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Abstract

Background: Anophthalmia and microphthalmia are severe developmental ocular

disorders that affect the size of the ocular globe and can be unilateral or bilateral.

The disease is found in syndromic as well as non-syndromic forms. It is genetically

caused by chromosomal aberrations, copy number variations and single gene muta-

tions, along with non-genetic factors such as viral infections, deficiency of vitamin A

and an exposure to alcohol or drugs during pregnancy. To date, more than 30 genes

having different modes of inheritance patterns are identified as causing anophthalmia

and microphthalmia.

Methods: In the present study, a clinical and genetic analysis was performed of six

patients with anophthalmia and microphthalmia and/or additional phenotypes of

intellectual disability, developmental delay and cerebral palsy from a large consan-

guineous Pakistani family. Whole exome sequencing followed by data analysis for

variants prioritization and validation through Sanger sequencing was performed to

identify the disease causing variant(s). American College of Medical Genetics and

Genomics (ACMG) guidelines were applied to classify clinical interpretation of the

prioritized variants.

Results: Clinical investigations revealed that the affected individuals are afflicted with

anophthalmia. Three of the patients showed additional phenotype of intellectual dis-

ability, developmental delays and other neurological symptoms. Whole exome

sequencing of the DNA samples of the affected members in the family identified a

novel homozygous stop gain mutation (NM_012186: c.106G>T: p.Glu36*) in

Forkhead Box E3 (FOXE3) gene shared by all affected individuals. Moreover, patients

segregating additional phenotypes of spastic paraplegia, intellectual disability, hearing

loss and microcephaly showed an additional homozygous sequence variant

(NM_004722: c.953G>A: p.Arg318Gln) in AP4M1. Sanger sequencing validated the

correct segregation of the identified variants in the affected family. ACMG guidelines

predicted the variants to be pathogenic.
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Conclusions: We have investigated first case of syndromic anophthalmia caused by

variants in the FOXE3 and AP4M1. The present findings are helpful for understanding

pathological role of the mutations of the genes in syndromic forms of anophthalmia.

Furthermore, the study signifies searching for the identification of second variant in

families with patients exhibiting variable phenotypes. In addition, the findings will

help clinical geneticists, genetic counselors and the affected family with respect to

prenatal testing, family planning and genetic counseling.
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1 | INTRODUCTION

Congenital anophthalmia and microphthalmia are rare developmental

eye defects that lead to the absence or reduction of one or both ocu-

lar globe, occuring as a result of a mutation in eye development dur-

ing the first 8 weeks of life.1 To date, the combined prevalence of

anophthalmia and microphthalmia has been reported to be 0.32–0.4

per 10,000 live births.2 Based on the absence of ocular structures,

congenital anophthalmia is classified as primary, secondary and

degenerative anophthalmia.3 Primary anophthalmia occurs because

of a defect in optic pit formation and optic outgrowth from the fore-

brain during the early 4 weeks of gestation. It results in the absence

of lens, optic nerve and chiasma. Secondary anophthalmia occurs by

orbital growth arrest, which leads to an absence of extraocular mus-

cles and a decrease in the optic foramen size.4 In degenerative

anophthalmia, ocular development occurs initially but subsequently

starts to degenerate.5 Depending upon the physical appearance of

the ocular globe and the reduction of axial length, microphthalmia is

also categorized as severe, simple and complex.6

Anophthalmia and microphthalmia can occur in isolation or asso-

ciated with other ocular disorders.7 The most common ocular disorder

associated with anophthalmia and microphthalmia is “coloboma”,
which is an abnormal closure of ocular fissures in the same or contra-

lateral eye.8 In rare cases, the disorder is also associated with anoma-

lies of organs other than eyes. For example, in Waardenburg

anophthalmia syndrome, anophthalmia is associated with osseous

synostosis, ectrodactylism, polydactylism and syndactylism.9 Similarly,

in the case of frontonasal dysplasia, the ocular phenotypes of micro-

phthalmia or anophthalmia are associated with an abnormal develop-

ment of the head and face.10,11

Anophthalmia and microphthalmia may be caused either by

genetic or non-genetic factors. The genetic factors include chromo-

somal aberrations, copy number variations and single gene mutation.

It may result from a single gene mutation and may be inherited in an

autosomal recessive, autosomal dominant or X-linked manner.12 The

non-genetic factors include virus infection, exposure to drugs and

deficiency of vitamin A during early pregnancy.13

The major reported genes associated with anophthalmia and

microphthalmia include SOX2 (MIM#184429), OTX2 (MIM#600037),

RAX6 (MIM#601881), PAX6 (MIM#607108), STRA6 (MIM#610745),

ALDH1A3 (MIM#600463), RARB (MIM#180220), VSX2 (MIM#

142993), FOXE3 (MIM#601094), BMP4 (MIM#112262), BMP7

(MIM#112267), GDF3 (MIM#606522), GDF6 (MIM#601147), ABCB6

(MIM#605452), ATOH7 (MIM#609875), C12orf57 (MIM#615140),

TENM3 (MIM#610083), VAX1 (MIM#604294), SALI2 (MIM#602219)

and YAP1 (MIM#606608).14 The SOX2 gene mutation is the

most common cause of anophthalmia and microphthalmia pheno-

types and contributes to approximately 15%–20% of cases in

individuals.15 All other genes are rarely affected. To date, the

genetic cause of approximately 50%–60% of the cases remains

unknown.16

In the present study, we recruited a consanguineous family aiming

to determine the genetic cause of the disease using whole exome

sequencing.

2 | MATERIALS AND METHODS

2.1 | Family recruitment and ethical statement

The study was approved by Institutional Review Board (IRB) of

Quaid-i-Azam University, Islamabad, Pakistan (RB-QAU-177) and

Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan

(No. F1-1/2015/ERB/SZABMU/808). Before collection of blood sam-

ples, all participants or their guardians signed an informed consent

form. The consanguineous family (ND-20) under study belongs to

Khyber Pakhtunkhwa province of Pakistan. A detailed pedigree was

designed after obtaining the information by interviewing the family

members, which reveals the mode of inheritance of the disease and

the number of affected individuals in the family. Informed consent

including presentation of photographs for publication was obtained

from all the participants or their parents. Peripheral blood was col-

lected from six affected (IV-2, IV-9, IV-11, IV-12, IV-14 and IV-15)

and five unaffected (III-3, III-9, III-10, III-13 and III-16) individuals of

the family in ethylenediaminetetraacetic acid-containing vacutainer

sets. The diagnosis of the disease was confirmed after obtaining medi-

cal reports and family history along with the on-spot examination by

optometric physician.
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2.2 | Whole exome sequencing and in silico
analysis

Two affected members (IV-11 and IV-14) of the family were subjected

to whole exome sequencing. For this, genomic DNAs of the affected

members of the family was prepared for exome sequencing in accor-

dance with the instructions of the SureSelect Target Enrichment Kit

(Agilent, Santa Clara, CA, USA) and libraries were prepared by using

biotinylated DNA oligonucleotides (SeqCap EZ Human Exome Library,

version 3.0; Roche Nimblegen, Madison, WI, USA). The sequencing

was performed on an Illumina platform (Illumina, Inc., San Diego, CA,

USA). This method of sequencing used the SureSelect, version 6, cap-

ture kit in accordance with the manufacturer's instructions. The analy-

sis and alignment of the sequencing reads were performed using the

Burrows–Wheeler Aligner (BWA) tool and a Genomic Analysis Toolkit

(GATK)17,18 was used for variant calling. For the annotation of these

called variants, we utilized ANNOVAR.19

Based on consanguinity and inheritance pattern of the disease in

pedigree, homozygous and compound heterozygous variants were

selected during exome data analysis. The variant selection criteria

include variants shared by exomes of both the patients, having minor

allele frequency < 0.001 in gnomAD, CADD-Phred score > 20, exonic

variants and splice sites (±12 bp).

Variants that were previously reported benign or likely benign in

ClinVar were excluded. The variants were screened that were delete-

rious and rare, with their expression in eye tissues or central nervous

system having been reported. A list of homozygous variants was ana-

lyzed to prioritize homozygous pathogenic variants, whereas the other

list of heterozygous variants was searched for compound heterozy-

gous variants. The selected variants were checked for validation and

segregation via Sanger sequencing using DNA of all available family

members. After the prioritization of sequence variants shared by both

the affected individuals, exome data of patient IV-14 was re-analyzed

for homozygous pathogenic variants that are either absent or hetero-

zygous in the exome of IV-11 (see Supporting information, Table S1).

For Sanger sequencing, primers were designed using Primer

3 software (https://primer3.ut.ee). PCR amplification and Sanger

sequencing were performed using standard protocols. Reference

sequences of the genes were downloaded from ensemble genome

browser (https://www.ensembl.org/index.html). Sanger sequencing

results were aligned to the reference sequence using BIOEDIT

sequence alignment editor, version 6.0.7 (Ibis Biosciences, Carlsbad,

CA, USA).

2.2.1 | In silico analysis 3D protein structure
modelling

Clinical significance of the identified variants was interpreted using

American College of Medical Genetics and Genomics (ACMG)

(https://wintervar.wglab.org/url.php) guidelines. The selected variants

were screened in several databases including gnomAD (https://

gnomad.broadinstitute.org), Human Gene Mutation Database

(http://www.hgmd.cf.ac.uk/ac/index.php), ClinVar (https://www.ncbi.

nlm.nih.gov/clinvar) and 130 in-house exomes of healthy control

individuals.

The AlphaFold2 algorithm (https://alphafold.ebi.ac.uk) was uti-

lized to predict the in silico structures of both the wild-type and

mutant FOXE3 proteins, which were subsequently visualized using

PyMol v2.4 (https://pymol.org/2). For the prediction of genetic and

physical interactions of FOXE3 with proteins and genes, we utilized

the GeneMANIA (https://genemania.org). Evolutionary conservation

of the mutated amino acid (arginine) in AP4M1 in orthologs was exam-

ined using HomoloGene (https://www.ncbi.nlm.nih.gov/homologene).

3 | RESULTS

3.1 | Clinical characteristics

The pedigree of the present family showed six patients afflicted with

bilateral anophthalmia/microphthalmia. Three of these patients segre-

gated additional phenotypes of cerebral palsy, hearing loss and behav-

ioral issues in two different loops (Figures 1 and 2).

Individual IV-9 was a 20-year-old male at the time of recruitment.

He was delivered via spontaneous vaginal delivery (SVD) at term with

immediate cry. He was vaccinated according to Expanded Programme

on Immunization (EPI) schedule. There were no maternal risk factors.

He is developmentally normal with no vision sense. His speech and

hearing is intact. On examination, there was bilateral anophthalmia

with no other positive findings (Figure 2).

Patient IV-11 was a 16-year-old female at the time of recruit-

ment. She was delivered via SVD at term with immediate cry and vac-

cinated according to EPI schedule. She is developmentally normal but

affected with bilateral anophthalmia. She has no vision sense with

normal hearing and speech. She had never admitted to hospital

before. On examination, she was obeying commands and talking rele-

vantly. She does not have obvious facial dysmorphisms. All her limbs

and joints are normal in anthropometry. Systemic examination was

unremarkable, and all reflexes were elicitable.

Individual IV-12 was a 13-year-old female at the time of recruit-

ment. She was born with congenital bilateral anophthalmia. She is

developmentally normal. She does not have any other facial, dermato-

logical or limbs abnormality.

Patient IV-14 was an 8-year-old male at the time of recruitment.

He was born at full term with normal delivery and an immediate cry

after birth. He was vaccinated as scheduled by the obstetricians.

There were no natal, antenatal or postnatal risk factors for anophthal-

mia and global development. He was born with bilateral anophthalmia

with small palpable fissures. He is globally delayed child with neck-

holding achieved at 9 months and sitting without support at

13 months of age. He is afflicted with hearing loss and vision since

birth, which is progressively increasing in the form of fits and behav-

ioral problems. He is affected with aphasia and unable to carry out his

routine activities and feed himself. He has been admitted to our ward

multiple times because of intractable fits and nutritional anemia. On
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examination, he was an irritable emaciated child. He is hyper pigmen-

ted with all normal joints and no contractual formations. Systemic

examination is unremarkable. Magnetic resonance imaging (MRI) find-

ings of the patient showed altered signal intensity areas in the left

anterior temporal lobe following cerebrospinal fluid signal along with

focal T2 weighted imaging/fluid attenuated inversion recovery hyper-

intense signals in the adjacent parenchyma in keeping with

gliosis. The interhemispheric fissure is centered on the midline. The

central ventricles are of normal size and symmetrical with normal cir-

culation of cerebrospinal fluid. There are no signs of increased intra-

cranial pressure. The cortex and white matter showed normal

development and normal signal intensity, especially in the periventri-

cular white matter. No abnormality was seen in the basal ganglia,

internal capsule, corpus callosum or thalamus. The brain stem and cer-

ebellum showed no abnormal changes in signal characteristics. The

sella and pituitary are normal, and parasellar structures are unremark-

able. The cerebellopontine angle area appears normal on each side.

The internal acoustic meatus has normal width. Visualized paranasal

sinuses and mastoid air cells showed normal development and pneu-

matization. Bilateral orbits are small in size. The overall impression

drawn from the MRI findings was of altered signal intensity areas in

the left anterior temporal lobe, indicative of gliosis. Additionally, fea-

tures of volume loss were observed, which could be sequelae of a pre-

vious traumatic ischemic insult.

Patient IV-15 was a 7-year-old female at the time of recruitment.

She was delivered through normal delivery with immediate cry. There

were no maternal risk factors and no natal, antenatal and post-natal

complications. She was born with bilateral anophthalmia. She is glob-

ally delayed child. She has only achieved sitting without support so

far. Her disease is progressively increasing in the form of poor food

intake and behavioral problems. She is unable to perform her routine

tasks. She has been admitted to the hospital multiple times due to

nutritional anemia and has had several visits to the outpatient depart-

ment for chest infections. On examination, she is microcephalic child

with hearing loss and aphasia, irritable with emaciated look and hyper

pigmented. Her limbs are normal with no contractures. There is no

facial dysmorphisms, obvious asymmetry or scar marks. Her systemic

examination is unremarkable. All reflexes are illimitable.

These patients have another affected cousin (IV-2), who is 7 years

old. He is developmentally delayed with behavioral issues and hearing

F IGURE 1 (A) Pedigree of the family. The rectangles showed males and the circles females. The filled rectangles and circles represent

affected members however; unfilled rectangles and circles represent unaffected members. An asterisk (*) represents the ndividuals who
participated in the research study. (B–C) Sanger sequencing chromatogram of FOXE3 gene showing the identified variant in heterozygous and
homozygous states, respectively.
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loss. He is not able to stand without support even at the age of

7 years. He has vision impairment since birth. He cannot support him-

self in his daily life activities. He has behavioral problems and cannot

even speak a few words.

Parents of the affected individuals are phenotypically healthy.

Both the loops have consanguinity; therefore, the pedigree was con-

cluded to segregate the disease in autosomal recessive form. Variabil-

ity in the severity of phenotypes was observed in the patients of

present family.

3.2 | Whole exome and sanger sequencing

The exome data analysis of the family revealed 19 rare variants in

candidate genes shared by both affected individuals (IV-11 and IV-14).

A stop gain variant (c.106G>T: p.Glu36*) in the FOXE3 gene segre-

gated with the phenotype in family. The p.Glu36* variant is neither

found in gnomAD, nor the 1000 genomes browser (https://www.

internationalgenome.org). Moreover, this variant is not reported in the

ClinVar database and Human Gene Mutation Database. The

CADD_phred score of the variant was 35. None of the 130 in-house

exomes of matched control individuals was found to be homozygous

for the identified variant in FOXE3. ACMG guidelines predicted

the variant (p.Glu36*) in FOXE3 to be disease-causing. In silico

analysis using the GeneMANIA network showed that FOXE3 has

strong genetic and physical interactions with ZEB2 and MAB21L1

(Figure 3D).

The affected individual IV-14 has addition neurological pheno-

types associated with anophthalmia. Therefore, we analyzed the

exome data of both individuals for the identification of variant(s)

underlying the additional phenotypes. Reanalysis of the exomes of

both patients for homozygous variants that are only present in IV-14

revealed a pathogenic variant c.953G>A: p.Arg318Gln in AP4M1.

ACMG guidelines predicted the identified variant pathogenic for the

disease phenotypes in the present patients (IV-14).

3.2.1 | In silico protein structural modeling

Upon molecular visualization of wild and mutant FOXE3 protein, we

found that the novel stop gain variant terminates the translation at

position 36 resulting in the truncation of protein (p.Glu36*), as shown

F IGURE 2 (A–F) Clinical features of
three affected individuals of the family.
(A–D) Showing bilateral anophthalmia and
microphthalmia. The affected individuals
have variable degree of cerebral palsy.
(G–H) MRI of patient IV-14 showed
altered signal intensity areas in the left
anterior temporal lobe following
cerebrospinal fluid signal along with focal

T2 weighted imaging/fluid attenuated
inversion recovery hyperintense signals in
the adjacent parenchyma in keeping with
gliosis.
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F IGURE 3 In silico molecular characterization of FOXE3 wild-type and mutant proteins. (A) cDNA and amino acid sequences of FOXE3 wild-
type and mutant proteins indicating the point of mutation c.106G>T and p.Glu36*. (B, E) Predicted 3D structure of wild-type FOXE3 protein with
319 amino acids and mutant FOXE3 protein with only 35 amino acids. (C, F) Showing the forkhead domain of the wild-type FOXE3 and the
mutant with p.Glu36* mutation consequently lacking the forkhead domain. (D) Genetic and physical interaction network of FOXE3 with other

proteins and genes. (G) Arginine (R) within the box in AP4M1 protein indicates a conserved residue across different species. (H) Structures of
amino acids arginine and glutamine.
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in Figure 3. The protein resulting from a premature termination codon

brings about structural changes in the protein, leading to a shorter

version of the FOXE3 protein that might not be able to perform its

proper function and may affect downstream signaling. To determine

relatedness among the genes, GeneMANIA network analysis showed

that FOXE3 has strong genetic and physical interactions with ZEB2

and MAB21L1. The arginine at amino acid position 318 (p.Arg318Gln)

is completely conserved among various species (Figure 3G).

4 | DISCUSSION

Anophthalmia and microphthalmia are the most severe developmental

eye disorders that occur as a result of mutations in a small percentage

of genes and still 50%–60% of anophthalmia and microphthalmia

cases need to be determined.12,16 In the present study, we analyzed a

consanguineous family of Pakistani origin having clinical features of

anophthalmia/microphthalmia associated with cerebral palsy, hearing

loss, behavioral issues and global developmental delay. Analysis of the

exome data followed by a segregation analysis using Sanger sequenc-

ing revealed a novel homozygous stop gain variant [NM_012186;

p.Glu36*] in the FOXE3 gene. The variant segregated with the disor-

der within the family. Previously, sequence variants in the gene have

been reported in isolated anophthalmia.

The affected individual IV-14 showed additional phenotypes of

developmental delay, intellectual disability, sensorineural hearing loss,

aphasia, behavioral issues and cerebral palsy. Therefore, reanalysis of

the exomes for additional homozygous pathogenic variants in IV-14

led to the identification of c.953G>A: p.Arg318Gln in AP4M1. The

identified variant c.953G>A in AP4M1 was present in heterozygous

form in IV-11.

AP4M1-encoded protein is a member of the heterotetrameric

AP-4 complex. The complex is involved in intracellular transport of

proteins having a unique role in neurons. The identified variant c.

G953A in AP4M1 leads to the replacement of arginine at amino acid

position 318 to glutamine p.R318Q of AP4M1 protein. Unlike positive

charge on arginine, the glutamine is uncharged. The conversion of a

positively charged amino acid to an uncharged amino acid may affect

intra- and inter-molecular interactions of the AP4M1 protein. Struc-

ture wise, arginine has long side chain, whereas glutamine has a

shorter side chain (Figure 3H). Because of the different chemical prop-

erties of the two amino acids, the present variation may affect the

protein's structure, stability and interactions with other molecules.

This may lead to disruption of AP-4 complex. The formation of the

disrupted complex because of a mutated AP4M1 could lead to defects

in vesicle trafficking, affecting protein sorting and cellular processes.

A homozygous nonsense variant at the same amino acid (c.952C>T

(p.Arg318Ter)) in AP4M1 in a Turkish family caused spastic tetraplegia,

severe intellectual disability, stereotypic laughter, limited or absent

speech, microcephaly and seizures.20 Based on these findings, we

hypothesize that the family under study has segregated two different

disorders (anophthalmia/microphthalmia and spastic paraplegia asso-

ciated with intellectual disability) caused by two different genes

(FOXE3 and AP4M1). All of the individuals have segregated homozy-

gous variant in FOXE3 underlying anophthalmia and microphthalmia,

whereas individual IV-14 has segregated both the variants in FOXE3

and AP4M1, therefore showing phenotypes of anophthalmia and

microphthalmia associated with additional neurological phenotypes.

Because of the higher consanguinity in the Pakistani population, sev-

eral previous studies have reported dual diagnosis of phenotypes in

the population.21,22

FOXE3 gene belongs to a large family of forkhead transcription

factors and is located on chromosome 1p33. It consists of a single

coding exon, which encodes FOXE3 protein composed of 319 amino

acids.23 A wide range of eye diseases such as aphakia, sclerocornea,

anterior segment anomalies and microphthalmia have been associated

with autosomal dominant and autosomal recessive mutations in

FOXE3 gene.24,25 No pathogenic mutation in FOXE3 has been found

to cause anophthalmia in association with other sensory processing

disorder till date.

In the present study, six patients showed anophthalmia. In addi-

tion to ocular anomalies, three of the patients (IV-2, IV-14 and IV-15)

showed additional phenotypes of developmental delay, sensorineural

hearing loss, aphasia, behavioral issues and cerebral palsy. One of the

patients (IV-15) was found with microcephalic head and fits. FOXE3 is

highly expressed in anterior segment of the eye, cerebral cortex and

basal ganglia and is involved in the formation of lens placode.26

GeneMANIA network analysis showed that FOXE3 has strong

genetic and physical interactions with ZEB2 and MAB21L1. Both these

genes (ZEB2 and MAB21L1) have been reported to associate with

neurological disorders including Mowat syndrome (microcephaly,

structural brain abnormalities and intellectual disability) and cerebellar,

ocular, craniofacial and genital syndrome (COFG) respectively.27,28

In mouse, FOXE3 gene mutation associated with eye deformities

is first reported in the dysgenetic lens mutant mouse.29,30 The dysge-

netic lens mutant mice showed single eye abnormality, with small

lenses, which is incompletely separated from the cornea.

In humans, the first FOXE3 mutation was a heterozygous single

base duplication (c.942dupG; p.Leu315AlafsX117) found in a family

segregating congenital cataract and posterior embryotoxon.31 Subse-

quently, another heterozygous mutation (c.269G4T; p.Arg90Leu) in

the forkhead binding domain of the gene was reported in single indi-

vidual affected with Peter's anomaly.32 The first homozygous muta-

tion in FOXE3 gene was reported in a consanguineous family with

microphthalmia, sclerocornea, buphthalmos and congenital primary

aphakia.33 Previously, seven different homozygous variants have been

reported in FOXE3 underlying different ocular phenotypes in

Pakistani families. In one study, a family of Pakistani origin segregating

aphakia in autosomal recessive form revealed a premature stop gain

variant (p.Cys240X) in FOXE3.34 Similarly, three additional families

segregating bilateral anophthalmia revealed homozygous variants

(p.Met7Ilefs*216 and p.Ile97Val) in FOXE3.35 Moreover, two homozy-

gous variants (p.Asn117Lys and p.Glu103Lys) in FOXE3 contributing

to Peters anomaly through transcriptional regulation of an autophagy-

associated protein termed DNAJB1 were identified in Pakistani

families.36
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A homozygous missense variant (p.(Glu103Lys)) was reported in

FOXE3 in patients underlying autosomal recessive congenital cata-

racts.37 Recently, a homozygous missense variant (p.(Ile97Val)) in

FOXE3 underlying congenital anterior segment dysgenesis, keratoco-

nus, congenital bilateral corneal haze and apparent microphthalmia in

five affected individuals belonging to a large consanguineous

Pakistani family was reported by Rashid et al.38 Here, we present

another Pakistani family with six affected individuals showing syndro-

mic features (anophthalmia associated with other sensory processing

disorders including sensorineural hearing loss, aphasia, developmental

delay, behavioral issue and microcephaly) caused by a novel nonsense

p.Glu36* variant in FOXE3 and a missense variant in AP4M1. The

inter- and intra-familial variability in the phenotypes of present and

previous cases might be a result of different familial backgrounds, age

of the patients, nature and position of the variants, and/or dual molec-

ular diagnosis.

To date, 35 pathogenic mutations have been reported in FOXE3

gene including 27 missense, five small deletions and three small

insertions (http://www.hgmd.cf.ac.uk/ac/all.php).25,33,39–50 Most of

the missense mutations in FOXE3 gene were reported in the forkhead

domain, which acts as a DNA binding domain of FOXE3. These

mutations alter the function of DNA binding domain, resulting in

reduced transcriptional activation and affecting the normal develop-

ment of the eye.48 Other mutations reported in FOXE3 gene such as

stop gain or frame shift are distributed throughout the gene

sequence.49 The variant p.Glu36* identified in the present study

locates upstream to nuclear localization signal and the forkhead

domain. It is predicted that the identified variant affects the protein

structure (Figure 3) and may lead to loss of function through the

production of truncated protein.

5 | CONCLUSIONS

The mutation spectrum of FOXE3 gene is clinically variable. Here, we

present the clinical and genetic analysis of a consanguineous family of

Pakistani origin displaying features of anophthalmia associated with

hearing loss, aphasia and cerebral palsy caused by novel variants in

FOXE3 and AP4M1. These findings not only expand the genetic and

clinical spectrum of FOXE3 and AP4M1-related phenotypes, but also

are helpful in prenatal screening, carrier testing and genetic counsel-

ing. Moreover, the study highlights the importance of analysis of next

generation sequencing data for dual diagnosis in families where there

is higher rate of consanguinity and variable phenotypes in patients. To

prevent the segregation of rare inheritable diseases to the next gener-

ations, proper genetic counseling for the affected family is critical.

Furthermore, parenteral genetic screening/diagnosis in conjunction

with non-invasive prenatal testing and newborn screening are some

of the suggested procedures to cope with rare inheritable conditions

for which there is presently no treatment.51–53 Additional cases

related to this gene might aid in the identification of genotype–

phenotype connections, potentially paving the way for clinical trials in

the near future.54
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