Felipe Alves Portela

Felipe Alves Portela
French National Centre for Scientific Research | CNRS · Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet

PhD

About

8
Publications
1,995
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
105
Citations
Additional affiliations
October 2012 - January 2013
Education
September 2013 - December 2017
Imperial College London
Field of study
  • Aeronautics

Publications

Publications (8)
Preprint
Full-text available
We characterise the incompressible turbulence cascade in terms of the concurrent inter-scale and inter-space exchanges of the scale-by-scale energy, helicity and enstrophy. The governing equations for the scale-by-scale helicity and enstrophy are derived in a similar fashion to that of the second order structure function obtained by Hill (2002). We...
Article
Rough surfaces are common in engineering applications, where a priori estimations of drag for a given flow are needed based on knowledge of the surface topography. It is likely that length-scale information is required, in addition to standard statistical quantities such as solidity or effective slope, root-mean-square height and skewness. In this...
Article
A novel hybrid method combining direct numerical simulation (DNS) and the Reynolds-averaged Navier Stokes (RANS), denoted as a stress-blended method (SBM), has been developed. The SBM is targeted at simulating turbulent flows over arbitrary rough surfaces in which computational savings can be achieved by making the DNS domain as small as possible....
Article
We consider the bypass transition in a flat-plate boundary layer subject to free-stream turbulence and compute the evolution of the second-order structure function of the streamwise velocity, du 2 (x, r), from the laminar to the fully turbulent region using DNS. In order to separate the contributions from laminar and turbulent events at the two poi...
Article
Full-text available
We use direct numerical simulation data to study interscale and interspace energy exchanges in the near field of a turbulent wake of a square prism in terms of a Kármán–Howarth–Monin–Hill (KHMH) equation written for a triple decomposition of the velocity field which takes into account the presence of quasi-periodic vortex shedding coherent structur...
Preprint
Full-text available
We use DNS to study inter-scale and inter-space energy exchanges in the near-field of a turbulent wake of a square prism in terms of the KHMH equation written for a triple decomposition of the velocity field accounting for the quasi-periodic vortex shedding. Orientation-averaged terms of the KHMH are computed on the plane of the mean flow and on th...
Article
Full-text available
Between streamwise distances 4d and at least 10d in the planar turbulent wake of a square prism of side length d, the turbulent fluctuating velocities are highly non-Gaussian, the turbulent energy spectrum has a close to −5/3 power law range, and the turbulence dissipation rate obeys the nonequilibrium dissipation scaling if the energy of the coher...
Article
Full-text available
We present a study of the turbulence cascade on the centreline of an inhomogeneous and anisotropic near-field turbulent wake generated by a square prism at a Reynolds number of $Re=3900$ using the Kármán–Howarth–Monin–Hill equation. This is the fully generalised scale-by-scale energy balance which, unlike the Kármán–Howarth equation, does not requi...

Network

Cited By