Fangyu Liu

Fangyu Liu
University of Cambridge | Cam

Master of Philosophy

About

78
Publications
10,836
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,616
Citations
Additional affiliations
June 2018 - September 2018
Swiss Federal Institute of Technology in Lausanne
Position
  • Research Intern
Education
October 2019 - October 2023
University of Cambridge
Field of study
  • Natural Language Processing
January 2017 - April 2019
University of Waterloo
Field of study
  • Computer Science and Mathematics

Publications

Publications (78)
Article
Full-text available
The hubness problem widely exists in high-dimensional embedding space and is a fundamental source of error for cross-modal matching tasks. In this work, we study the emergence of hubs in Visual Semantic Embeddings (VSE) with application to text-image matching. We analyze the pros and cons of two widely adopted optimization objectives for training V...
Preprint
Full-text available
This work studies the use of visual semantic representations to align entities in heterogeneous knowledge graphs (KGs). Images are natural components of many existing KGs. By combining visual knowledge with other auxiliary information, we show that the proposed new approach, EVA, creates a holistic entity representation that provides strong signals...
Preprint
Full-text available
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman's language. Meanwhile, there is a growing need for applications that can understand the public's voice in the health domain. To address this we introduce a new corpus called COMETA,...
Preprint
Full-text available
Despite the widespread success of self-supervised learning via masked language models, learning representations directly from text to accurately capture complex and fine-grained semantic relationships in the biomedical domain remains as a challenge. Addressing this is of paramount importance for tasks such as entity linking where complex relational...
Preprint
Full-text available
Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrat...
Preprint
Chart-to-summary generation can help explore data, communicate insights, and help the visually impaired people. Multi-modal generative models have been used to produce fluent summaries, but they can suffer from factual and perceptual errors. In this work we present CHATS-CRITIC, a reference-free chart summarization metric for scoring faithfulness....
Preprint
Full-text available
Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 face challenges in maintaining dialogue coherence in scenarios involving mult...
Article
Full-text available
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural t...
Preprint
Full-text available
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper pres...
Preprint
Data Augmentation (DA) is frequently used to automatically provide additional training data without extra human annotation. However, data augmentation may introduce noisy data that impairs training. To guarantee the quality of augmented data, existing methods either assume no noise exists in the augmented data and adopt consistency training or use...
Preprint
Full-text available
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. S...
Preprint
Full-text available
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to fall into the so-called 'likelihood trap', resulting in generated responses which are dull, repetitive, and often inconsistent with dialogue history. Comparing ranked lists of multiple generated responses against the 'gold response' (from training data) reveals a wide diversity in r...
Preprint
Full-text available
Bilingual lexicon induction (BLI) with limited bilingual supervision is a crucial yet challenging task in multilingual NLP. Current state-of-the-art BLI methods rely on the induction of cross-lingual word embeddings (CLWEs) to capture cross-lingual word similarities; such CLWEs are obtained 1) via traditional static models (e.g., VecMap), or 2) by...
Preprint
Full-text available
Visually-situated language is ubiquitous -- sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to this diversity, previous work has typically relied on domain-specific recipes with limited sharing of the underlying data, model architectures, and objectives. We present P...
Preprint
Full-text available
Being able to train Named Entity Recognition (NER) models for emerging topics is crucial for many real-world applications especially in the medical domain where new topics are continuously evolving out of the scope of existing models and datasets. For a realistic evaluation setup, we introduce a novel COVID-19 news NER dataset (COVIDNEWS-NER) and r...
Preprint
Full-text available
Language models (LMs) trained on raw texts have no direct access to the physical world. Gordon and Van Durme (2013) point out that LMs can thus suffer from reporting bias: texts rarely report on common facts, instead focusing on the unusual aspects of a situation. If LMs are only trained on text corpora and naively memorise local co-occurrence stat...
Preprint
We introduce a new in-context learning paradigm to measure Large Language Models' (LLMs) ability to learn novel words during inference. In particular, we rewrite Winograd-style co-reference resolution problems by replacing the key concept word with a synthetic but plausible word that the model must understand to complete the task. Solving this task...
Preprint
Full-text available
Recent advances in neural network language models have shown that it is possible to derive expressive meaning representations by leveraging linguistic associations in large-scale natural language data. These potentially Gestalt representations have enabled state-of-the-art performance for many practical applications. It would appear that we are on...
Preprint
Full-text available
Generative language models (LMs) such as GPT-2/3 can be prompted to generate text with remarkable quality. While they are designed for text-prompted generation, it remains an open question how the generation process could be guided by modalities beyond text such as images. In this work, we propose a training-free framework, called MAGIC (iMAge-Guid...
Preprint
Full-text available
Spatial relations are fundamental to human cognition and are the most basic knowledge for us to understand and communicate about our physical surroundings. In this paper, we ask the critical question: Are current vision-and-language models (VLMs) able to correctly understand spatial relations? To answer this question, we propose Visual Spatial Reas...
Preprint
Full-text available
Pretrained multilingual language models (LMs) can be successfully transformed into multilingual sentence encoders (SEs; e.g., LaBSE, xMPNET) via additional fine-tuning or model distillation on parallel data. However, it remains uncertain how to best leverage their knowledge to represent sub-sentence lexical items (i.e., words and phrases) in cross-...
Preprint
Full-text available
Word translation or bilingual lexicon induction (BLI) is a key cross-lingual task, aiming to bridge the lexical gap between different languages. In this work, we propose a robust and effective two-stage contrastive learning framework for the BLI task. At Stage C1, we propose to refine standard cross-lingual linear maps between static word embedding...
Preprint
Parameter-efficient tuning (PETuning) methods have been deemed by many as the new paradigm for using pretrained language models (PLMs). By tuning just a fraction amount of parameters comparing to full model finetuning, PETuning methods claim to have achieved performance on par with or even better than finetuning. In this work, we take a step back a...
Preprint
Full-text available
Reliable evaluation benchmarks designed for replicability and comprehensiveness have driven progress in machine learning. Due to the lack of a multilingual benchmark, however, vision-and-language research has mostly focused on English language tasks. To fill this gap, we introduce the Image-Grounded Language Understanding Evaluation benchmark. IGLU...
Preprint
Full-text available
Masked language models (MLMs) such as BERT and RoBERTa have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal,...
Preprint
Knowledge probing is crucial for understanding the knowledge transfer mechanism behind the pre-trained language models (PLMs). Despite the growing progress of probing knowledge for PLMs in the general domain, specialised areas such as biomedical domain are vastly under-explored. To catalyse the research in this direction, we release a well-curated...
Preprint
Knowledge bases (KBs) contain plenty of structured world and commonsense knowledge. As such, they often complement distributional text-based information and facilitate various downstream tasks. Since their manual construction is resource- and time-intensive, recent efforts have tried leveraging large pretrained language models (PLMs) to generate ad...
Preprint
Full-text available
The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in s...
Preprint
Full-text available
In NLP, a large volume of tasks involve pairwise comparison between two sequences (e.g. sentence similarity and paraphrase identification). Predominantly, two formulations are used for sentence-pair tasks: bi-encoders and cross-encoders. Bi-encoders produce fixed-dimensional sentence representations and are computationally efficient, however, they...
Preprint
Full-text available
Recent work indicated that pretrained language models (PLMs) such as BERT and RoBERTa can be transformed into effective sentence and word encoders even via simple self-supervised techniques. Inspired by this line of work, in this paper we propose a fully unsupervised approach to improving word-in-context (WiC) representations in PLMs, achieved via...
Preprint
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweig...
Preprint
Full-text available
Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingua...
Article
This work studies the use of visual semantic representations to align entities in heterogeneous knowledge graphs (KGs). Images are natural components of many existing KGs. By combining visual knowledge with other auxiliary information, we show that the proposed new approach, EVA, creates a holistic entity representation that provides strong signals...
Preprint
Full-text available
In this work, we propose an AI-based method that intends to improve the conventional retinal disease treatment procedure and help ophthalmologists increase diagnosis efficiency and accuracy. The proposed method is composed of a deep neural networks-based (DNN-based) module, including a retinal disease identifier and clinical description generator,...
Article
We propose an automated image selection system to assist photo editors in selecting suitable images for news articles. The system fuses multiple textual sources extracted from news articles and accepts multilingual inputs. It is equipped with char-level word embeddings to help both modeling morphologically rich languages, e.g., German, and transfer...
Preprint
Full-text available
We propose an automated image selection system to assist photo editors in selecting suitable images for news articles. The system fuses multiple textual sources extracted from news articles and accepts multilingual inputs. It is equipped with char-level word embeddings to help both modeling morphologically rich languages, e.g. German, and transferr...
Preprint
Full-text available
The hubness problem widely exists in high-dimensional embedding space and is a fundamental source of error for cross-modal matching tasks. In this work, we study the emergence of hubs in Visual Semantic Embeddings (VSE) with application to text-image matching. We analyze the pros and cons of two widely adopted optimization objectives for training V...
Chapter
Full-text available
Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. Based on the fact that fundus structure and vascular disorders are the main characteristics of retinal diseases, we propose a novel visual-assisted diagnosis hybrid model mixing the support vector...
Preprint
Full-text available
We review the current schemes of text-image matching models and propose improvements for both training and inference. First, we empirically show limitations of two popular loss (sum and max-margin loss) widely used in training text-image embeddings and propose a trade-off: a kNN-margin loss which 1) utilizes information from hard negatives and 2) i...
Chapter
Standard 3D convolution operations usually require larger amounts of memory and computation cost than 2D convolution operations. The fact increases the difficulty of the development of deep neural nets in many 3D vision tasks. In this paper, we investigate the possibility of applying depthwise separable convolutions in 3D scenario and introduce the...
Article
Besides the problem of high within-class variation and between-class ambiguity in high spatial resolution (HSR) remote sensing images, the dimension of data representation is very high, which poses a challenge for scene classification. To achieve high scene classification performance, it is important to uncover a discriminative subspace for data re...
Preprint
Full-text available
Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. Based on the fact that fundus structure and vascular disorders are the main characteristics of retinal diseases, we propose a novel visual-assisted diagnosis hybrid model mixing the support vector...
Preprint
Full-text available
Standard 3D convolution operations require much larger amounts of memory and computation cost than 2D convolution operations. The fact has hindered the development of deep neural nets in many 3D vision tasks. In this paper, we investigate the possibility of applying depthwise separable convolutions in 3D scenario and introduce the use of 3D depthwi...
Preprint
Full-text available
Automatic clinical diagnosis of retinal diseases has emerged as a promising approach to facilitate discovery in areas with limited access to specialists. We propose a novel visual-assisted diagnosis hybrid model based on the support vector machine (SVM) and deep neural networks (DNNs). The model incorporates complementary strengths of DNNs and SVM....
Article
The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. In this paper, a novel framework is proposed for classification and reconstruction of airborne laser scanning point cloud data. To label point clouds, we present a rectified linea...
Article
Full-text available
To efficiently recognize on-ground objects in airborne laser scanning (ALS) point clouds, we design a method that jointly learns a discriminative dictionary and a classifier. In the method, the point cloud is segmented into hierarchical point clusters, which are organized by a tree structure. Then, the feature of each point cluster is extracted. Th...
Conference Paper
Full-text available
Semantic parsing of large-scale 3D point clouds is an important research topic in computer vision and remote sensing fields. Most existing approaches utilize hand-crafted features for each modality independently and combine them in a heuristic manner. They often fail to consider the consistency and complementary information among features adequatel...
Conference Paper
Full-text available
Semantic parsing of large-scale 3D point clouds is an important research topic in computer vision and remote sensing fields. Most existing approaches utilize hand-crafted features for each modality independently and combine them in a heuristic manner. They often fail to consider the consistency and complementary information among features adequatel...