remains poorly understood. Here we classify and analyze partic...
Preprint
Full-text available
The formation of planetesimals was a key step in the assemblage of planetary bodies, yet many aspects of their formation remain poorly constrained. Notably, the mechanism by which chondrules -- sub-millimetric spheroids that dominate primitive meteorites -- were incorporated into planetesimals remains poorly understood. Here we classify and analyze...
Preprint
Full-text available
We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region...
Article
Time domain astronomy was revolutionised with the discovery of the first kilonova, AT2017gfo, in August 2017 which was associated with the gravitational wave signal GW170817. Since this event, numerous wide-field surveys have been optimising search strategies to maximise their efficiency of detecting these fast and faint transients. With the Panora...
Article
Full-text available
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227 ± 92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. Whi...
Article
Spectral observations of the type-IIb supernova (SN) 2016gkg at 300–800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O i] λλ6300, 6364 a...
Article
Full-text available
On 2019 August 14, the LIGO and Virgo Collaborations detected gravitational waves from a black hole and a 2.6 solar mass compact object, possibly the first neutron star–black hole merger. In search of an optical counterpart, the Dark Energy Survey (DES) obtained deep imaging of the entire 90% confidence level localization area with Blanco/DECam 0,...
Preprint
Spectral observations of the type-IIb supernova (SN) 2016gkg at 300-800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O I] $\lambda\lambd...
Preprint
Full-text available
We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance of 227$\pm$92 Mpc and localized within an area of 31 (1166) square degrees at 50\% (90\%) confidence....
Preprint
Time domain astronomy was revolutionised with the discovery of the first kilonova, AT2017gfo, in August 2017 which was associated with the gravitational wave signal GW170817. Since this event, numerous wide-field surveys have been optimising search strategies to maximise their efficiency of detecting these fast and faint transients. With the Panora...
Preprint
On 14 August 2019, the LIGO and Virgo Collaborations alerted the astronomical community of a high significance detection of gravitational waves and classified the source as a neutron star - black hole (NSBH) merger, the first event of its kind. In search of an optical counterpart, the Dark Energy Survey (DES) Gravitational Wave Search and Discovery...
Article
Full-text available
The number of supernovae known to be connected with long-duration gamma-ray bursts (GRBs) is increasing and the link between these events is no longer exclusively found at low redshift (z ≲ 0.3) but is well established also at larger distances. We present a new case of such a liaison at z = 0.33 between GRB 171010A and SN 2017htp. It is the second...
Preprint
Full-text available
The number of supernovae known to be connected with long-duration gamma-ray bursts is increasing and the link between these events is no longer exclusively found at low redshift ($z \lesssim 0.3$) but is well established also at larger distances. We present a new case of such a liaison at $z = 0.33$ between GRB\,171010A and SN\,2017htp. It is the s...
Conference Paper
Full-text available
Resumen / Las supernovas (SN) de envoltura removida provienen del colapso gravitatorio de estrellas masivas que han perdido su envoltura de hidrógeno y/o helio. Con el estudio de sus curvas de luz podemos restringir los parámetros físicos de la explosión y las propiedades de la estrella progenitora. Esta investigación utiliza la fotometría de la SN...
Preprint
We present high-cadence ultraviolet (UV), optical, and near-infrared (NIR) data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical lightcurve evolution suggests that an extra energ...
Article
Twenty years ago, GRB 980425/SN 1998bw revealed that long gamma-ray bursts (GRBs) are physically associated with broad-lined type-Ic supernovae (SNe). Since then more than 1000 long GRBs have been localized to high angular precision, but only in ∼50 cases has the underlying SN component been identified. Using the Gamma-Ray Burst Optical Near-Infrar...
Article
Full-text available
In the version of this Article originally published, the authors Pablo Huijse and Pablo Huentelemu were mistakenly affiliated with the University of California, Berkeley, and their affiliation to the University of Chile was omitted. Pablo Huijse’s affiliation to the Universidad Austral de Chile was also omitted.
Article
Full-text available
We present observations and analysis of 18 stripped-envelope supernovae observed during 2013 – 2018. This sample consists of 5 H/He-rich SNe, 6 H-poor/He-rich SNe, 3 narrow lined SNe Ic and 4 broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive...
Preprint
Full-text available
We present observations and analysis of 18 stripped-envelope supernovae observed during 2013 -- 2018. This sample consists of 5 H/He-rich SNe, 6 H-poor/He-rich SNe, 3 narrow lined SNe Ic and 4 broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive...
Article
We present photometric and spectroscopic analysis of the peculiar core-collapse supernova (SN) 2013gc, spanning 7 yr of observations. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 d from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminos...
Article
Full-text available
Type II supernovae (SNe) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout, a short-lived phenomenon which can last from hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after e...
Article
Full-text available
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences)...
Preprint
Twenty years ago, GRB 980425/SN 1998bw revealed that long Gamma-Ray Bursts (GRBs) are physically associated with broad-lined type Ic supernovae. Since then more than 1000 long GRBs have been localized to high angular precision, but only in about 50 cases the underlying supernova (SN) component was identified. Using the multi-channel imager GROND (G...
Preprint
Full-text available
We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after +300 d. From archival...
Preprint
Full-text available
We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At 200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after 300 d. From archival im...
Preprint
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences)...
Article
Full-text available
We present the photometric and spectroscopic evolution of the type Ic supernova LSQ14efd, discovered by the La Silla QUEST survey and followed by PESSTO. LSQ14efd was discovered few days after explosion and the observations cover up to ∼ 100 days. The early photometric points show the signature of the cooling of the shock break-out event experience...
Article
Context . Afterglows of gamma-ray bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. Aims . We want to address the question whether GRB 111209A was a special event beyond it...
Article
We present a Hubble diagram of type II supernovae using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I (CSP) for which optical and near-infrared light-curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to...
Article
We searched for an optical counterpart to the first gravitational-wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of...
Article
We present the first results of the High cadence Transient Survey (HiTS), a survey whose objective is to detect and follow up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera (DECam) and a custom made pipeline for image subtraction, can...
Article
Full-text available
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM...
Article
Full-text available
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 team...
Article
Full-text available
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM...
Article
Full-text available
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significa...
Article
Full-text available
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brow...
Article
Full-text available
Context . GRB 111209A, one of the longest gamma-ray bursts (GRBs) ever observed, is linked to SN 2011kl, which is the most luminous GRB supernova (SN) detected so far. Several lines of evidence indicate that this GRB-SN is powered by a magnetar central engine. Aims . We place SN 2011kl into the context of large samples of SNe, addressing in more de...
Article
Full-text available
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significa...
Article
CONTEXT. Exoplanet searches have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. AIMS. During the past six years, we have conducted a radial velocity follow-up program of 166 giant stars, to detect substellar companions, and characterizing their orbital proper...
Article
Full-text available
Aims. We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods. We obtain and analyze multi-band optical light curves and optical-near-infrared spectroscopy at low and medium resolution spanning from -7 days to +300 days from the B-band maximum. Results. A photometric analysis shows that SN 2...
Article
Full-text available
We have searched for an optical counterpart to the first gravitational wave source discovered by the LIGO experiment, GW150914, using a combination of the Pan-STARRS1 wide-field telescope and the PESSTO spectroscopic follow-up programme. We mapped out 442 square degrees of the northern sky region of the initial map. We discovered 56 astrophysical t...
Article
Full-text available
We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has sev...
Article
We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system...
Article
We present photometry and spectroscopy of SN 2011kl associated to GRB 111209A. Peculiarities arise from both the ultra-long GRB and the very luminous SN, brighter than any other GRB-associated SN observed to date. We present unequivocal evidence in favor of a scenario where a newly-formed magnetar powers both the GRB and the SN.
Article
Full-text available
We report the discovery and early evolution of ASASSN-15lh, the most luminous supernova ever found. At redshift z=0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} ~ -23.5 and bolometric luminosity L_bol ~ 2.2x10^45 ergs/s, which is >~ 2 times more luminous than any previously known supernova. Its spectra match the hydrogen-poor sub-cla...
Article
Full-text available
Precision radial velocities are required to discover and characterize planets orbiting nearby stars. Optical and near infrared spectra that exhibit many hundreds of absorption lines can allow the m/s precision levels required for such work. However, this means that studies have generally focused on solar-type dwarf stars. After the main-sequence, i...