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Abstract

This paper proposes a new method for designing lightweight automotive body assemblies using multi-material construction with low
cost penalty. Current constructions of automotive structures are based on single types of materials, e.g., steel or aluminium. The principle
of the multi-material construction concept is that proper materials are selected for their intended functions. The design problem is for-
mulated as a multi-objective nonlinear mathematical programming problem involving both discrete and continuous variables. The dis-
crete variables are the material types and continuous variables are the thicknesses of the panels. This problem is then solved using a
multi-objective genetic algorithm. An artificial neural network is employed to approximate the constraint functions and reduce the num-
ber of finite element runs. The proposed method is illustrated through a case study of lightweight design of an automotive door assembly.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The increasing number of automobiles has led to vari-
ous societal and environmental concerns, such as fuel effi-
ciency, emission, and global warming. The automobile
industry is under considerable pressure to reduce the fuel
consumption and the emissions of their vehicles. Reducing
the weight of the vehicles is one key approach to achieving
fuel efficiency, since every 56.69 kg weight reduction results
in a gain of 0.09-0.21 km per liter fuel economy [1].

In general, the car body and its interior accounts for
approximately 40 percent of the vehicle weight. Thus, weight
reduction of car bodies offers a promising way of improving
the fuel economy of automobiles. One basic approach to
reducing the weight of car bodies is using lightweight mate-
rials. Yet, one key obstacle of the substitution of lightweight
materials for commonly used steel is the high cost of these
materials as compared to steel [2]. For instance, the costs
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of a sophisticated all-aluminium car body like that of the
Audi A8 is significantly higher than that of an ordinary steel
body. Therefore, some researchers [3—-5] have suggested that
the car body of the future will be a composite of steel and
several lightweight materials, i.e., multi-material structures.

In the past several years, some of the major auto body pan-
els have been developed with new advanced materials, such as
high strength steels [6,7], composite materials [8,9] and
aluminium alloys [4,10]. These materials allow for lighter
weight than traditional steel car bodies. However, most work
done in lightweight materials car body design has been lim-
ited to single-material construction method. There have been
very few researches that explicitly address the detailed meth-
ods for multi-material structure design and construction.

The concept of the multi-material construction is that
proper materials are selected for the intended part func-
tions. Compared to single material construction method,
multi-material structures allow for allocating the optimal
material to each independent structural component. There-
fore, multi-material construction method enables designers
to fully exploit the advantages of different materials and
achieve the optimal production efficiencies.
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The objective of this paper is to present a new method
for designing lightweight automotive body assemblies cost
effectively using multi-material construction. The material
type and the thickness of each independent panel are trea-
ted simultaneously as design variables. The integrated opti-
mization problem of material selection and thickness
determination is formulated as a multi-objective nonlinear
mathematical programming problem involving both con-
tinuous and discrete variables. The optimization problem
is solved by a multi-objective genetic algorithm, which
can efficiently generate a well-spread Pareto front over
multiple objectives. Neural network approximations are
used to reduce computational complexity, which represent
the relationships between constraints and the design
variables.

2. Formulation of optimization model

To illustrate the problem, consider the following design
conditions:

(1) A thin-walled structure consisting of n» components,
which is an assembly of an automotive body, is being
designed.

(2) Select the optimal material from m candidate materi-
als for each component.

(3) The aim of the problem is to design the assembly as
inexpensive and light as possible, while at the same
time ensuring basic structural performances are met.

(4) The topology and shape of the assembly is given, the
thickness can be changed in order to satisfy structural
performance.

It is difficult to divide a single panel from a thin-walled
assembly since several panels support the loads together.
Hence, it is better to select materials at the assembly level
by considering all components simultaneously. Moreover,
even for a small number of components and candidate
materials, the number of potential material combinations
to be considered can be very high. In this paper, therefore,
the problem is formulated as an optimization problem and
solved using a genetic algorithm, which allows the efficient
exploration of multiple high-performance solutions based
on given criteria.

A general optimization model for the design problem
can be formulated as follows:

Minimize W (t;, p,) = »_ Aitip, (1)
i=1
Minimize  C(t;, p;, p;) = ZAitipipi (2)
i=1

Subject to g;(¢;,B;) <0, i=1,....,n, j=1,....k (3)

<<, i=1,...,n (4)
Bi S {(plaElaplvo-la .. ')a RN} (pmvEmvpmvo-ma .. )}7

i=1,...,n (5)

where #; and A4; denote the thickness and the area for the ith
component, respectively, /- and ¢V are the lower and upper
bounds of the thickness, n denotes the number of indepen-
dent components, B; are the materials properties, which in-
clude density (p;), raw material price (p;), elastic modulus
(E)), and yield strength (o;) etc., m is the number of candi-
date materials.

Egs. (1) and (2) define the objective functions, which are
weight and material cost of the assembly, respectively. Eq.
(3) is the constraint function, which provides the bounds on
member stress, static stiffness, frequency, dynamic
response, etc. Eqgs. (4) and (5) define the search region for
the optimum.

In the general model, it is straightforward to take mate-
rial properties as the design variables. However, such an
approach introduces an enormous number of design vari-
ables and the relationships among them. For instance,
assignment of 7800 kg/m? to the density generally specifies
the value for elastic modulus to be 210 GPa. The high num-
ber of design variables as well as their relationships lead to
a high computational complexity of the optimization
problem.

To solve the difficulties mentioned above, the material
types rather than material properties are introduced as
design variables. Each candidate material type has been
assigned an ID number from 1 to m, which can be in any
arbitrary order. Define the material used for ith component
as a design variable named M; (M, € {1,2,...,m}). If a
material type is given to M,, all the related properties of
the material can be identified exactly. For a mathematical
model, it can be stated as follows:

Pi f/’(Ml)
E, Se(M;)
p | = | H00) ©)

Introducing Eq. (6) into Eq. (1) leads to
Minimize W = W (t;, p;) = W(t:, f,(M;))

=W(t,M,), i=1,....n (7)

Similarly, Egs. (2)—(5) can be rewritten as
Minimize C=C(t;,M;), i=1,...,n (8)
Subject to g;(t;,M;) <0, i=1,....n, j=1,....;k (9)
<<, i=1,...,n (10)
M;e{1,2,....m}, i=1,...,n (11)

In Egs. (7)—(11), the thicknesses of the independent compo-
nents and the materials types are taken as design variables.

The optimization model given by Egs. (7)—(11) is a
multi-objective nonlinear programming problem, in which
some of the design variables are discrete and others are
continuous. Due to the complexity of the problem and
the multi-objective formulation without predefined weight,
a multi-objective genetic algorithm named non-dominated
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sorting genetic algorithm II (NSGA-II) [11], was chosen
because of its robustness to discrete problems and efficiency
in handling multi-objective functions. This algorithm uses
the non-dominated sorting method for Pareto ranking pro-
cedure, which has been successfully applied in numerous
studies such as topology optimization [12], mechanical
design [13] and decomposition-based assembly synthesis
[14,15].

3. Multi-objective genetic algorithms

In most real-world problems, several objectives must be
satisfied simultaneously in order to obtain an optimal solu-
tion. The presence of multiple objectives in a problem usu-
ally gives rise to a set of optimal solutions, largely known
as Parcto optimal solutions. A Pareto set is represented
by a set of solutions such that when one moves from one
solution to any other, at least one objective function
improves, while the other worsens.

Genetic algorithms have been recognized to be well sui-
ted for multi-objective optimization because they have the
ability to find multiple Pareto optimal solutions in one sin-
gle simulation run [11]. This has led to the development of
many successful multi-objective optimization genetic
algorithms [11,16-18] over the past years. Among several
methods available to solve multi-objective optimization
problems, non-dominated sorting genetic algorithm II
(NSGA 1I), developed by Deb et al. [11], is used here to
obtain the Pareto set.

3.1. NSGA-II: A brief overview

The main idea of the non-dominated sorting genetic
algorithm (NSGA) [17] is that a ranking selection method
is used to emphasize good points and a niching method is
used to maintain stable subpopulations of good points.
The main difference between NSGA and a simple genetic
algorithm is in how the selection operator works. The
crossover and mutation operators remain as usual. NSGA
I1 [11] is the modified version of NSGA with the properties
of a fast non-dominated sorting procedure, an elitist strat-
egy, a parameterless approach and a simple yet efficient
constraint-handling method. The basic steps [11,14] of
NSGA-II are outlined below:

(1) Create a random population P of n chromosomes (an
encoded representation of design variables).

(2) Divide the population members into a number of
subpopulations according to an increasing level of
non-domination (rank 0 is Pareto optimal). Store
the chromosomes with rank 0 into set O. Also, create
an empty subpopulation Q.

(3) Select two chromosomes ¢; and ¢; in P with probabil-
ity proportional to n — rank(c;) and n — rank(c;).

(4) Crossover ¢; and ¢; to generate two new chromosomes
¢; and ¢} with a certain high probability.

(5) Mutate ¢} and ¢ with a certain low probability.

(6) Evaluate the objective function values of ¢; and ¢} and
store them Q. If Q contains less than n new chromo-
somes, go to 3.

(7) Let P— PU Q and empty Q. Rank each chromo-
some in P and remove n chromosomes with lowest
ranks from P.

(8) Update set O and increment the generation counter.
If the generation counter has reached a pre-specified
number, terminate the process and return O. Other-
wise go to 3.

Details of this method are available in the literature [11].
NSGA-II has been implemented using the iSIGHT soft-
ware [19] from Engineous Inc. The NSGA-II code in C
programming language is also available from the KanGAL
website at <http://www iitk.ac.in/kangal/soft.htm>.

4. Response modeling using artificial neural network

The multi-objective optimization using genetic algo-
rithm often requires inordinately large amount of simula-
tions and each simulation of finite element analysis
(FEA) takes a long CPU time. Therefore, artificial neural
networks (ANNs) are employed to approximate the con-
straint functions of Eq. (9) and reduce the number of
FEA runs.

An ANN can be understood [20] as a mapping from
input to output, i.e., R" — R", fiX)=Y, where X(x1,x,,
...,X,) 1s the input vector, and Y(yi,ys, ...,V 1s the
output vector. As shown in Fig. 1, a conventional ANN
consists of an input layer (the first layer), an output layer
(the last layer), and one or more hidden layers. Each layer
is composed of a large number of parallel processing ele-
ments known as neurons. Neurons in the input layer trans-
mit the input signal x; to neurons in the hidden layer. Each
neuron j in the hidden layer sums its input signals x; after
multiplying them by the respective connection weights wj;,
and then computes its output /; as a function of the sum,
ie.,

h; :f(z wﬁx,«) (12)

where f'is usually a sigmoidal function. The outputs of neu-
rons in the output layer are computed similarly.

The network starts processing the incoming training sig-
nals with arbitrary weights. Network training is the act of
continuously adjusting their connection weights until they
reach unique values that allow the network to achieve an
accurate prediction. The training algorithms optimize the
weights based upon the main principle of minimizing the
sum of squared differences between the desired and actual
values of the output neurons, namely:

e:%Z(J’dj*y/’)z (13)

where y; is the desired value of output neuron j and y; is
the actual output of that neuron.
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Hidden layer
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Fig. 1. Structure of an ANN with a hidden layer.

Each connection weight wj; is adjusted by adding an
increment Aw;; to it. Aw;; can be used to reduce e as rapidly
as possible. The adjustment is carried out over several
training iterations until an appointed small value of e is
obtained or a given number of iterations is reached. How
Awj; is identified depends on the training algorithm.

The training of an ANN usually adopts a back-propaga-
tion (BP) algorithm, which was first proposed by Rumel-
hart and McClelland [21]. The BP algorithm determines
the change Aw;{(k) in the weight of the connection between
neurons { and j at iteration k as:

I
aWj,'(k)

where « is called the learning coefficient, y is the momen-
tum coefficient and Aw;(k — 1) is the weight change in
the immediately preceding iteration.

In this study, the steps to construct the ANN approxi-
mation are as follows:

Aw;i(k) = + pAw;(k — 1) (14)

Step 1: Gather training data. The first step is to generate
the data sets that can be used to train an appropriate
neural network. The training set consists of pairs of
input (design) vectors and associated outputs
(responses). FEA is used to generate the data set. In
order to obtain enough information, the Latin Hyper-
cube Sampling method [22] is employed to distribute
the sampling points uniformly over the entire design
space.

Step 2: Decide the appropriate architecture of the net-
work. The number of nodes in the input and output
layer equals the number of input and output variables,
respectively. The primary question for an ANN
designer is how to obtain an optimal topology of the
hidden layer or layers. Nowadays, the most common
approach is still the trial-and-error method based on
comparative performance of different network archi-
tectures.

Step 3: Train the network using BP algorithm. The
training is carried out over several iterations until the
desired level of accuracy is obtained or a given number
of iterations are reached

Step 4: Test the network performance. In this step, the
trained network is tested with data, which were not pres-
ent in the training data set.

Please note that the performance of an ANN depends
strongly on the network architecture as well as the richness
of the training data set. Therefore, changes in network
architecture and training data set have been done and the
whole training and testing process have been repeated sev-
eral times before arriving at an optimal ANN.

5. Application

The proposed method is illustrated with an example of
lightweight design of a car door assembly (Fig. 2). Two
major panels, the outer panel and the inner panel, are
considered since they make major contribution to the
total weight of the door. Four candidate materials are
considered for each panel and each candidate material
has been assigned an ID number from 1 to 4. Subse-
quently, two design variables, M;, M, e {1,2,3,4}, are
introduced which denote the material used for the inner
panel and outer panel, respectively. The ID numbers as
well as properties of these four materials are given in
Table 1.

The requirement of the problem is to design the door for
minimum weight and cost, while meeting the multiple con-
straints involving vertical sag stiffness (ds,,), upper lateral
stiffness (dupper), lower lateral stiffness (diower) and the nat-
ural frequency of the free—free normal mode (w;). Each
stiffness is evaluated as the deflection at the load applica-
tion point under the fixed load, calculated by finite element
methods. The boundary conditions for the three stiffness
load cases are shown in Fig. 3. For vertical sag stiffness,
the hinges are fully restrained and the vertical load
(Fsag = 800 N) is applied at the latch. For both upper and
lateral stiffness, the hinges are fully restrained and the latch
is restrained except for roll rotation, at the same time the
horizontal load (Fypper = 200 N, Fiower = 200 N) is applied
to the upper side of the inner panel and to the lower side of
the outer panel, respectively.

The optimization problem is formulated as follows:
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Fig. 2. Exploded view of the door assembly. A: inner panel; B: belt
reinforcement; C: beam; D: beam bracket E: outer panel.
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Table 1

ID number and the properties of candidate materials

ID M; Material Elastic modulus Density Price®
(GPa) (kg/m®)  (S/kg)

1 Magnesium 45 1840 2.86

2 Aluminium 72 2720 2.2

3 Mild steel 210 7840 0.66

4 Carbon fiber 80 1900 17.6

# The column presents material prices in China in 2003.

FI'(EW{'I'

Fig. 3. Boundary conditions: (a) vertical sag stiffness analysis and (b)
upper and lateral stiffness analysis.

Minimize W = W(t;,M;), i=1,2 (15)
Minimize C = C(t;,M;), i=1,2 (16)
Subject to dg < 2.7 mm
dypper < 3.0 mm
diower < 2.7 mm (17)
w; = 35Hz
0.6 mm <4 <30mm, i=1,2 (18)
M; e {1,2,3,4}, i=1,2 (19)

where the design variables are the thicknesses of inner
panel and outer panel (¢, t,) and the materials ID numbers
(M, M>).

A BP ANN was used to approximate the constraint
functions of Eq. (17). In the present work, a total of 150
FE models have been run using the FEA software MSC/
NASTRAN and 150 training data sets have been gener-
ated. Addition 50 data sets that excluded from the training
data have been generated for future testing. It was decided
to have two hidden layers and the numbers of neurons in
the hidden layers were decided by trial and error. Based
on the trial runs, the network architecture decided in the
present case was 4-10-10-4. The input layer of the ANN
consists of four neurons, corresponding to the four design
variables. The output layer consists of four neurons, corre-
sponding to dsug, dupper> diower and ;. The number of hid-
den layers is two and each layer includes ten neurons.

To test the precision of the ANN model, Table 2 shows
the deviations between the FEA and the ANN predicted
results for both training data set and testing data set. Only
the vertical sag stiffness has been graphically compared as
shown in Fig. 4, in which the sample data sets have been
ordered in increasing value of the vertical sag stiffness
(dsag). The deviation of predicted results are minor and
with average errors less than 5%. It has been observed from

Table 2
The prediction error of the ANN
dsag dupper dlower (@}
Training Testing Training Testing Training Testing Training Testing
Avg. error (%) 1.6 2.1 1.2 1.4 32 4.9 0.3 1.0
als b 10
FEM FEM
Neural network 8 Neural network A
10 1 T 6
: g
S0 ;’ 4 4
~ s 1 ™
T 2 - T
1 ~*4H,J — Rl
o : 0 — ‘ ‘ ‘
0 50 100 150 0 10 20 30 40 50

Training samples

Testing samples

Fig. 4. Comparison of the FEA and the ANN predicted results (vertical sag stiffness): (a) training data set and (b) testing data set.
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Table 3
NSGA-II parameters used in the case study
Population size 90
Number of generations 150
Crossover probability 90%
Crossover distribution index 15
Mutation distribution index 75
A
40 = ® Pareto optimal solutions
# Feasible solutions
eh
= 30 -
=
ch
§
20 —
XY
10 [~ eny
[
-
| | &
50 100
Cost ($)

Fig. 5. Pareto optimal set for the lightweight door assembly design.

the results that the prediction of the network is accurate
with very little error.

Table 3 lists the values of NSGA-II parameters used for
the optimization. The values are chosen to provide the
results with good repeatability. Fig. 5 shows the Pareto
solutions of the problem obtained by the multi-objective
GA, where the horizontal and vertical axes are the material
cost and the structural weight, respectively. The highlighted
points (dark blue) are the Pareto optimal solutions and the
corresponding results are shown in Table 4.

Fig. 5 shows that in addition to the lowest weight and
cost points, an optimal Pareto set of designs is found in
one single simulation run. Since none of the non-domi-

nated solutions in the Pareto set is superior to any other,
any one of them is an acceptable solution. The decision as
to which solution is most suitable for the door assembly
depends on its application. As could be seen from Table
4, all-aluminium and all-magnesium structures realized
lightweight effects of 28.0% and 31.6% than all-steel struc-
ture, respectively, while the costs are about 101.1% and
140.7% more expensive. All-aluminium or all-magnesium
structures may only be suitable for luxury vehicles that
have larger profit margins since there is a considerable
cost penalty associated with the lightweight materials.
Moreover, if cost was not a concern, carbon fiber might
be used to achieve the greatest weight reduction. In the
case study, steel-aluminium hybrid door assembly
achieved weight reduction of 12.9% with just 33.1% cost
penalty. This design leads to a lightweight and affordable
door assembly that appears to be the favorable structure
for inexpensive vehicles which desire high fuel economy
and are under the cost constraint. The similar situation
is also true for the steel-magnesium door design. Going
briefly through Table 4, one can note that several multi-
material designs achieved lower cost penalties associated
with unit decrease in weight, which implies that compared
to single-material structures, multi-material designs pro-
vide more opportunities to achieve fuel economy and
low cost penalty simultaneously. Through optimal materi-
als selection for each independent structural member,
multi-material construction method allows designers to
fully exploit the advantages of each material and achieve
the optimal production efficiencies.

6. Conclusions

A new synthesis method is proposed for designing light-
weight automotive body assemblies using multi-material
construction with low cost penalty. The novel feature of
the method is that the integrated problem of material selec-
tion-thickness determination is posed as an optimization
problem, in which the material types are introduced as dis-

Table 4

Pareto optimal designs for the door assembly

M M>* ¢, (mm) t, (mm)  Weight (kg) Cost? ($) Weight reduction® (%) Cost penalty” (%)  AC¢ ($/kg)
3 3 0.81 0.70 13.583 8.965 0 0 -

3 2 0.88 1.09 11.835 11.934 12.9 33.1 1.70
3 1 0.90 1.30 11.498 12.335 15.4 37.6 1.62
2 2 1.80 1.07 9.778 18.027 28.0 101.1 2.38
2 1 1.77 1.57 9.683 19.545 28.7 118.0 2.71
1 1 2.60 1.35 9.285 21.577 31.6 140.7 293
2 4 1.77 0.98 8.765 41.791 35.5 366.2 6.81
4 2 1.68 1.05 8.022 63.284 40.9 605.9 9.77
4 1 1.75 1.28 7.704 65.958 433 635.7 9.69
4 4 1.61 1.00 7.027 85.336 48.3 851.9 11.65

%1, 2, 3 and 4 correspond to magnesium, aluminium, mild steel and carbon fiber, respectively according to Table 1.
® Relative changes with respect to the values of all-steel (3-3-0.81-0.70) solution.

¢ The increase in cost associated with unit decrease in weight.
9 The column presents cost based on raw material prices in China in 2003.
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crete design variables. The proposed method enables opti-
mal materials selection for each independent component of
an assembly while simultaneously determining sizing vari-
ables. The case study demonstrated that the method suc-
cessfully generate a well-spread Pareto optimal set in one
single simulation run. From this Pareto optimal set, deci-
sion makers can select the most suitable design according
to the vehicle program and its application. It is observed
that several hybrid-material structures in the example
achieved lower cost penalties associated with unit decrease
in weight than all-aluminium or all-magnesium structures.
From the results of the case study, it can be seen that if
proper materials are selected for the appropriate parts, a
lightweight, good structure performances and low cost
car body assembly can be acquired.

Although the results of the case study demonstrate the
potential utility of the present method, the forming and
joining process aspects of fabricating the structures should
be included for the method to be more practical. These
aspects should be included in the design model by taking
into account forming and joining process economic attri-
butes and process constraints. These extensions will be
the focus of our future work.
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