
Federico IovinoKarolinska Institutet | KI · Department of Microbiology, Tumor and Cell Biology (MTC)
Federico Iovino
PhD Medical Microbiology
About
28
Publications
3,927
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
507
Citations
Citations since 2017
Introduction
In my lab we investigate host-pathogen interactions during pathogenesis of bacterial infections in the Central Nervous System.
Additional affiliations
January 2021 - present
December 2018 - present
December 2015 - November 2018
Publications
Publications (28)
Pneumococcal meningitis, inflammation of the meninges due to an infection of the Central Nervous System caused by Streptococcus pneumoniae (the pneumococcus), is the most common form of community-acquired bacterial meningitis globally. Aquaporin 4 (AQP4) water channels on astrocytic end feet regulate the solute transport of the glymphatic system, f...
Significance
Pneumococcal infections are major contributors to morbidity and mortality worldwide. Introduction of pneumococcal conjugated vaccines (PCVs) into the childhood vaccination program has led to a decrease in invasive pneumococcal disease (IPD) in vaccinated children but concurrently to an increase of nonvaccine-type IPD, also in nonvaccin...
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae , Neisseria meningitidis , and Haemophilus influenzae...
Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibl...
Cholesterol‐dependent cytolysins (CDCs) are essential virulence factors for many human pathogens like Streptococcus pneumoniae (pneumolysin, PLY), Streptococcus pyogenes (streptolysin O, SLO), and Listeria monocytogenes (Listeriolysin, LLO) and induce cytolysis and inflammation. Recently, we identified that pneumococcal PLY interacts with the manno...
Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms that lead to neuronal death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studie...
Fluorescence in vitro dynamic bioimaging suffers from the poor photostability of organic dyes, thus, functional probes with superior photostability are urgently needed. Here, we address this challenge by developing novel silica-coated nanophosphors that may serve as superior luminescent nanoprobes compatible with conventional fluorescence microscop...
The Gram‐positive bacterium Streptococcus pneumoniae, the pneumococcus, is an important commensal resident of the human nasopharynx. Carriage is usually asymptomatic, however, S. pneumoniae can become invasive and spread from the upper respiratory tract to the lungs causing pneumonia, and to other organs to cause severe diseases such as bacteremia...
Animal models are fundamental tools to study the biology of physiological processes and disease pathogenesis. To study invasive pneumococcal disease (IPD), many models using mice in particular have been established and developed during recent years. Thanks to the advances of the research in the pneumococcal field, nowadays, there is the possibility...
Hydrogen peroxide (H 2 O 2 ) quantification in biomedicine is valuable as inflammation biomarker but also in assays employing enzymes that generate or consume H 2 O 2 linked to a specific biomarker. Optical H 2 O 2 detection is typically performed through peroxidase-coupled reactions utilizing organic dyes that suffer, however, from poor stability/...
Microglia have a pivotal role in the pathophysiology of bacterial meningitis. The goal of this review is to provide an overview on how microglia respond to bacterial pathogens targeting the brain, how the interplay between microglia and bacteria can be studied experimentally, and possible ways to use gained knowledge to identify novel preventive an...
Imaging through the IVIS Spectrum CT system does not provide the resolution at cellular level like the high-resolution or super-resolution microscopy. Rather, it detects bacterial infections in specific anatomical compartments/organs of the animals. The IVIS Spectrum imaging system is a unique imaging technology that allows for real-time monitoring...
In vivo imaging, meaning imaging tissues in living animals, is still a developing technique. However, microscopy imaging ex vivo remains a very important tool that allows for visualization of biological and pathological processes occurring in vivo. As described in Chap. 5, imaging of animal and human tissue postmortem can be performed at high resol...
Immunofluorescent staining using antibodies to detect specific proteins allows for visualization of proteins of interest in a biological sample. In recent years, there have been important advances in the microscopy equipment used for imaging, and we can now perform so-called high-resolution microscopy. Through high-resolution microscopy we can not...
This volume looks at the newest methods, materials, equipment, and technologies developed to study the cell biology of the pneumococcus. The chapters, which cover a wide range of topics, are organized into six parts: Part one discusses the cultivation of Streptococcus pneumoniae in vitro; Part Two talks about the microscopy techniques used to study...
Background:
Pneumococci are the major cause of bacterial meningitis globally. To cause meningitis pneumococci interact with the 2 endothelial receptors, polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), to penetrate the blood-brain barrier (BBB) and invade the brain.
Methods:
C57BL/6 mice were in...
Gram-positive bacteria, including the major respiratory pathogen Streptococcus pneumoniae, were recently shown to produce extracellular vesicles (EVs) that likely originate from the plasma membrane and are released into the extracellular environment. EVs may function as cargo for many bacterial proteins, however, their involvement in cellular proce...
Streptococcus pneumoniae is the main cause of bacterial meningitis, a life-threating disease with a high case fatality rate despite treatment with antibiotics. Pneumococci cause meningitis by invading the blood and penetrating the blood-brain barrier (BBB). Using stimulated emission depletion (STED) super-resolution microscopy of brain biopsies fro...
Streptococcuspneumoniae (pneumococcus) is the primary cause of bacterial meningitis. Pneumococcal bacteria penetrates the blood-brain barrier (BBB), but the bacterial factors that enable this process are not known. Here, we determined that expression of pneumococcal pilus-1, which includes the pilus adhesin RrgA, promotes bacterial penetration thro...
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis. The mechanisms by which pneumococci from the bloodstream penetrate the blood-brain barrier to reach the brain are not fully understood. Receptor-mediated adhesion of the bacteria to the brain endothelium is considered a key event leading to meningitis developmen...
Streptococcus pneumoniae (pneumococcus) is a Gram-positive bacterium that causes serious invasive diseases, such as pneumonia, bacteremia, and meningitis, with high morbidity and mortality throughout the world. Before causing invasive disease, S. pneumoniae encounters cellular barriers, which are often composed of endothelial cells, like the alveol...
The Gram-positive bacterium Streptococcus pneumoniae is the main causative agent of bacterial meningitis. S. pneumoniae is thought to invade the central nervous system via the bloodstream by crossing the vascular endothelium of the blood-brain
barrier. The exact mechanism by which pneumococci cross endothelial cell barriers before meningitis develo...
Streptococcus pneumoniae is thought to adhere to the blood-brain barrier (BBB) endothelium prior to causing meningitis. The platelet activating factor receptor (PAFR) has been implicated in this adhesion but there is a paucity of data demonstrating direct binding of the bacteria to PAFR. Additionally, studies that inhibit PAFR strongly suggest that...
Streptococcus pneumoniae (the pneumococcus) is a Gram-positive bacterium and the predominant cause of bacterial meningitis. Meningitis is thought to occur as the result of pneumococci crossing the blood-brain barrier to invade the Central Nervous System (CNS); yet little is known about the steps preceding immediate disease development. To study the...
Streptococcus pneumoniae is one of the major causative agents of pneumonia, sepsis, meningitis and other morbidities. In spite of its heavy disease burden, surprisingly little is known about the mechanisms involved in the switch of life style, from commensal colonizer of the nasopharynx to invasive pathogen. In vitro experiments, and mouse models h...
Streptococcus pneumoniae (the pneumococcus) is an opportunistic human pathogen, which causes serious invasive disease such as pneumonia, bacteremia and meningitis. The interaction of the bacteria with host receptors precedes the development of invasive disease. One host receptor implicated in pneumococcal adhesion to, invasion of and ultimately tra...
Questions
Question (1)
I would like to know:
1. How is it possible to update the impact factor of a journal?
2. How is it possible to update the impact points based on new publications and new impact factors?
Projects
Projects (2)
Neurons are the main cell component of the brain, and mediate many functions controlled by the brain. Neurological sequelae caused by bacterial infection of the brain occur in 50-70% of meningitis survivors and are often related to neuronal damage. Our goal is to study how pneumococci can interact with neurons, invade and kill neuronal cells.
Study the biology of how microglia sense bacterial pathogens and initiate phagocytosis and/or neuroinflammatory process during meningitis pathogenesis; Study how pneumococci in the brain can survive and grow within microglia.