Journal of Essential Oil Bearing Plants ISSN Print: 0972-060X Online: 0976-5026 www.jeobp.com

Thujone-Rich Essential Oils of *Artemisia rutifolia* Stephan ex Spreng. Growing Wild in Tajikistan

Farukh S. Sharopov¹ and William N. Setzer^{2*}

 ¹ V. I. Nikinin Institute of Chemistry, Tajik Academy of Sciences, Ainy St. 299/2, Dushanbe, 734063, Tajikistan
² Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Received 27 September 2010; accepted in revised form 18 January 2011

Abstract: The essential oil from the aerial parts of *Artemisia rutifolia* Stephan ex Spreng., collected from two different regions of Tajikistan, were obtained by hydrodistillation and analyzed by GC-MS. A total of 77 compounds were identified in the oils, accounting for 98.6 % and 99.2 % of the two oils. Both essential oils were dominated by α -thujone (20.9 % and 36.6 %) and β -thujone (47.3 % and 36.1 %) with lesser amounts of 1,8-cineole (3.2 % and 11.7 %) and germacrene D (2.8 % and 1.8 %).

Key words: Artemisia rutifolia, essential oil composition, thujone, Tajikistan.

Introduction: *Artemisia rutifolia* Stephan ex Spreng. is a member of the Asteraceae (Compositae) and is distributed in Afghanistan, China, India, Kazakhstan, Kyrgyzstan, Mongolia, Nepal, Pakistan, Russian Federation and Tajikistan¹. The plant is an important traditional medicine. An infusion of the herb is taken to relieve painful urination; the fresh herb is used as an analgesic for toothache; the dried herb is used to treat excessive sweating; a decoction of the herb is gargled for treatment of angina, stomach problems, and heart problems. *A. rutifolia* essential oil has antibacterial, antifungal and anthelmintic activity².

The essential oil of *A. rutifolia* growing in the Pamirs had been previously investigated by Goryaev in 1962, who reported the main constituents to be 1,8-cineole, α - and β -thujone, camphor, α - and β -pinene, camphene, and limonene ³. Shavarda examined *A. rutifolia* oil from the Mongolian People's Republic and identified 15 components: 1,8-cineole (35.0 %), camphor (18.0 %), α - and β -thujone (11.0 %), terpinen-4-ol (7.0 %), α -terpineol (5.0 %), α -pinene, β -pinene, camphene, limonene, β -phellandrene, p-cymene, 4-phenylbutan-2-one, 4-phenyl-butan-2-ol, and 4-phenylbut-2-yl acetate ⁴.

Experimental

Plant material: Aerial parts of *Artemisia rutifolia* were collected from two regions of Tajikistan: Sample #1, the Khonaobod village, Muminobod region (38.107547 N, 69.966431 E, 1200 m above sea level), on 2 May 2010; Sample #2, the Chormaghzak village, Yovon region, (38.417502 N, 69.172175 E, 1300 m above sea level), on 25 July 2010. The plant was identified by V.A. Sulaimanova,

*Corresponding author (William N. Setzer) E-mail: < wsetzer@chemistry.uah.edu > and a voucher specimen (TJ2010-040) has been deposited in the herbarium of the Chemistry Institute of the Tajikistan Academy of Sciences. The air-dried samples (300 g each) were crushed and hydrodistilled using a Clevenger apparatus for 3 h to give the yellow essential oils, which were stored at 4° C until analysis.

Gas chromatographic-Mass spectral analysis: The essential oils of *Artemisia rutifolia* were analyzed by GC-MS using an Agilent 6890 GC with Agilent 5973 mass selective detector [MSD, operated in the EI mode (electron energy = 70 eV), scan range = 45-400 amu, and scan rate = 3.99 scans/sec], and an Agilent ChemStation data system. The GC column was an HP-5ms fused silica capillary with a (5 % phenyl)-polymethylsiloxane stationary phase, film thickness of 0.25 μ m, a length of 30 m, and an internal diameter of 0.25 mm. The carrier gas was helium with a column head pressure of 48.7 kPa and a flow rate of 1.0 mL/min. Injector temperature was 200°C and detector temperature was 280°C. The GC oven temperature program was used as follows: 40°C initial temperature, hold for 10 min; increased at 3°C/min to 200°C; increased 2°/min to 220°C. A 1 % w/v solution of the sample in CH₂Cl₂ was prepared and 1 μ L was injected using a splitless injection technique.

Identification of the oil components was based on their retention indices determined by reference to a homologous series of *n*-alkanes, and by comparison of their mass spectral fragmentation patterns with those reported in the literature ⁵ and stored on the MS library [NIST database (G1036A, revision D.01.00)/ChemStation data system (G1701CA, version C.00.01.080)]. The percentages of each component are reported as raw percentages based on total ion current without standardization. The essential oil composition of *A. rutifolia* is summarized in Table 1.

Results and discussion: The yellow essential oils of *Artemisia rutifolia* were obtained in 0.5 % yield for sample #1 (Muminobod region) and 0.8 % yield for sample #2 (Yovon region). A total of 77 compounds were identified in the *A. rutifolia* essential oils accounting for 98.6 % and 99.2 % of the compositions, respectively. The essential oils were dominated by oxygenated monoterpenoids, chiefly α -thujone (20.9 % and 36.6 %, respectively, for the Muminobod sample and the Yovon sample) and β -thujone (47.3 % and 36.1%, respectively). Other notable components included 1,8-cineole (3.2 % and 11.7 %, respectively) and germacrene D (2.8% and 1.8 %, respectively).

The *A. rutifolia* essential oils from Tajikistan, as revealed in this study, clearly belong to a thujone-rich chemotype, and differ markedly from the cineole/camphor-rich chemotype previously reported from Mongolia⁴.

Acknowledgments: FSS is grateful to the Fulbright Program for a generous research/travel grant. WNS is grateful to an anonymous private donor for the gift of the GC-MS instrumentation. We thank Dr. Bernhard Vogler for technical assistance with GC-MS data collection.

References

- 1. **Tropicos.org. (2010).** Missouri Botanical Garden. 26 Sep 2010. http://www.tropicos.org/Name/ 2727691
- 2. Llere6Hble TpaBbl (Healing herbs). (2007). http://medherb.if.ua/art_ru.htm
- 3. **Goryaev, M.I., Pliva, I. (1962).** Methods of Investigating Essential Oils [in Russian], Izv. Akad. nauk KazSSR, Alma Ata, p. 680.
- 4. **Shavarda, A.L. (1976).** Essential oils of Mongolian plants. A study of the essential oil of *Artemisia rutifolia*. Chem. Nat. Comp. 12: 42-45.
- 5. Adams, R.P. (2007). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed. Allured Publishing, Carol Stream, IL, USA.

0.1 - tr 0.4 0.1
- tr - 0.4
- 0.4
- 0.4
0.1
-
0.3
0.1
0.2
0.9
11.7
-
-
0.4
0.1
36.6
36.1
0.8
0.1
0.5
0.2
0.2
-
0.3
0.2
0.4
0.1
1.2
-
0.1
0.3
-
0.3
-
0.2
0.1
0.1
0.3
0.1
0.1
0.9
tr

Table 1. Chemical compositions of the essential oilsof Artemisia rutifoliaStephan ex Spreng. from Tajikistan

ta	b	le 1	1. ((continued).
----	---	------	------	--------------

RI ^a	Compound	Percent #1 ^b	Composition #2 ^c
1265	iso-3-Thujanol acetate	0.1	0.1
1279	neoiso-3-Thujanol acetate	-	0.1
1283	1-Phenyl-2,4-pentadiyne	-	0.1
1285	Bornyl acetate	-	tr
1289	p-Cymen-7-ol	0.1	tr
1292	Thymol	0.7	0.2
1301	Carvacrol	0.9	0.4
1317	(Z)-Patchenol	-	0.2
1336	cis-Piperitol acetate	0.1	0.1
1343	Piperitenone	0.1	0.1
1366	Piperitenone oxide	1.4	tr
1375	α-Copaene	0.1	tr
1399	(Z)-Jasmone	0.1	0.3
1418	(E)-Caryophyllene	0.4	0.1
1458	(E)-β-Farnesene	0.2	0.1
1467	(2E)-Dodecenal	0.2	-
1476	β-Chamigrene	0.1	-
1482	Germacrene-D	2.8	1.8
1487	(E)-®-Ionone	0.1	tr
1497	Bicyclogermacrene	0.5	0.8
1509	β-Bisabolene	0.2	-
1514	Davana ether	-	0.1
1514	δ-Cadinene	0.1	tr
1578	Spathulenol	0.7	0.2
1578	Caryophyllene oxide	0.2	0.2
1589	Davanone	0.2	1.3
1592	Viridiflorol	0.4	1.5
1603	Ledol	0.4	-
1640	Germacrene-D 1,10-epoxide	0.1	-
1654	α-Cadinol	0.3	-
1670	Phloroacetophenone 2,4-dimethylether		-
1685	Germacra-4(15),5,10(14)-trien-1α-ol	0.3	0.1
1694		0.1	
1094	4-Cuprenen-1-ol	-	tr
	Compounds Identified	98.6	99.2
	Monoterpene hydrocarbons	6.5	2.3
	Oxygenated monoterpenoids	85.0	91.9
	Sesquiterpene hydrocarbons	4.4	2.8
	Oxygenated sesquiterpenoids	1.9	1.8
	Miscellaneous compounds	0.8	0.5

^a RI = Retention Index, determined with reference to a homologous series of normal alkanes on an HP-5ms column

^b Sample # 1: collected from Muminobod region ^c Sample # 2: collected from Yovon region