
Federico Tombari- Doctor of Engineering
- Technical University of Munich
Federico Tombari
- Doctor of Engineering
- Technical University of Munich
About
466
Publications
97,092
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,924
Citations
Introduction
3D computer vision and deep learning for applications in the space of augmented reality, robotics, autonomous driving and healthcare
Current institution
Additional affiliations
January 2019 - present
Publications
Publications (466)
Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit...
In this work, we present a novel level-of-detail (LOD) method for 3D Gaussian Splatting that enables real-time rendering of large-scale scenes on memory-constrained devices. Our approach introduces a hierarchical LOD representation that iteratively selects optimal subsets of Gaussians based on camera distance, thus largely reducing both rendering t...
We tackle the problem of monocular-to-stereo video conversion and propose a novel architecture for inpainting and refinement of the warped right view obtained by depth-based reprojection of the input left view. We extend the Stable Video Diffusion (SVD) model to utilize the input left video, the warped right video, and the disocclusion masks as con...
6D object pose estimation remains challenging for many applications due to dependencies on complete 3D models, multi-view images, or training limited to specific object categories. These requirements make generalization to novel objects difficult for which neither 3D models nor multi-view images may be available. To address this, we propose a novel...
We present layered ray intersections (LaRI), a new method for unseen geometry reasoning from a single image. Unlike conventional depth estimation that is limited to the visible surface, LaRI models multiple surfaces intersected by the camera rays using layered point maps. Benefiting from the compact and layered representation, LaRI enables complete...
Foundational vision-language models like CLIP are emerging as a promising paradigm in vision due to their excellent generalization. However, adapting these models for downstream tasks while maintaining their generalization remains challenging. In literature, one branch of methods adapts CLIP by learning prompts using images. While effective, these...
In panoptic segmentation, individual instances must be separated within semantic classes. As state-of-the-art methods rely on a pre-defined set of classes, they struggle with novel categories and out-of-distribution (OOD) data. This is particularly problematic in safety-critical applications, such as autonomous driving, where reliability in unseen...
Despite the advancements in 3D full-shape generation, accurately modeling complex geometries and semantics of shape parts remains a significant challenge, particularly for shapes with varying numbers of parts. Current methods struggle to effectively integrate the contextual and structural information of 3D shapes into their generative processes. We...
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method th...
Open-vocabulary semantic segmentation models associate vision and text to label pixels from an undefined set of classes using textual queries, providing versatile performance on novel datasets. However, large shifts between training and test domains degrade their performance, requiring fine-tuning for effective real-world applications. We introduce...
Scene graphs capture complex relationships among objects, serving as strong priors for content generation and manipulation. Yet, reasonably manipulating scene graphs -- whether by adding nodes or modifying edges -- remains a challenging and untouched task. Tasks such as adding a node to the graph or reasoning about a node's relationships with all o...
Simultaneously localizing camera poses and constructing Gaussian radiance fields in dynamic scenes establish a crucial bridge between 2D images and the 4D real world. Instead of removing dynamic objects as distractors and reconstructing only static environments, this paper proposes an efficient architecture that incrementally tracks camera poses an...
Understanding fine-grained temporal dynamics is crucial in egocentric videos, where continuous streams capture frequent, close-up interactions with objects. In this work, we bring to light that current egocentric video question-answering datasets often include questions that can be answered using only few frames or commonsense reasoning, without be...
Open-vocabulary 3D segmentation enables exploration of 3D spaces using free-form text descriptions. Existing methods for open-vocabulary 3D instance segmentation primarily focus on identifying object -level instances but struggle with finer-grained scene entities such as object parts , or regions described by generic attributes . In this work, we i...
Large-scale machine learning models deliver strong performance across a wide range of tasks but come with significant computational and resource constraints. To mitigate these challenges, local smaller models are often deployed alongside larger models, relying on routing and deferral mechanisms to offload complex tasks. However, existing approaches...
Open-vocabulary semantic segmentation enables models to identify novel object categories beyond their training data. While this flexibility represents a significant advancement, current approaches still rely on manually specified class names as input, creating an inherent bottleneck in real-world applications. This work proposes a Vocabulary-Free S...
We introduce a novel method for generating 360{\deg} panoramas from text prompts or images. Our approach leverages recent advances in 3D generation by employing multi-view diffusion models to jointly synthesize the six faces of a cubemap. Unlike previous methods that rely on processing equirectangular projections or autoregressive generation, our m...
Object pose estimation using visual data is crucial for robotic interaction with the environment. Many existing instance-level methods are restricted by their requirements for 3D CAD models or multiple object views, which limits their flexibility and generalizability. Overcoming this limitation is critical to enhance the adaptability of pose estima...
We propose an unsupervised model for instruction-based image editing that eliminates the need for ground-truth edited images during training. Existing supervised methods depend on datasets containing triplets of input image, edited image, and edit instruction. These are generated by either existing editing methods or human-annotations, which introd...
Neural radiance fields are an emerging 3D scene representation and recently even been extended to learn features for scene understanding by distilling open-vocabulary features from vision-language models. However, current method primarily focus on object-centric representations, supporting object segmentation or detection, while understanding seman...
3D Gaussian Splatting has recently gained traction for its efficient training and real-time rendering. While the vanilla Gaussian Splatting representation is mainly designed for view synthesis, more recent works investigated how to extend it with scene understanding and language features. However, existing methods lack a detailed comprehension of s...
Recent advances in text-to-image customization have enabled high-fidelity, context-rich generation of personalized images, allowing specific concepts to appear in a variety of scenarios. However, current methods struggle with combining multiple personalized models, often leading to attribute entanglement or requiring separate training to preserve c...
In this paper, we address the challenge of performing open-vocabulary video instance segmentation (OV-VIS) in real-time. We analyze the computational bottlenecks of state-of-the-art foundation models that performs OV-VIS, and propose a new method, TROY-VIS, that significantly improves processing speed while maintaining high accuracy. We introduce t...
This paper presents Open-Structure, a novel benchmark dataset for evaluating visual odometry and SLAM methods. Compared to existing public datasets that primarily offer raw images, Open-Structure provides direct access to point and line measurements, correspondences, structural associations, and co-visibility factor graphs, which can be fed to vari...
Shape completion, a crucial task in 3D computer vision, involves predicting and filling the missing regions of scanned or partially observed objects. Current methods expect known pose or canonical coordinates and do not perform well under varying rotations, limiting their real-world applicability. We introduce ESCAPE (Equivariant Shape Completion v...
State-of-the-art novel view synthesis methods achieve impressive results for multi-view captures of static 3D scenes. However, the reconstructed scenes still lack "liveliness," a key component for creating engaging 3D experiences. Recently, novel video diffusion models generate realistic videos with complex motion and enable animations of 2D images...
Sparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct...
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones. Prior works have explored ever more complex KD strategies involving different objective functions, teacher-ensembles, and weight inheritance. In this work we explore an alternative, yet simple approach -- active data curation as effective dist...
Unseen object pose estimation methods often rely on CAD models or multiple reference views, making the onboarding stage costly. To simplify reference acquisition, we aim to estimate the unseen object's pose through a single unposed RGB-D reference image. While previous works leverage reference images as pose anchors to limit the range of relative p...
State-of-the-art novel view synthesis methods such as 3D Gaussian Splatting (3DGS) achieve remarkable visual quality. While 3DGS and its variants can be rendered efficiently using rasterization, many tasks require access to the underlying 3D surface, which remains challenging to extract due to the sparse and explicit nature of this representation....
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural m...
We present a novel LLM-based pipeline for creating contextual descriptions of human body poses in images using only auxiliary attributes. This approach facilitates the creation of the MPII Pose Descriptions dataset, which includes natural language annotations for 17,367 images containing people engaged in 410 distinct activities. We demonstrate the...
Autonomous vehicles demand detailed maps to maneuver reliably through traffic, which need to be kept up-to-date to ensure a safe operation. A promising way to adapt the maps to the ever-changing road-network is to use crowd-sourced data from a fleet of vehicles. In this work, we present a mapping system that fuses local submaps gathered from a flee...
Comprehending natural language instructions is a critical skill for robots to cooperate effectively with humans. In this paper, we aim to establish an integrated robotic system to robustly perceive, grasp, manipulate, and assemble blocks by language commands. For this purpose, Language-Instructed 6D Pose Regression Network (LanPose) is proposed to...
Open-vocabulary 3D segmentation enables the exploration of 3D spaces using free-form text descriptions. Existing methods for open-vocabulary 3D instance segmentation primarily focus on identifying object-level instances in a scene. However, they face challenges when it comes to understanding more fine-grained scene entities such as object parts, or...
3D shape completion is traditionally solved using supervised training or by distribution learning on complete shape examples. Recently self-supervised learning approaches that do not require any complete 3D shape examples have gained more interests. In this paper, we propose a non-adversarial self-supervised approach for the shape completion task....
This paper proposes a versatile graph-based lifelong localization framework, LiLoc, which enhances its timeliness by maintaining a single central session while improves the accuracy through multi-modal factors between the central and subsidiary sessions. First, an adaptive submap joining strategy is employed to generate prior submaps (keyframes and...
In this work, we tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr\"odinger bridges to points clouds. Unlike previous approaches that predict point-wise displacements from point features or learned noise distributions, our method learns an optimal transport plan between paired point clouds. Experiments on...
Building generalized models that can solve many computer vision tasks simultaneously is an intriguing direction. Recent works have shown image itself can be used as a natural interface for general-purpose visual perception and demonstrated inspiring results. In this paper, we explore diffusion-based vision generalists, where we unify different type...
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize...
Our objective is to leverage a differentiable radiance field \eg NeRF to reconstruct detailed 3D surfaces in addition to producing the standard novel view renderings. There have been related methods that perform such tasks, usually by utilizing a signed distance field (SDF). However, the state-of-the-art approaches still fail to correctly reconstru...
Recent advancements in Large Language Models (LLMs) have led to the development of Video Large Multi-modal Models (Video-LMMs) that can handle a wide range of video understanding tasks. These models have the potential to be deployed in real-world applications such as robotics, AI assistants, medical surgery, and autonomous vehicles. The widespread...
Realistic conditional 3D scene synthesis significantly enhances and accelerates the creation of virtual environments, which can also provide extensive training data for computer vision and robotics research among other applications. Diffusion models have shown great performance in related applications, e.g., making precise arrangements of unordered...
3D Gaussian Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous Localization and Mapping (SLAM), as it provides a compact dense map representation while enabling efficient and high-quality map rendering. However, existing methods show significantly worse reconstruction quality than competing...
Despite the tremendous progress in zero-shot learning (ZSL), the majority of existing methods still rely on human-annotated attributes, which are difficult to annotate and scale. An unsupervised alternative is to represent each class using the word embedding associated with its semantic class name. However, word embeddings extracted from pre-traine...
Neural field-based 3D representations have recently been adopted in many areas including SLAM systems. Current neural SLAM or online mapping systems lead to impressive results in the presence of simple captures, but they rely on a world-centric map representation as only a single neural field model is used. To define such a world-centric representa...
Gaussian Splatting · Geometry-aware Densification · Geo-
metric Consistency
Foundational vision-language models such as CLIP are becoming a new paradigm in vision, due to their excellent generalization abilities. However, adapting these models for downstream tasks while maintaining their generalization remains a challenge. In literature, one branch of methods adapts CLIP by learning prompts using visual information. While...
Since real-world training datasets cannot properly sample the long tail of the underlying data distribution, corner cases and rare out-of-domain samples can severely hinder the performance of state-of-the-art models. This problem becomes even more severe for dense tasks, such as 3D semantic segmentation, where points of non-standard objects can be...
Purpose
Surgical procedures take place in highly complex operating rooms (OR), involving medical staff, patients, devices and their interactions. Until now, only medical professionals are capable of comprehending these intricate links and interactions. This work advances the field toward automated, comprehensive and semantic understanding and model...
Object rearrangement is pivotal in robotic- environment interactions, representing a significant capabil- ity in embodied AI. In this paper, we present SG-Bot, a novel rearrangement framework that utilizes a coarse-to-fine scheme with a scene graph as the scene representation. Unlike previous methods that rely on either known goal priors or zero-sh...
Reconstructing both objects and hands in 3D from a single RGB image is complex. Existing methods rely on manually defined hand-object constraints in Euclidean space, leading to suboptimal feature learning. Compared with Euclidean space, hyperbolic space better preserves the geometric properties of meshes thanks to its exponentially-growing space di...
Continual Learning aims to learn a single model on a sequence of tasks without having access to data from previous tasks. The biggest challenge in the domain still remains catastrophic forgetting: a loss in performance on seen classes of earlier tasks. Some existing methods rely on an expensive replay buffer to store a chunk of data from previous t...
Since real-world training datasets cannot properly sample the long tail of the underlying data distribution, corner cases and rare out-of-domain samples can severely hinder the performance of state-of-the-art models. This problem becomes even more severe for dense tasks, such as 3D semantic segmentation, where points of non-standard objects can be...
While state-of-the-art monocular depth estimation approaches achieve impressive results in ideal settings, they are highly unreliable under challenging illumination and weather conditions, such as at nighttime or in the presence of rain. In this paper, we uncover these safety-critical issues and tackle them with md4all: a simple and effective solut...
Reconstructing hand-held objects from a single RGB image is an important and challenging problem. Existing works utilizing Signed Distance Fields (SDF) reveal limitations in comprehensively capturing the complex hand-object interactions, since SDF is only reliable within the proximity of the target, and hence, infeasible to simultaneously encode lo...
In this paper, we propose U-RED, an Unsupervised shape REtrieval and Deformation pipeline that takes an arbitrary object observation as input, typically captured by RGB images or scans, and jointly retrieves and deforms the geometrically similar CAD models from a pre-established database to tightly match the target. Considering existing methods typ...
We introduce the task of open-vocabulary 3D instance segmentation. Traditional approaches for 3D instance segmentation largely rely on existing 3D annotated datasets, which are restricted to a closed-set of object categories. This is an important limitation for real-life applications where one might need to perform tasks guided by novel, open-vocab...