
Fares FouratiKing Abdullah University of Science and Technology | KAUST · Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)
Fares Fourati
Master of Science
PhD student.
About
15
Publications
5,287
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
195
Citations
Introduction
Education
January 2021 - June 2022
September 2017 - September 2020
University of Carthage - Ecole Polytechnique de Tunisie
Field of study
- Multidisciplinary Engineering
September 2015 - July 2017
University of Sfax - Institut Préparatoire aux Etudes d'Ingénieurs de Sfax
Field of study
- Mathematics and Physics
Publications
Publications (15)
In this paper, we propose an object detection methodology applied to Global Wheat Head Detection (GWHD) Dataset. We have been through two major architectures of object detection which are Faster R-CNN, and EfficientDet, in order to design a novel and robust wheat head detection model. We emphasize on optimizing the performance of our proposed final...
Satellite communication offers the prospect of service continuity over uncovered and under-covered areas, service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits, as the resource management, network control, network security, spectrum management, and energy usage of satellite networks...
More than 40% of the world’s population is not connected to the internet, majorly due to the lack of adequate infrastructure. Our work aims to bridge this digital divide by proposing solutions for network deployment in remote areas. Specifically, a number of access points (APs) are deployed as an interface between the users and backhaul nodes (BNs)...
We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for sub-modular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily...
Federated learning is an emerging machine learning paradigm that enables devices to train collaboratively without exchanging their local data. The clients participating in the training process are a random subset selected from the pool of clients. The above procedure is called client selection which is an important area in federated learning as it...
Optimizing expensive, non-convex, black-box Lipschitz continuous functions presents significant challenges, particularly when the Lipschitz constant of the underlying function is unknown. Such problems often demand numerous function evaluations to approximate the global optimum, which can be prohibitive in terms of time, energy, or resources. In th...
The effectiveness of Large Language Models (LLMs) in solving tasks vastly depends on the quality of the instructions, which often require fine-tuning through extensive human effort. This highlights the need for automated instruction optimization; however, this optimization is particularly challenging when dealing with black-box LLMs, where model pa...
Federated learning, an emerging machine learning paradigm, enables clients to collaboratively train a model without exchanging local data. Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization. We propose a novel approach, client filtering, to improve model generalizat...
In complex environments with large discrete action spaces, effective decision-making is critical in reinforcement learning (RL). Despite the widespread use of value-based RL approaches like Q-learning, they come with a computational burden, necessitating the maximization of a value function over all actions in each iteration. This burden becomes pa...
We propose a novel combinatorial stochastic-greedy bandit (SGB) algorithm for combinatorial multi-armed bandit problems when no extra information other than the joint reward of the selected set of n arms at each time step t in [T] is observed. SGB adopts an optimized stochastic-explore-then-commit approach and is specifically designed for scenarios...
We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily m...
Connectivity in rural areas is one of the main challenges of communication networks. To overcome this challenge, a variety of solutions for different situations are required. Optimizing the current networking paradigms is therefore mandatory. The high costs of infrastructure and the low revenue of cell sites in rural areas compared with urban areas...
More than 40% of the world's population is not connected to the internet, majorly due to the lack of adequate infrastructure. Our work aims to bridge this digital divide by proposing solutions for network deployment in remote areas. Specifically, a number of access points (APs) are deployed as an interface between the users and backhaul nodes (BNs)...
Satellite communication offers the prospect of service continuity over uncovered and under-covered areas, service ubiquity, and service scalability. However, several challenges must first be addressed to realize these benefits, as the resource management, network control, network security, spectrum management, and energy usage of satellite networks...
In this paper, we propose an original object detection methodology applied to Global Wheat Head Detection (GWHD) Dataset. We have been through two major architectures of object detection which are FasterRCNN and EfficientDet, in order to design a novel and robust wheat head detection model. We emphasize on optimizing the performance of our proposed...