About
471
Publications
71,148
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,299
Citations
Introduction
Professor Federico Toschi holds the chair of Computational Physics of Multi-scale Transport Phenomena in the department of Physics and in the Department of Mathematics and Computer Science at Eindhoven University of Technology and within the 3TU Centre of Excellence for Multiscale Phenomena. His research interests include fluid dynamics turbulence, statistical physics, micro and nano-fluids, numerical methods for fluid dynamics, high-performance computing.
Current institution
Additional affiliations
January 2007 - present
January 2003 - December 2007
Education
November 1995 - November 1998
November 1990 - November 1995
Publications
Publications (471)
Wave turbulence describes the long-time statistical behavior of out-of-equilibrium systems composed of weakly interacting waves. Non-Hermitian media ranging from open quantum systems to active materials can sustain wave propagation in so-called $PT$-symmetric states where gain and loss are effectively balanced. Here, we derive the kinetic equations...
The chaotic dynamics of small-scale vorticity plays a key role in understanding and controlling turbulence, with direct implications for energy transfer, mixing, and coherent structure evolution. However, measuring or controlling its dynamics remains a major conceptual and experimental challenge due to its transient and chaotic nature. Here we use...
Unlike coffee and cream that homogenize when stirred, growing micro-organisms (e.g., bacteria, baker’s yeast) can actively kill each other and avoid mixing. How do such antagonistic interactions impact the growth and survival of competing strains, while being spatially advected by turbulent flows? By using numerical simulations of a continuum model...
Postphenomenology and mediation theory strongly explain the micro-level interactions between human individuals and objects. Recently, humans as a collective have been added to the theory at the political macro-level, which we argue that is an important contribution. However, the enlargement of the theory would also merit a meso-level explanation of...
Intermittency refers to the broken self-similarity of turbulent flows caused by anomalous spatiotemporal fluctuations. In this Letter, we ask how intermittency is affected by a nondissipative viscosity, known as odd viscosity (also Hall viscosity or gyroviscosity), which appears in parity-breaking fluids such as magnetized polyatomic gases, electro...
Catastrophic phase inversion, the breakdown of a concentrated emulsion characterized by the most puzzling sudden feature, is crucial in numerous industrial applications. Here we combine well-controlled experiments and fully resolved numerical simulations to study the critical dynamics of catastrophic phase inversion in oil-water emulsions under tur...
Small bubbles in fluids rise to the surface due to Archimede’s force. Remarkably, in turbulent flows this process is severely hindered by the presence of vortex filaments, which act as moving potential wells, dynamically trapping light particles and bubbles. Quantifying the statistical weights and roles of vortex filaments in turbulence is, however...
Unlike coffee and cream that homogenize when stirred, growing micro-organisms (e.g., bacteria, baker's yeast) can actively kill each other and avoid mixing. How do such antagonistic interactions impact the growth and survival of competing strains, while being spatially advected by turbulent flows? By using numerical simulations of a continuum model...
Pedestrian crowds encompass a complex interplay of intentional movements aimed at reaching specific destinations, fluctuations due to personal and interpersonal variability, and interactions with each other and the environment. Previous work showed the effectiveness of Langevin-like equations in capturing the statistical properties of pedestrian dy...
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation,...
In many natural and industrial applications, turbulent flows encompass some form of dispersed particles. Although this type of multiphase turbulent flow is omnipresent, its numerical modeling has proven to be a remarkably challenging problem. Models that fully resolve the particle phase are computationally very expensive, strongly limiting the numb...
We establish how active stress globally affects the morphology of disclination lines of a three-dimensional active nematic liquid crystal under chaotic flow. Thanks to a defect detection algorithm based on the local nematic orientation, we show that activity selects a crossover length scale in between the size of small defect loops and that of long...
We present a study of the intermittent properties of a shell model of turbulence with statistics of ∼107 eddy turn over time, achieved thanks to an implementation on a large-scale parallel GPU factory. This allows us to quantify the inertial range anomalous scaling properties of the velocity fluctuations up to the 24th-order moment. Through a caref...
The dynamics of stabilised concentrated emulsions presents a rich phenomenology including chaotic emulsification, non-Newtonian rheology and ageing dynamics at rest. Macroscopic rheology results from the complex droplet microdynamics and, in turn, droplet dynamics is influenced by macroscopic flows via the competing action of hydrodynamic and inter...
Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1–6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength...
Staircases play an essential role in crowd dynamics, allowing pedestrians to flow across large multi-level public facilities such as transportation hubs, shopping malls, and office buildings. Achieving a robust quantitative understanding of pedestrian behavior in these facilities is a key societal necessity. What makes this an outstanding scientifi...
As we walk towards our destinations, our trajectories are constantly influenced by the presence of obstacles and infrastructural elements; even in the absence of crowding our paths are often curved. Since the early 2000s pedestrian dynamics have been extensively studied, aiming at quantitative models with both fundamental and technological relevanc...
Earthquakes are complex physical processes driven by stick-slip motion on a sliding fault. After the main event, a series of aftershocks is usually observed. The latter are loosely defined as earthquakes that follow a parent event and occur within a prescribed space-time window. In seismology, it is currently not possible to establish an unambiguou...
Ecological interactions among phytoplankton occur in a moving fluid environment. Oceanic flows can modulate the competition and coexistence between phytoplankton populations, which in turn can affect ecosystem function and biogeochemical cycling. We explore the impact of submesoscale velocity gradients on phytoplankton ecology using observations, s...
Staircases play an essential role in crowd dynamics, allowing pedestrians to flow across large multi-level public facilities such as transportation hubs, and office buildings. Achieving a robust understanding of pedestrian behavior in these facilities is a key societal necessity. What makes this an outstanding scientific challenge is the extreme ra...
The dynamics of dense stabilized emulsions presents a rich phenomenology including chaotic emulsification, non-Newtonian rheology and ageing dynamics at rest. Macroscopic rheology results from the complex droplet microdynamics and, in turn, droplet dynamics is influenced by macroscopic flows via the competing action of hydrodynamic and interfacial...
We establish how active stress globally affects the morphology of disclination lines of a three dimensional active nematic liquid crystal under chaotic flow. Thanks to a defect detection algorithm based on the local nematic orientation, we show that activity selects a crossover length scale in between the size of small defect loops and the one of l...
As we walk towards our destinations, our trajectories are constantly influenced by the presence of obstacles and infrastructural elements: even in absence of crowding our paths are often curved. Over the last two decades pedestrian dynamics have been extensively studied aiming at quantitative models with both fundamental and technological relevance...
Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales where the cascade is eventually arrested by dissipation. In this Letter, we show how to harness these seemingly structureless turbulent cascades to generate patterns. Conceptually, pattern or structure formation...
In this work, we explore the possibility of learning from data collision operators for the Lattice Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural network (NN) collision operator and evaluate the performance of the resulting LBM method in reproducing time dynamics of several canonical flows. In the c...
Soft Glassy Materials (SGM) consist in dense amorphous assemblies of colloidal particles of multiple shapes, elasticity, and interactions, which confer upon them solid-like properties at rest. They are ubiquitously encountered in modern engineering, including additive manufacturing, semi-solid flow cells, dip-coating, adhesive locomotion, etc. wher...
Understanding the behavior of human crowds is a key step toward a safer society and more livable cities. Despite the individual variability and will of single individuals, human crowds, from dilute to dense, invariably display a remarkable set of universal features and statistically reproducible behaviors. Here, we review ideas and recent progress...
In this work we explore the possibility of learning from data collision operators for the Lattice Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural network (NN) collision operator and evaluate the performance of the resulting LBM method in reproducing time dynamics of several canonical flows. In the cu...
Earthquakes are complex physical processes driven by the stick-slip motion of a sliding fault. After the main quake, a series of aftershocks typically follows. These are loosely defined as events that follow a given event and occur within prescribed space-time windows. In seismology, it is however impossible to establish a causal relation and the p...
Non-isothermal particles suspended in a fluid lead to complex interactions – the particles respond to changes in the fluid flow, which in turn is modified by their temperature anomaly. Here, we perform a novel proof-of-concept numerical study based on tracer particles that are thermally coupled to the fluid. We imagine that particles can adjust the...
In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that, in two dimensions, the active forcing alone is able to trigger hydrodynamic turbulence leadi...
By varying the oil volume fraction, the microscopic droplet size and the macroscopic rheology of emulsions are investigated in a Taylor–Couette turbulent shear flow. Although here oil and water in the emulsions have almost the same physical properties (density and viscosity), unexpectedly, we find that oil-in-water (O/W) and water-in-oil (W/O) emul...
In active nematic liquid crystals activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that, in two-dimensions, the active forcing alone is able to trigger hydrodynamic turbulence leadin...
We consider packed-bed reactors with dielectric beads in a two-dimensional channel geometry, apply an electric field perpendicular to the walls, and explore numerically the sensitivity of reaction conversion efficiencies of a dissociation reaction on system parameters like shape, orientation and size of the beads and porosity of packed-bed systems....
Soft Glassy Materials (SGM) consist in dense amorphous assemblies of colloidal particles of multiple shapes, elasticity, and interactions, which confer upon them solid-like properties at rest. They are ubiquitously encountered in modern engineering, including additive manufacturing, semi-solid flow cells, dip-coating, adhesive locomotion, where the...
This chapter explores the shift in the balance of individual versus collective values instigated by the COVID-19 pandemic. The incredible viral spread rate among the population and its relatively high fatality rate has initially resulted in an assertion of the primacy of collective values (such as collective safety, collective responsibility, confo...
Routing choices of walking pedestrians in geometrically complex environments are regulated by the interplay of a multitude of factors such as local crowding, (estimated) time to destination, (perceived) comfort. As individual choices combine, macroscopic traffic flow patterns emerge. Understanding the physical mechanisms yielding macroscopic traffi...
The development of turbulence closure models, parametrizing the influence of small nonresolved scales on the dynamics of large resolved ones, is an outstanding theoretical challenge with vast applicative relevance. We present a closure, based on deep recurrent neural networks, that quantitatively reproduces, within statistical errors, Eulerian and...
The growth and evolution of microbial populations is often subjected to advection by fluid flows in spatially extended environments, with immediate consequences for questions of spatial population genetics in marine ecology, planktonic diversity and origin of life scenarios. Here, we review recent progress made in understanding this rich problem in...
The importance of accurately capturing two-way coupled interactions between particles with complex shapes and rarefied gas flows is rapidly rising in different practical applications such as aerospace industry and semiconductor manufacturing. The transport of particles in these conditions is often modelled via an Euler-Lagrangian Point-Particles ap...
We reanalysed the induced seismicity data from the Groningen gas reservoir. We used the well-maintained induced event catalogue of the KNMI. The distributions of seismic moments and interevent times show a power law behaviour over several decades, and we find that upon increasing the magnitude threshold, these distributions remained scale-invariant...
Stabilised dense emulsions display a rich phenomenology connecting microstructure and rheology. In this work, we study how an emulsion with a finite yield stress can be built via large-scale stirring. By gradually increasing the volume fraction of the dispersed minority phase, under the constant action of a stirring force, we are able to achieve a...
Non-isothermal particles suspended in a fluid lead to complex interactions – the particles respond to changes in the fluid flow, which in turn is modified by their temperature anomaly.
Here, we perform a novel proof-of-concept numerical study based on tracer particles that are thermally coupled to the fluid. We imagine that particles can adjust the...
Ecological interactions among phytoplankton occur in a moving fluid environment. Oceanic flows can modulate the competition and coexistence between phytoplankton populations, which in turn can affect ecosystem function and biogeochemical cycling. We explore the impact of submesoscale velocity gradients on phytoplankton ecology using observations, s...
The development of turbulence closure models, parametrizing the influence of small non-resolved scales on the dynamics of large resolved ones, is an outstanding theoretical challenge with vast applicative relevance. We present a closure, based on deep recurrent neural networks, that quantitatively reproduces, within statistical errors, Eulerian and...
Routing choices of walking pedestrians in geometrically complex environments are regulated by the interplay of a multitude of factors such as local crowding, (estimated) time to destination, (perceived) comfort. As individual choices combine, macroscopic traffic flow patterns emerge. Understanding the physical mechanisms yielding macroscopic traffi...
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research allowing to quantify statistics of relevant observables including walking velocities, mutual distances and body orientations. As this technology advances, it is becoming increasingly useful also in society. In fact, continued...
By varying the oil volume fraction, the microscopic droplet size and the macroscopic rheology of emulsions are investigated in a Taylor-Couette (TC) turbulent shear flow. Although here oil and water in the emulsions have almost the same physical properties (density and viscosity), unexpectedly, we find that oil-in-water (O/W) and water-in-oil (W/O)...
In this work we present a simple routing model capable of capturing pedestrians path choices in the presence of a herding effect. The model is tested and validated against data from a large scale tracking campaign which we have conducted during the GLOW 2019 festival. The choice between alternative paths is modeled as an individual cost minimizatio...
In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterized by two well-defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time t w followe...
The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug delivery, and semiconductor manufacturing. By means of numerical simulations based on the direct-simulation Monte Carlo (DSMC) method, we in...
The deformation and dynamics of a single droplet in isotropic turbulence is studied using a Lattice Boltzmann diffuse interface model involving exact boundary flow conditions to allow for the creation of an external turbulent flow. We focus on a small, sub-Kolmogorov droplet, whose scale is much smaller than the Kolmogorov length scale of the turbu...
The growth and evolution of microbial populations is often subjected to advection by fluid flows in spatially extended environments, with immediate consequences for questions of spatial population genetics in marine ecology, planktonic diversity and origin of life scenarios. Here, we review recent progress made in understanding this rich problem in...
We study the diffusivity of a small particle immersed in a square box filled with a non-ideal multicomponent fluid in the presence of thermal fluctuations. Our approach is based on the numerical integration of fluctuating lattice Boltzmann models (LBM) for multicomponent mixtures. At changing the wettability on the particle's surface, we measure th...
Active nematic fluids confined in narrow channels are known to generate spontaneous flows when the activity is sufficiently intense. Recently, it was demonstrated [R. Green, J. Toner, and V. Vitelli, Phys. Rev. Fluids 2, 104201 (2017)] that if the molecular anchoring at the channel walls is conflicting, i.e., perpendicular on one plate and parallel...
Stabilized dense emulsions display a rich phenomenology connecting microstructure and rheology. In this work we study how an emulsion with a finite yield stress can be built via large-scale stirring. By gradually increasing the volume fraction of the dispersed minority phase, under the constant action of a stirring force, we are able to achieve vol...
We present mesoscale numerical simulations based on the coupling of the fluctuating lattice Boltzmann method for multicomponent systems with a wetted finite-size particle model. This newly coupled methodologies are used to study the motion of a spherical particle driven by a constant body force in a confined channel with a fixed square cross sectio...
Active nematic fluids confined in narrow channels generate spontaneous flows when the activity is sufficiently intense. Recently, it was shown that if the molecular anchoring at the channel walls is conflicting flows are initiated even in the zero activity limit. An analytical laminar velocity profile for this specific configuration was derived wit...
The dynamics of a population expanding into unoccupied habitat has been primarily studied for situations in which growth and dispersal parameters are uniform in space or vary in one dimension. Here, we study the influence of finite-sized individual inhomogeneities and their collective effect on front speed if randomly placed in a two-dimensional ha...
We report and discuss, by means of pore-scale numerical simulations, the possibility of achieving a directional-dependent two-phase flow behavior during the process of invasion of a viscous fluid into anisotropic porous media with controlled design. By customising the pore-scale morphology and heterogeneities with the adoption of anisotropic triang...
The performances of the Color-Gradient (CG) and of the Shan-Chen (SC) multicomponent Lattice Boltzmann models are quantitatively compared side-by-side on multiple physical flow problems where breakup, coalescence and contraction of fluid ligaments are important. The flow problems are relevant to microfluidic applications, jetting of microdroplets a...
Genetic diversity is at the basis of the evolution process of populations and it is responsible for the populations' degree of fitness to a particular ecosystem. In marine environments many factors play a role in determining the dynamics of a population, including the amount of nutrients, the temperature, and many other stressing factors. An import...
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as “stress overshoot.” This ubiquitous phenomenon is characterized by the coordinates o...
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a critical stress σy such that YSFs are solid for stresses σ imposed below σy, whereas they flow like liquids for σ>σy. Under an applied shear rate γ̇, the solid-to-liquid transition is associated with a complex spatiotemporal scenario that depends on the microscopic d...
A model based on the Lattice Boltzmann method is developed to study the flow of reactive electro-kinetic fluids in porous media. The momentum, concentration and electric/potential fields are simulated via the Navier–Stokes, advection–diffusion/Nernst–Planck and Poisson equations, respectively. With this model, the total density and velocity fields,...
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research allowing to quantify statistics of relevant observables including walking velocities, mutual distances and body orientations. As this technology advances, it is becoming increasingly useful also in society. In fact, continued...
A 2D model is developed for a simplified reactive electro-kinetic fluid in dielectric porous media based on the Lattice Boltzmann Method (LBM). The momentum, concentration and electric fields are simulated via the Navier-Stokes, advection-diffusion/Nernst-Planck and Poisson equations, respectively. With this model, the density, velocity, concentrat...
The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug deliver and semiconductor manufacturing. By means of numerical simulations based on the Direct Simulation Monte Carlo (DSMC) method, we inve...
We report and discuss, by means of pore-scale numerical simulations, the possibility of achieving a directional-dependent two-phase flow behaviour during the process of invasion of a viscous fluid into anisotropic porous media with controlled design. By customising the pore-scale morphology and heterogeneities with the adoption of anisotropic trian...
In this paper, we consider a simplified model of turbulence for large Reynolds numbers driven by a constant power energy input on large scales. In the statistical stationary regime, the behaviour of the kinetic energy is characterised by two well defined phases: a laminar phase where the kinetic energy grows linearly for a (random) time $t_w$ follo...
Using lattice Boltzmann simulations we investigate the impact of the amplitude of concentration fluctuations in binary fluid mixtures prior to demixing when in contact with a surface that is preferentially wet by one of the components. We find a bicontinuous structure near the surface for an initial, prequench state of the mixture close to the crit...
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display under external shear a solid-to-liquid transition. Such a shear-induced transition is often associated with a non-monotonic stress response, in the form of a stress maximum referred to as "stress overshoot". This ubiquitous phenomenon is characterized by the coordinates...
Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a yield stress such that YSFs are solid below the yield stress, whereas they flow like liquids above it. Under an applied shear rate $\dot\gamma$, the solid-to-liquid transition is associated with a complex spatiotemporal scenario. Still, the general phenomenology repo...
Understanding the dynamical evolution of a percolating network during liquid–liquid demixing is crucial for many technological applications, including plastic electronics, such as organic photovoltaics, whose performance depends on the efficiency to transport the positive and negative charge carriers to the corresponding electrodes. The transport a...
Significance
Landscapes, resulting from ice–water interactions coupled with solidification/melting, are ubiquitous in nature, yet most previous studies have not considered the rich fluid dynamics induced by water density anomaly underneath the moving ice front, which can drastically change system behaviors. By experiments, numerical simulations, an...
Turbulence, the ubiquitous and chaotic state of fluid motions, is characterized by strong and statistically nontrivial fluctuations of the velocity field, and it can be quantitatively described only in terms of statistical averages. Strong nonstationarities impede statistical convergence, precluding quantifying turbulence, for example, in terms of...
We investigate and compare the accuracy and efficiency of different numerical approaches to model the dynamics of finite-size particles using the lattice Boltzmann method (LBM). This includes the standard bounce-back (BB) and the equilibrium interpolation (EI) schemes. To accurately compare the different implementations, we first introduce a bounda...
Turbulent emulsions are complex physical systems characterized by a strong and dynamical coupling between small-scale droplets and large-scale rheology. By using a specifically designed Taylor-Couette (TC) shear flow system, we are able to characterize the statistical properties of a turbulent emulsion made of oil droplets dispersed in an ethanol-w...
Physical distancing, as a measure to contain the spreading of Covid-19, is defining a “new normal”. Unless belonging to a family, pedestrians in shared spaces are asked to observe a minimal (country-dependent) pairwise distance. Coherently, managers of public spaces may be tasked with the enforcement or monitoring of this constraint. As privacy-res...
Modeling the behavior of pedestrians walking in crowds is an outstanding fundamental challenge, deeply connected with the physics of flowing active matter. The strong societal relevance of the topic, for its relations with individual safety and comfort, sparked vast modeling efforts from multiple scientific communities. Yet, likely because of the t...
In this paper, we tackle the issue of measuring and understanding the visitors’ dynamics in a crowded museum in order to create and calibrate a predictive mathematical model. The model is then used as a tool to manage, control and optimize the fruition of the museum. Our contribution comes with one successful use case, the Galleria Borghese in Rome...
Thermal convection is ubiquitous in nature as well as in many industrial applications. The identification of effective control strategies to, e.g. suppress or enhance the convective heat exchange under fixed external thermal gradients is an outstanding fundamental and technological issue. In this work, we explore a novel approach, based on a state-...
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have...
We investigate in real-life conditions and with very high accuracy the dynamics of body rotation, or yawing, of walking pedestrians—a highly complex task due to the wide variety in shapes, postures and walking gestures. We propose a novel measurement method based on a deep neural architecture that we train on the basis of generic physical propertie...
Physical distancing, as a measure to contain the spreading of Covid-19, is defining a "new normal". Unless belonging to a family, pedestrians in shared spaces are asked to observe a minimal (country-dependent) pairwise distance. Coherently, managers of public spaces may be tasked with the enforcement or monitoring of this constraint. As privacy-res...
The focus of this research is to delineate the thermal behavior of a rarefied monatomic gas confined between horizontal hot and cold walls, physically known as rarefied Rayleigh-Bénard (RB) convection. Convection in a rarefied gas appears only for high temperature differences between the horizontal boundaries, where nonlinear distributions of tempe...
Using a multi-component lattice Boltzmann (LB) model, we perform fluid kinetic simulations of confined and concentrated emulsions. The system presents the phenomenology of soft-glassy materials, including a Herschel–Bulkley rheology, yield stress, ageing and long relaxation time scales. Shearing the emulsion in a Couette cell below the yield stress...
A lattice Boltzmann (LB) model is developed, validated and used to study simplified plasma/flow problems in complex geometries. This approach solves a combined set of equations, namely the Navier–Stokes equations for the momentum field, the advection–diffusion and the Nernst–Planck equations for electrokinetic and the Poisson equation for the elect...