
Blockchain-based SLA Management for
Inter-Provider Agreements

Farhana Javed and Josep Mangues-Bafalluy
Services as Networks (SAS)

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA) Castelldefels, Spain
email: farhana.javed@cttc.es, josep.mangues@cttc.cat

Abstract—With features like immutability and transparency,
blockchain and Distributed Ledger Technologies (DLT) can en-
able the telco industry to exchange services using smart contracts.
Consequently, various 6G network stakeholders can participate
in a marketplace for inter-provider agreements as either service
providers or consumers. As, a blockchain-based 6G network
can aid administrative domains in sharing resources (virtual
network functions, services, or slices). However, such a dynamic
environment requires strict Service Level Agreement (SLA)
monitoring and management. Therefore, this paper considers a
use case of a smart contract-based inter-provider agreement. We
use novel solutions like IOTA Tangle to perform transactions,
IPFS to store the hash of use case data files, and chainlink
to access off-chain data feeds for SLA monitoring, reducing
costs and increasing transparency. We also provide experimental
evaluations of and divide the emulation into two phases. Phase 1
consists of choosing the approach and creating a smart contract
(SC) (i.e., SC-Marketplace or SC-Auction). Furthermore, phase 2
consists of off-chain data feed to monitor SLA through chainlink.
Finally, we measure transaction latency, response time, overall
time consumption, and transaction & storage cost. The maximum
latency observed in phase 1 is ≈ 25ms and ≈ 15s for phase 2.
Similarly, the average response time for both phases is ≈ 14s ∼
20s. Lastly, the results also explain that using IOTA-EVM, we can
have fee-less transactions, and IPFS helps reduce the storage cost
by up to ≈ 80%. However, it is concluded that adding chainlink
adds additional cost for SLA data feeds.

Index Terms—Blockchain, DLT, NFV, smart contract, SLA,
Chainlink, IOTA Tangle, IPFS, inter-provider, 6G.

I. INTRODUCTION

According to European Vision for the 6G Ecosystem, 6G
will have to achieve many more objectives than simply de-
livering rapid mobile Internet access. For example, in 5G
networks, Network slicing refers to separating a physical
network into distinct logical networks known as slices. Each
slice can be set up to provide unique network capabilities,
and features.Therefore, cost and time-efficient solutions with
satisfactory results can be made possible by network slicing
and virtualization. For this purpose, a typical Service Level
Agreement (SLA) establishes a set of Service Level Objectives
(SLOs) in terms of multiple Quality of Service (QoS) metrics
and specifies financial penalties for SLO violations by the ser-
vice provider. Moreover, it is considered that a 6G network will
provide dynamic multi-domain network slicing with numerous
inter-provider agreements [1]. Therefore, 6G networks are
expected to substantially increase the number of stakeholders
involved in a given service offering due to softwarization.

In this direction, deploying multi-domain network services
requires using advanced solutions, such as service federation.
Federation is the process of orchestrating services or resources
across several domains in a multi-domain scenario [2].

An inter-provider SLA agreement is needed to support the
orchestration of network slices across multiple administrative
domains for secure and trustful processes. In this context,
service providers are looking for new models (a platform or
an Network Function Virtualization (NFV) marketplace to sell,
lease or purchase resources and services with defined SLA
agreements) where the on-boarding of assets and resource
sharing can be performed in an automated and cost-effective
manner at the same time providing ways for accountability
with transparency for these SLA agreements. However, the
third party must ensure both sides’ openness and reliability as
there are gaps in the literature regarding SLAs of 6G-enabled
use cases. In addition, there is a lack of SLA monitoring
and penalty assignments in case of SLA violations. Therefore,
automatic SLA monitoring, verification, and enforcement are
challenging for both sides (providers and consumers) to im-
plement to prevent trust deficiencies.

In this regard, Distributed Ledger Technologies
(DLT)/blockchain has the potential to address the difficulties
associated with automating SLA monitoring and compliance
[3]. Therefore, the contributions of this paper are to
propose DLT as a solution to support and provide trust
in these open markets using DLT as SLA monitoring and
management. Furthermore, on top of the automation and
SLA management, blockchain and smart contracts remove
the need for costly intermediaries resulting in transparency
and trustworthiness for inter-provider agreements. Another
contribution of this paper is to consider a 6G network use
case of inter-provider agreement for multi-administrative
domains, including registration and service offering using
two approaches (i) marketplace advertisements and service
discovery and (ii) reverse auction. For this use case, we
aim to leverage solutions that support the current limitation
of Ethereum while keeping the concept of decentralization
alive. Our solution combines IOTA Tangle and InterPlanetary
File System (IPFS) to minimize the overall cost for 6G use
cases. For SLA monitoring, we use DLT-based Oracle, i.e.,
chainlink oracle. Chainlink oracles help bring the off-chain
data to Decentralized Applications (DApps) and smart
contracts. Therefore, the main contribution of this paper is to

978-1-6654-7334-7/22/1.00 ©2022 IEEE 155

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 N

et
w

or
k

Fu
nc

tio
n

Vi
rt

ua
liz

at
io

n
an

d
So

ft
w

ar
e

De
fin

ed
 N

et
w

or
ks

 (N
FV

-S
DN

) |
 9

78
-1

-6
65

4-
73

34
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

N
FV

-S
DN

56
30

2.
20

22
.9

97
48

99

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

propose a DLT-based automatic SLA monitoring system for
ensuring transparency and trustworthiness for inter-provider
agreements. We leverage the decentralized characteristics of
DLT for SLA monitoring. Also, we propose an approach
for SLA monitoring that can facilitate trustworthy SLA
enforcement. We leverage DLT’s inherent capabilities to
achieve an immutable record of services which can be helpful
for complete a posterior audit data trials and log violations
against SLA. Additionally, we evaluate the proposed system
for satisfying SLA, specifically for response time and added
latency.

The rest of the paper is organized as follows: Section II
presents the related literature, and III discusses the proposed
approach. Section IV showcases the evaluations performed,
and finally we conclude at the end in Section V.

II. RELATED WORK

Recently, there has been an interest in SLA monitoring for
emerging 6G network requirements. In this regard, a DLT-
focused resource reservation idea is the blockchain network
slice broker [4] based on [5]. The authors present an idea
where the consumer (tenants) can request network services
from a provider (Mobile Network Operators (MNOs). The
SLAs for the allocation are recorded to a distributed ledger
through smart contracts. However, the actual resource usage at
a device is not recorded, and the problem of SLA monitoring
in network sharing is not addressed. An idea presented in [6] is
the extension of Network Slice Broker (NSB) [5]. It provides
a blockchain-focused architecture for network slice auctions.
In this work, infrastructure providers allocate network slices
through an intermediate entity, the intermediate broker, which
further gives resources to tenants. However, NSB does not
discuss the problem of SLA monitoring. In [7], the authors
present an End-to-End (E2E) architecture for network sharing
based on blockchain and smart contracts. The authors focus
on permissioned distributed ledger; also, the process of SLA
monitoring is not addressed.
However, it may be unclear what party should be trusted as the
SLA management authority after establishing an SLA [7]. This
question becomes even more pertinent where failures are less
tolerable. Therefore, we suggest that no single entity should
have sole authority over SLA lifecycle management because
of numerous critical concerns, including breach, conflict of
interest, single point of failure, and lack of awareness of E2E
ecosystem requirements [8].

Therefore, the main contribution and focus of this work
are to enable SLA monitoring, where the data for SLA
monitoring is accessed off-chain and stored on the blockchain
and used for SLA enforcement. Furthermore, chainlink off-
chain brings automation and transparency, which is critical
in SLA monitoring. Moreover, effective SLA monitoring and
enforcement mechanisms are required. In the context of inter-
provider agreements, traditional SLA practice can be ineffi-
cient due to the limitations, including less or no transparency,
manual SLA enforcement, and trust in a single authority.
Such restrictions can impair SLA compliance. To address this

matter, we believe any improvement to current SLA practice
can integrate blockchain and DLT as a solution. We use novel
solutions like chainlink to enable off-chain data access and
reduce the overall transaction cost using IOTA-EVM. We also
propose to use IPFS to minimize the storage cost of the inter-
provider agreement.

III. BLOCKCHAIN-BASED SLA MANAGEMENT FOR
INTER-PROVIDER AGREEMENTS

In inter-provider agreements or multi-administrative use
cases, a domain usually outsources resources from different
providers to meet end-user demand. Therefore, the SLA plays
a vital role in inter-system orchestration and mediation for
inter-provider agreements [9] and a monitoring and enforce-
ment mechanism for SLAs is required. However, in the context
of inter-provider agreements, typical SLA practice might be
inefficient due to limitations such as little or no transparency,
manual SLA enforcement, and reliance on a sole authority.
These constraints may hinder SLA compliance.
Consequently, the integration of blockchain and DLT can
increase transparency and automation. Therefore, we use the
blockchain’s audibility and self-enforcement characteristics
to impose accountability and responsibility [9]. Blockchain
and DLT can play an active role, allowing activities to be
recorded on a shared ledger in the form of transactions. These
transactions must adhere to the defined SLA terms. In addition,
a blockchain oracle (i.e., chainlink) can obtain the SLA metrics
from the off-chain source, facilitating SLA monitoring.

The convergence of two technologies, such as
blockchain/DLT and service federation, frames the complexity
of a phenomenon that requires a deep understanding of
involved technologies and a clear comprehension of how the
underlying building blocks could work together for Blockchain
and DLT-based 6G network use cases. Therefore in Figure
1, we begin by illustrating the definition of two high-level
technological stacks as a stepping stones to understanding
the characteristic of the underlying building blocks. The
building blocks are as follows (i) A Domain (provider
or consumer), (ii) Decentralized Application (DApp), (iii)
Oracle, (iv) Smart Contract (SC), (v) IOTA Tangle, and
(vi) Ethereum blockchain. Here the initial block, Domain,
is AI/ML platform and integrated into the management and
orchestration (MANO) workflow described in the 5Growth
project1. We aim to extend this framework by adding the
blockchain for SLA management.

a) Framework and Workflow: In this paper, we examine
a use case in which blockchain and smart contracts support
inter-provider agreements for 6G networks using a market-
place and auction mechanism. In addition, this inter-provider
agreement utilizes a blockchain-based oracle for SLA man-
agement. Figure 2 illustrates the interactions or transactions
(a transaction is one of the primary activities that plays a
crucial role since it can change or update the state of the smart
contract) involved in this use case. These components include:

1https://5growth.eu/

156

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

Chainlink Oracle

Smart Contracts

IOTA-EVM

5Growth Reference Architecture

SLA
manager

AI/ML
Platform

Monitoring
system

Broker

Do
m

ai
n

SC

BC

Marketplace(MP)

DAPP

Or
ac

le

Kafka

Ethereum

IO
TA

Ta
ng

le

API

Fig. 1: Proposed building blocks for Blockchain/DLT-based
SLA monitoring

Domainj as Provider (P), Domaini as Consumer (C), Broker
(B), Marketplace (front-end) (MP), Smart Contract (SC) (a)
SC-Auction, (b), SC-Marketplace, Chainlink Oracle (CLO),
IOTA-EVM (IEVM), Ethereum, and IPFS.

We employ the blockchain-based marketplace referred to
above as Marketplace (MP) to enable consumers (C) and
service providers (P) to engage in buying and selling services
and forming agreements based on requests. In addition, we
use Ethereum and its smart contracts functionality as the
foundation for a decentralized and transparent platform for
multi-party or inter-provider negotiation between a growing
number of stakeholders (e.g., Virtual Network Function (VNF)
providers, multi-administrative domains) that provide an E2E
network slice to consumers (e.g., verticals).

One of the components of our use case to automate the pro-
cess of inter-provider agreements is Broker (B). The network
slice broker concept depends on the service provider’s capacity
to automatically negotiate network slice requests from external
tenants based on the current service/resource availability of the
service/infrastructure provider [5].
Furthermore, We create numerous agreements for specific
demands and scenarios using smart contracts, as shown in
Figure 2 and listed above as SC-Auction and SC-Marketplace.
SC-Auction, is when the consumer wants to start a reverse
auction, and consequently, the provider will submit bids to the
smart contract. The smart contract will choose the provider,
and the winner will be notified and further provide the services.
Additionally, an SLA smart contract will be created. On the
contrary, for SC-Marketplace, the providers will publish their
available services on the open marketplace for consumers
to see. A consumer can choose the services listed on the
marketplace from a specific provider. The provider can provide
the services, and a new SLA smart contract will be created for
SC-Marketplace.

Lastly, in our use case, we employ IOTA-EVM and IPFS. As
previously mentioned, Ethereum has performance difficulties,

such as transaction and gas fees. A transaction fee is a cost to
Ethereum to accomplish a particular action. Due to Ethereum’s
Proof-of-Work (PoW) consensus mechanism, the Ethereum
gas charge is a concern. Therefore, we employ the IOTA-EVM
Tangle [10] shown in Figure 2 to address this issue. Direct
Acyclic Graph (DAG)-based IOTA Tangle is a distributed
ledger. IOTA can assist in the execution of Ethereum smart
contracts on a network without transaction fees as of October
2021. Therefore, we merge IOTA with Ethereum for our use
case resulting in a cost-effective solution. Similarly, IPFS
further reduces storage costs. Thus we employ it to lower
storage costs for the use case [11].

In the case of SLA monitoring, the smart contract can not
access the off-chain data. For that, we aim to use Chain-
link Oracle (CLO). Chainlink enables smart contracts on
blockchain to access off-chain data feeds from any external
Application Programming Interface (API) source in a highly
tamper-resistant and reliable manner.

The workflow of the proposed use case in Figure 2 is
explained further. We consider both sides, the provider side
(P) on the left and the consumer side (C) on the right. In
addition, we illustrate the interaction with the blockchain in
the center.

On the left side of the Provider (P), the process starts with
OSS/BSS as (step 0) to create offers in the Figure 2. Next,
the Broker registers the provider domain on the blockchain
through a front-end (step 1). Once registered, the Broker
requests to store and publish service offers on the blockchain
(step 2). Afterward, the process is addressed by Marketplace
(MP). First, the MP triggers an update SC (step 3) to store
service offers. Next, the SC component stores the service
offers files in the IPFS (step 4) and hash these files in the
Ethereum (step 5). Once the process is completed, the IOTA-
EVM component (IEVM) adds this transaction to the ledger
(step 6), and SC can notify that the offers have been published
(step 7).

As mentioned above, this use case aims to provide the
consumer (i) select and order from the listed services or (ii)
initiate a request for submissions of bids and start an auction
to address the consumer’s needs. Therefore, we consider two
scenarios generating two different smart contracts: 1) SC-
Marketplace and 2) SC-Auction. On the right side of the
Consumer (C), the process starts with BSS/OSS as step 0. This
new request can be for resources listed on the marketplace,
VNFs, or a slice. Broker (B) registers the consumer domain
on the blockchain through a front-end as (step 1)

First, we consider scenario 1 for SC-Marketplace. Once
registered, Broker selects one of the available services on the
listed service and places an order (step 2). The (MP), records
the request to SC (step 3). The SC component generates a
smart contract for the specific request arrival (step 4). Once
the new SC-Marketplace is created, the (IEVM) adds this
transaction to the ledger (step 5), and SC can notify that the
services are running (step 6). The SLA monitoring (step 7)
phase starts when the services run. First, SC sends a request
to Chainlink Oracle (CLO) for data feeds. Next, the CLO gets

157

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

Marketplace (front-end) (MP)

IOTA-EVM (IEVM)

Smart Contract (SC)

IPFS Ethereum Domain_ j
(Provider)

(SC) P-5.
Store hash

(B) P-1. Registration

C-0. New req arrival

SC-Marketplace
(Parent-Child)

SC-Auction
(Parent-Child)

5Gr-VS

Domain_i
(Consumer)

(B) P-2. Req to store and publish offers
(B) C-1. Registration

(SC) P-4. Store
service files

(MP) P-3. Trigger update

(IEVM) P-6.

TX confirmation

(SC) P-7. Offers published

(B) C-2. Select and order

(MP) C-3. Record reqs

(SC) C-4. Generating
SC for service (#1)

(IEVM) C-5.

TX confirmation

(SC) C-A.3 Generating SC for
 Auction (#1)

(B) C-A.1 Req for auction

(MP) C-A.2 Call SC-Auction

(SC). Call and collect
 bids

(SC). Notify
(Auction_start/stop)

(MP) P-A.2 Recording bid
(SC) C-6. Services running (SC). Notify

(Auction_winner)

P-0. Create offers

5Gr-SO

5Gr-RL

SLA
Manager

(CL-O)- Data feeds

(SC) Req for SLA

data feeds AI/ML
Platform

Infrastructure

5Growth-
Vertical Oriented

Monitoring
System

Spark
Kafka

 Broker

{}

{} {}

{}

SLA
SC-Marketplace

SLA
SC-Auction

Chainlink Oracle

(SC). Req for SLA
data feeds

CL-Fetch data

AI/ML
Platform

5Growth-
Vertical Oriented

Monitoring
System

Kafka

5Gr-VS

5Gr-SO

5Gr-RL

SLA
Manager

Infrastructure

 Broker

Spark

CL-Fetch data

(B) P-A.1 Submit bids

Fig. 2: Functional Blockchain/DLT-based SLA management for inter-provider agreement

SLA data feeds from Kafka, which is accessed through an
API as illustrated in Figure 2. Afterward, these data feeds are
sent to a smart contract, where they are compared to check for
SLA compliance. Once the consumer C accepts the provided
services and the SLA requirements are met, the agreed amount
then can be transferred to the provider P (step 8).

Second, in scenario 2 for SC-Auction, the process is differ-
ent from SC-Marketplace. After step 1 of registration, Broker
(B) requests to start an auction (step 2). And the (MP) calls the
SC for auction (step 3). The SC generates a smart contract for
auction (step 4). Once the SC notifies the registered providers
that the auction is started (step 5), the providers can submit
their bids (step 6), and MP will record these bids in the smart
contract (step 7). These bids will be collected and compared
until the auction is stopped and a winner is declared and
notified, as shown in Figure 2. Once the winner is notified, a
new contract will be generated, and the provider P will start to
run services for the consumer C. (step 8) CLO gets data feeds
in any of the scenarios, such as for a marketplace or auction,
which is later sent to SC as data feeds for SLA compliance.
Once satisfied, the agreed amount will be transferred to the
provider P from consumer C (step 9).

IV. PERFORMANCE EVALUATION

In this section, we evaluate our framework and provide the
characteristics of the evaluated setup. We assume a scenario
where the operations (transactions in the blockchain) will be
performed between two parties; in our scenario, we consider
two main stakeholders, i.e., the consumer and provider. Both
consumer and provider are registered separately through a
smart contract on an Ethereum network. This smart contract is
deployed on an Ubuntu 14.04 with 2GB of RAM and 8GB of
disk memory. The Ethereum blockchain uses solidity to write
smart contracts. The Remix is used to test the proposed frame-
work’s performance. The following parameters characterize the
emulated scenarios: the number of domains D ∈ {consumer
Domaini, provider Domainj } increasing from 2 to 4 and
the total number 300 of transactions. We are considering two
phases: Phase 1 starts after the domains have been registered
in the blockchain, then the consumer either selects services

(SC-Marketplace) or starts an auction (SC-Auction), and until
the services start to run. Phase 2 starts when the smart contract
(SC-Marketplace or SC-Auction) sends requests to chainlink
for SLA data feeds. In phase 1, we use IOTA-EVM, and for
phase 2, we use Kovan testnet, which is supported by chainlink
for data feeds.

Below we compare and analyze phase 1 and phase 2 in terms
of latency, response time and transaction & storage cost.

A. Transactions latency

The transaction latency is the time interval since a transac-
tion Tx is submitted until it is confirmed and available on the
blockchain.

We are calculating the latency for phase 1 and 2 using the
following expression: Latency = Tconfirmation−Tsubmission.
Once domains are registered in the blockchain, phase 1 will
start, where the consumer will either buy a service listed in the
marketplace or start an auction for a specific service request.
The latency for phase 1 and phase 2 is shown in Figure 3.
Here in phase 1, we send requests from the consumer for 300
transactions to purchase resources from the provider. Figure 3a
shows the latency observed in the first phase of the use case as
explained above. The transactions are performed using IOTA-
EVM during phase 1. Because of its consensus mechanism, the
IOTA-EVM experiences less latency, as illustrated in Figure
3 where the y-axis of 3a shows the latency observed in
ms. Moreover, the average latency observed for marketplace
contract (buy a service from the listed services) and auction
contract (starting auction for a specific service request) is
between 15ms to 25ms, while the number of domains D
increased from 2 to 4. However, during phase 2, once the smart
contract (for auction or a marketplace process) is confirmed
and the SLA contract is created, the services start to run.
The smart contract needs data feeds from off-chain for SLA
monitoring. For that purpose, we use chainlink. We send a total
of 300 transactions to request data feeds in both smart contracts
(SLA-Marketplace and SLA-Auction). Therefore, we illustrate
the added latency when smart contracts send a request to CLO
for data feeds as explained in the workflow above III-0a. In
Figure 3b, we illustrate the latency observed for both smart

158

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 3: Analysis and comparison of latency observed in Phase
1 (a) and Phase 2 (b)

contracts (SLA-Marketplace and SLA-Auction). It is observed
that the chainlink adds additional latency as it uses Kovan -
an Ethereum testnet. The average latency is observed and in-
creased due to the consensus mechanism of Kovan. Kovan uses
Proof-of-Authority (PoA), which affects how the transactions
are confirmed and added to the blockchain. In summary, the
total latency of phase 1 is lower than phase 2. It is orders
of magnitude below the native Ethereum testnet (Kovan) with
IOTA-EVM is (s vs. ms). Meanwhile, increasing the D from
D = 2 and D = 4 adds slight latency. Additionally, the overall
time taken in the process is discussed and illustrated later.

B. Request arrivals and response time

In section III, we explain that the consumer can initiate
a new request. The provider has the option of accepting or
rejecting requests. We define the response time as the elapsed
time between when the consumer sends a request and when
the provider agrees with the request, and the service begins
running. To monitor this, we start 10 to 30 requests from
the consumer side to determine how long it takes for the
service provider to respond. To calculate the response time
we use: RT = Latency + twaiting. Here RT is the sum of
Latency measured earlier, and twaiting. Here twaiting is the
time provider P will take to respond back to the consumer
C. The twaiting consists of the moment the provider receives
notification that a new request has arrived and the decision
Provider P will make regarding whether to accept or refuse
the request. In phase 2, the RT is calculated as well, but here
the twaiting is the time it takes the CLO to respond to the SLA
smart contract with data feeds. Figure 4 and 5 illustrates the
RT observed in the scenario for a marketplace and auction.
The 4 shows RT for phase 1 and 2 when D = 2 and D = 4.

(a)

(b)

Fig. 4: Analysis and comparison of RT for requests arrivals
for SC-Marketplace (a) where D = 2 and where D = 4 (b)

The RT increases slightly when D = 4 for phase 1 and phase
2 since the number of D increases hence overall RT increases.
Similarly, the 5 shows RT for phases 1 and 2 when D is 2
and 4. In this case, the RT increases slightly when D = 4.
However, the latency and RT are not significantly increased
in phase 2. The testnet used is Kovan, and it does not add
significant latency compared to other testnet (i.e., Ropsten).
The maximum RT observed for phase 2 is ≈ 20s when D = 4
in case of the auction and ≈ 18s for a marketplace. However,
for phase 1, the average RT is less than ≈ 10s for marketplace
and auction.

C. Transaction and storage cost

In our use case, the transaction cost is calculated in ETH
using the formula: Costeth = Costgas ∗ gasprice/10

9. The
cost is calculated for both of the phases. We use USD as a
homogeneous way of comparing costs from different sources.
Therefore, we used the formula: CostUSD = Costeth ∗
CurrentPriceeth to calculate the cost in USD. In phase 1,
we deployed our solidity smart contract using IOTA-EVM,
and following its deployment, we examined the transaction
details. As a result, we observed through the IOTA explorer
that IOTA has no transaction fee due to how IOTA Tangle
operates since IOTA reaches consensus on the authenticity of
transactions without the participation of miners [10]. However,

159

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 5: Analysis and comparison of RT for requests arrivals
for SC-Auction (a) where D = 2 and where D = 4 (b)

in phase 2, we use chainlink for SLA monitoring and data
feeds. For evaluation, we use Kovan testnet. Each request
on the testnet costs 0.1 LINK (cryptocurrency of chainlink),
which, according to the current market price, can be up to ≈
0.63 USD. This means that sending up to 100 requests can
cost up to ≈ 63.59 USD. Also, this cost is apart from the gas
cost on the Kovan testnet. The average cost for 10, 20, and 30
requests for data feeds were ≈ 0.132262 ETH, 0.141100 ETH,
and 0.145800 ETH, respectively. Therefore, the total price in
USD can be ≈ 478.18. To further reduce costs, we intend to
use IPFS. For emulation and fair comparisons, we save data
in two ways: (1) on Ethereum and (2) on IPFS, with the hash
stored on the blockchain. The data in the 6G networks’ use
case data includes service offers, negotiations, or other relevant
data an operator may want to store. It is observed that cost can
go up to ≈ 800 USD for storing 100KB of data.
Then, we save similar relevant use case files on IPFS for
comparison. IPFS hash can be stored in a variety of formats.
To further investigate the cost, we save it in three alternative
methods: a string, an event log, and a struct. As a result,
the cost of storing hash on the blockchain can be drastically
decreased. The average price in ETH recorded as s a string,
struct, or event is 0.0018, 0.002, or 0.0004, respectively.
Furthermore, we observe that the maximum cost for storing
the hash as a string is ≈ 3 USD. Therefore, we employ this

Provider #1

Smart Contract
(SC)

D
om

ai
ns

Consumer #1

1 2

3

4 5 6

Service
running

Req data feeds
C-P # 1

Contract
initiation

0 20 3010

Time (s)

SC-Marketplace

7

Sm
ar
t

co
nt
ra
ct

Sm
ar
t

co
nt
ra
ct

1. Registration
2. Service
publication req

3. Service
published 4. New req

6. Select and
order5. Registration 7. Creation of

a child SC

SC-SLA

Record Data
feeds

8

8. Creation of
SC-SLA

(a)

Provider #N

Smart Contract
(SC)

D
om

ai
ns

Consumer #N

SC-Auction

A

C

Sm
ar
t

co
nt
ra
ct

Sm
ar
t

co
nt
ra
ct

Auction
started

Auction
ended

E

Contract
initiation

Service
running

0 20 30 4010

Time (s)

Provider #N+1

A

A B

Contract
initiation

D

D

F

Req data feeds
C-P # N

A. Registration B. Req for Auction C. Call for SC-Auction D. Submit bids

E. Notify winner F. Creation of a
child SC

SC-SLA

Record data
feeds

G. Creation of a SC-
SLA

G

(b)

Fig. 6: Analysis and comparison of one completed service in
time (s) for SC-Marketplace (a) and SC-Auction (b)

way to store the data a provider may like to store on IPFS,
resulting in a cost savings of up to 80 percent in our use case.

D. Time consumption

As explained above, using Latency and RT , overall time
consumption can be calculated for total completed services.
A completed service can be defined as all the transactions
performed, considering the steps mentioned in Section III for

160

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

both SC-Marketplace and SC-Auction. Also, SLA monitoring
starts when the smart contract sends requests for SLA data
feeds. Figure 6 shows the event plot of 10 averaged experi-
ments for the three domains: the consumer, provider #1 for
marketplace 6a, and additional provider #N+1 for auction in
6b. We also consider all the smart contracts created for these
services. For example, it takes ≈ 18s until the CLO starts to
send data feedback to record and monitor SLA in the case
of SC-Marketplace. As for the auction, it takes ≈ 30s in SC-
Auction to get data feeds back for SLA monitoring. All these
steps are mentioned in Section III for both marketplace and
auction separately.

E. Discussion

To conclude the performance evaluation above, the DLT-
based inter-provider agreements can be complicated because
of the stringent requirement for B5G networks. For instance,
the number of stakeholders will increase for B5G networks;
therefore, novel blockchain architectures, techniques, and con-
sensus algorithms are being studied and improved to increase
the throughput of today’s blockchain networks. Moreover, it is
essential to see how they will impact the challenges related to
the 6G network, such as scalability and transaction throughput
will improve as they still require attention. Also, as illustrated
above, off-chain data access can facilitate SLA management.
However, a possibility of unintended events endangering the
decentralized applications’ underlying performance goals by
bridging off-chain SLA data with on-chain smart contract data
is present. Therefore, new trust-building techniques can make
oracles like chainlink more accountable to avoid the SLA data
breach sent to the smart contract triggering crucial decisions.

V. CONCLUSION

The current conventional solutions suffer from the SLA
management and monitoring for demanding use cases of 6G
networks such as multi-administrative domains. Blockchain
and smart contracts offer prospects for SLA management
in a decentralized and automated manner and independent
of the control of a single central authority. However, tra-
ditional SLA management methods are insufficient because
they lack transparency and automation, and the process re-
quires manual management. Therefore, this study presents a
conceptual framework for enhancing SLA management and
bridging the gap towards improved QoS assurance in 6G use
cases such as inter-provider agreements. We use chainlink to
enable SLA monitoring as well as IOTA Tangle and IPFS
to reduce the overall cost of the transaction performed on
the smart contract for inter-provider agreements. To evaluate
it, we use performance metrics such as latency, response
time, overall time consumption, and transaction and storage
cost. Compared to conventional negotiations, our approach
shows through experiments that it takes less than ≈ 30s to
form a contract (SC-Marketplace and SC-Auction) to purchase
service. Furthermore, we have distributed emulation results
in two phases. Phase 1 consists of sending a request to buy

resources for SC-marketplace or SC-auction using the IOTA-
EVM testnet until the services start to run. Whereas phase 2
consists of SLA monitoring. Phase 2 uses the Kovan testnet to
get data feeds for SLA monitoring. The emulation results show
that the latency observed in phase 1 is less than in phase 2 as
phase 1 uses IOTA-EVM and phase 2 uses Kovan. Similarly,
for response time, the average response time for phase 1 is
less than ≈ 10s ∼ 12s and ≈ 15s ∼ 18s for phase 2. We use
IOTA-EVM to have fee-less transactions and IPFS to minimize
the storage up to 80% costs. However, phase 2, consisting of
SLA monitoring, adds additional time and cost.

ACKNOWLEDGMENT

This work was partially funded by EU H2020 monB5G
grant 871780 and Spanish MINECO grants TSI-063000-2021-
54/-55 (6G-DAWN).

REFERENCES

[1] V. Räisänen, “A framework for capability provisioning in b5g,” in 2020
2nd 6G Wireless Summit (6G SUMMIT), pp. 1–4, 2020.

[2] J. Baranda, J. Mangues-Bafalluy, R. Martı́nez, L. Vettori, K. Antevski,
C. J. Bernardos, and X. Li, “5g-transformer meets network service
federation: design, implementation and evaluation,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft), pp. 175–179, IEEE,
2020.

[3] F. Javed, K. Antevski, J. Mangues-Bafalluy, L. Giupponi, and C. J.
Bernardos, “Distributed ledger technologies for network slicing: A
survey,” IEEE Access, vol. 10, pp. 19412–19442, 2022.

[4] J. Backman, S. Yrjölä, K. Valtanen, and O. Mämmelä, “Blockchain
network slice broker in 5g: Slice leasing in factory of the future use
case,” in 2017 Internet of Things Business Models, Users, and Networks,
pp. 1–8, IEEE, 2017.

[5] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5g network slice broker,” IEEE Commu-
nications Magazine, vol. 54, no. 7, pp. 32–39, 2016.

[6] L. Zanzi, A. Albanese, V. Sciancalepore, and X. Costa-Pérez, “Nsbchain:
A secure blockchain framework for network slicing brokerage,” in ICC
2020-2020 IEEE International Conference on Communications (ICC),
pp. 1–7, IEEE, 2020.

[7] T. Faisal, M. Dohler, S. Mangiante, and D. R. Lopez, “Beat: Blockchain-
enabled accountable and transparent network sharing in 6g,” IEEE
Communications Magazine, vol. 60, no. 4, pp. 52–56, 2022.

[8] T. Faisal, J. A. O. Lucena, D. R. Lopez, C. Wang, and M. Dohler, “How
to design autonomous service level agreements for 6g,” arXiv preprint
arXiv:2204.03857, 2022.

[9] K. Antevski and C. J. Bernardos, “Federation in dynamic environments:
Can blockchain be the solution?,” IEEE Communications Magazine,
vol. 60, no. 2, pp. 32–38, 2022.

[10] S. Popov, “The tangle,” White paper, vol. 1, no. 3, 2018.
[11] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv

preprint arXiv:1407.3561, 2014.

161

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 19,2022 at 13:28:09 UTC from IEEE Xplore. Restrictions apply.

