About
37
Publications
5,008
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
211
Citations
Introduction
I am currently a PhD student supervised by Prof. Qingfu Zhang, Department of Computer Science, City University of Hong Kong. My homepage: https://feiliu36.github.io/
Current institution
Publications
Publications (37)
Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the search operators need a carefully hand-crafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MO...
Vehicle routing is a well-known optimization research topic with significant practical importance. Among different approaches to solving vehicle routing, heuristics can produce a satisfactory solution at a reasonable computational cost. Consequently, much effort has been made in the past decades to develop vehicle routing heuristics. In this articl...
In many real-world engineering design optimization problems, objective function evaluations are very time costly and often conducted by solving partial differential equations. Gradients of the objective functions can be obtained as a byproduct. Naturally, these problems can be solved more efficiently if gradient information is used. This paper stud...
Heuristics are commonly used to tackle various search and optimization problems. Design heuristics usually require tedious manual crafting with domain knowledge. Recent works have incorporated Large Language Models (LLMs) into automatic heuristic search, leveraging their powerful language and coding capacity. However, existing research focuses on t...
Recent advancements in Neural Combinatorial Optimization (NCO) have shown promise in solving routing problems like the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) without handcrafted designs. Research in this domain has explored two primary categories of methods: iterative and non-iterative. While non-iterative m...
Recent advancements in Neural Combinatorial Optimization (NCO) have shown promise in solving routing problems like the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) without handcrafted designs. Research in this domain has explored two primary categories of methods: iterative and non-iterative. While non-iterative m...
Real-world Vehicle Routing Problems (VRPs) are characterized by a variety of practical constraints, making manual solver design both knowledge-intensive and time-consuming. Although there is increasing interest in automating the design of routing algorithms, existing research has explored only a limited array of VRP variants and fails to adequately...
Symbolic regression (SR) methods have been extensively investigated to explore explicit algebraic Reynolds stress models (EARSM) for turbulence closure of Reynolds-averaged Navier-Stokes (RANS) equations. The deduced EARSM can be readily implemented in existing computational fluid dynamic (CFD) codes and promotes the identification of physically in...
Crafting adversarial examples is crucial for evaluating and enhancing the robustness of Deep Neural Networks (DNNs), presenting a challenge equivalent to maximizing a non-differentiable 0-1 loss function. However, existing single objective methods, namely adversarial attacks focus on a surrogate loss function, do not fully harness the benefits of e...
We introduce LLM4AD, a unified Python platform for algorithm design (AD) with large language models (LLMs). LLM4AD is a generic framework with modularized blocks for search methods, algorithm design tasks, and LLM interface. The platform integrates numerous key methods and supports a wide range of algorithm design tasks across various domains inclu...
Vehicle Routing Problems (VRPs) are significant Combinatorial Optimization (CO) problems holding substantial practical importance. Recently, Neural Combinatorial Optimization (NCO), which involves training deep learning models on extensive data to learn vehicle routing heuristics, has emerged as a promising approach due to its efficiency and the re...
Symbolic regression (SR) methods have been extensively investigated to explore explicit algebraic Reynolds stress models (EARSM) for turbulence closure of Reynolds-averaged Navier-Stokes (RANS) equations. The deduced EARSM can be readily implemented in existing computational fluid dynamic (CFD) codes and promotes the identification of physically in...
Algorithm Design (AD) is crucial for effective problem-solving across various domains. The advent of Large Language Models (LLMs) has notably enhanced the automation and innovation within this field, offering new perspectives and superior solutions. Over the past three years, the integration of LLMs into AD (LLM4AD) has progressed significantly, fi...
Heuristics are commonly used to tackle diverse search and optimization problems. Design heuristics usually require tedious manual crafting with domain knowledge. Recent works have incorporated large language models (LLMs) into automatic heuristic search leveraging their powerful language and coding capacity. However, existing research focuses on th...
Neural combinatorial optimization (NCO) is a promising learning-based approach to solving various vehicle routing problems without much manual algorithm design. However, the current NCO methods mainly focus on the in-distribution performance, while the real-world problem instances usually come from different distributions. A costly fine-tuning appr...
Automated heuristic design (AHD) has gained considerable attention for its potential to automate the development of effective heuristics. The recent advent of large language models (LLMs) has paved a new avenue for AHD, with initial efforts focusing on framing AHD as an evolutionary program search (EPS) problem. However, inconsistent benchmark sett...
Multi-objective optimization can be found in many real-world applications where some conflicting objectives can not be optimized by a single solution. Existing optimization methods often focus on finding a set of Pareto solutions with different optimal trade-offs among the objectives. However, the required number of solutions to well approximate th...
Neural combinatorial optimization (NCO) is a promising learning-based approach to solving various vehicle routing problems without much manual algorithm design. However, the current NCO methods mainly focus on the in-distribution performance, while the real-world problem instances usually come from different distributions. A costly fine-tuning appr...
Heuristics are widely used for dealing with com-
plex search and optimization problems. How-
ever, manual design of heuristics can be often
very labour extensive and requires rich working
experience and knowledge. This paper proposes
Evolution of Heuristic (EoH), a novel evolution-
ary paradigm that leverages both Large Language
Models (LLMs) and E...
This paper studies the multiobjective bandit problem under lexicographic ordering, wherein the learner aims to simultaneously maximize ? objectives hierarchically. The only existing algorithm for this problem considers the multi-armed bandit model, and its regret bound is O((KT)^(2/3)) under a metric called priority-based regret. However, this boun...
In the rapidly evolving field of machine learning, adversarial attacks present a significant challenge to model robustness and security. Decision-based attacks, which only require feedback on the decision of a model rather than detailed probabilities or scores, are particularly insidious and difficult to defend against. This work introduces L-AutoD...
Many combinatorial multiobjective optimization problems involve very costly-to-evaluate objectives and constraints. It is very difficult, if not impossible, for traditional heuristics to solve these problems with an acceptable amount of computational time. In this paper, we show that offline machine learning can be very useful to assist multiobject...
Optimization can be found in many real-life applications. Designing an effective algorithm for a specific optimization problem typically requires a tedious amount of effort from human experts with domain knowledge and algorithm design skills. In this paper, we propose a novel approach called Algorithm Evolution using Large Language Model (AEL). It...
Multiobjective discrete optimization via simulation (MDOvS) has received considerable attention from both academics and industry due to its wide application. This paper proposes a two-stage fast convergent search algorithm for MDOvS. In its first stage, the multiobjective optimization problem under consideration is decomposed into several single-ob...
Expensive multiobjective optimization problem poses a big challenge. In many real-world engineering design problems, the time-consumed function evaluation is done by solving partial differential equations. The partial derivatives of a candidate solution can be calculated as a byproduct. Naturally, these problems can be solved more efficiently if gr...
A Dielectric Barrier Discharge (DBD) plasma actuator can create a body force which locally accelerates the base flow leading to an attenuation of broadband disturbance to delay the transition. In this study, numerical simulation on an NLF0416 airfoil is conducted to investigate transition delay and drag reduction by a DBD plasma actuator. To simula...