Fang Zhu

Fang Zhu
Pennsylvania State University | Penn State · Department of Entomology

PhD

About

78
Publications
48,665
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,692
Citations
Introduction
The primary emphasis of my research is to understand mechanisms of insects adaptation to environmental stresses. In their natural environment, insects have to face extensive chemical pressure from their hosts, predators, parasitoids, competitors, and other abiotic factors. Understanding the molecular and genetic basis of insect responses to the chemical pressure in their ecosystem represents a key challenge to develop sustainable pest management strategies. https://sites.psu.edu/itox2018/
Additional affiliations
January 2018 - present
Pennsylvania State University
Position
  • Professor (Assistant)
Description
  • Xenobiotics adaptation in arthropods
August 2015 - December 2017
Washington State University
Position
  • Professor
Description
  • Chemical adaptation in arthropod pests
January 2014 - August 2015
Washington State University
Position
  • Research Associate
Description
  • Chemical adaptation in arthropod pests
Education
May 2002 - August 2007
Auburn University
Field of study
  • Entomology
September 1999 - July 2002
China Agricultural University
Field of study
  • Entomology
September 1995 - July 1999
Shandong Agricultural University
Field of study
  • Plant Protection

Publications

Publications (78)
Article
Full-text available
Cytochrome P450-mediated detoxification is one of the most important mechanisms involved in insecticide resistance. However, the molecular basis of this mechanism and the physiological functions of P450s associated with insecticide resistance remain largely unknown. Here, we exploited the functional genomics and reverse genetic approaches to identi...
Article
Full-text available
Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated g...
Article
Full-text available
The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply var...
Article
Full-text available
The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to m...
Article
Full-text available
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650Mb) and 14...
Article
Full-text available
Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Tetranychus urticae Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the in...
Article
Full-text available
Insects that feed on various host plants possess diverse xenobiotic adaptations; however, the underlying mechanisms are poorly understood. In the present study, we used Grapholita molesta, which shifts feeding sites from peach shoots to apple fruits, as a model to explore the effects of shifts in host plant diet on the profiles of cytochrome P450s...
Article
Full-text available
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological function...
Article
Full-text available
Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an invasive insect that was first detected in the United States in 2014 and feeds on a wide variety of plants, with economic impacts on the agricultural, ornamental, and timber industries. Part of what likely contributes to the success of L. delicatula in its invaded range is that i...
Preprint
Full-text available
The European honey bee, Apis mellifera , serves as the principle managed pollinator species globally. In recent decades, honey bee populations have been facing serious health threats from combined biotic and abiotic stressors, including diseases, limited nutrition, and agrochemical exposure. Understanding the molecular mechanisms underlying xenobio...
Article
Full-text available
BACKGROUND Each Grapholita molesta female only copulates once during its lifetime and thus must maintain the viability of stored eupyrene sperm for male reproductive success. The male ejaculate comprises abundant accessory gland proteins produced by the male accessory gland (AG), and many of which are major effectors for sperm storage and maintenan...
Article
Neonicotinoid insecticides are used to manage spotted lanternfly (Lycorma delicatula (White); hereafter SLF), a recently introduced pest in the United States. Neonicotinoids can harm nontargets, such as pollinators potentially exposed via floral resources of treated plants. We quantified neonicotinoid residues in whole flowers of two SLF host plant...
Article
Full-text available
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insec...
Article
Full-text available
As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione S-transferases (GSTs) facilitate insects' survival under chemical stresses in their environment. GSTs confer xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against...
Article
Although neuropeptide corazonin (Crz) has been identified in numerous insect species, the research about its function in regulation of reproduction is still in its infancy. Herein, we characterized the Crz (GmolCrz) and its receptor (GmolCrzR) to investigate their reproductive function in Grapholita molesta. Both molecular docking result and cell-b...
Article
Full-text available
BACKGROUND The cotton bollworm, Helicoverpa armigera, is a worldwide polyphagous pest, causing huge economic losses in vegetable, cotton and corn crops, among others. Owing to long‐term exposure to Bacillus thuringiensis (Bt) toxins, evolution of resistance has been detected in this pest. As a conservative and effective neurotransmitter, dopamine (...
Preprint
Full-text available
Solitary bees are often exposed to various pesticides applied for pest control on farmland while providing pollination services to food crops. Increasing evidence suggests that sublethal toxicity of agricultural pesticides affects solitary bees differently than the social bees used to determine regulatory thresholds like honey bees and bumblebees....
Article
Full-text available
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xeno...
Preprint
Full-text available
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation is through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic ex...
Article
Glutaredoxins (Grxs) and thioredoxin peroxidases (Tpxs) are major antioxidant enzyme families involved in regulating cellular redox homeostasis and in defense of enhanced oxidative stress through scavenging reactive oxygen species (ROS). However, the functions of these enzymes have not been reported in the oriental fruit moth, Grapholita molesta (B...
Article
Full-text available
The two-spotted spider mite, Tetranychus urticae Koch, is a constant threat to sustainable production of numerous economically important crops globally. Management of T. urticae is heavily reliant on the application of synthetic acaricides. However, T. urticae has rapidly developed resistance to most of the acaricides available for its control due...
Article
The increasing need for turfgrass seeds is coupled with the high risk of dangerous microbial pathogens being transmitted through the domestic and international trade of seeds. Concerns continue to be raised about seed safety and quality. Here, we show that the next-generation sequencing (NGS) of DNA represents an effective and reliable tactic to mo...
Article
Odorant degrading carboxylesterases (CXEs) play key roles in the process of odor signal reception via degrading ester odorants. But the functional mechanisms of CXEs in modulating insect behaviors are unclear. Herein, we studied the roles that CXEs played in mating, foraging, and signal receptions of sex pheromones and host volatiles in Grapholita...
Preprint
Full-text available
The Colorado potato beetle (CPB) is a prominent insect pest of potatoes, tomatoes and eggplants all over the world, however, the management of CPB remains a challenging task for more than one hundred years. We have successfully developed bacteria-expressed dsRNA-mediated feeding RNA interference (RNAi) approach in our previous study. A critical ste...
Article
Thrips tabaci is a key pest of onions, especially in the Pacific Northwestern USA. Management of T. tabaci is dominated by the application of various insecticides. However, T. tabaci is known to develop insecticide resistance which possibly leads to control failures, crop loss and environmental concern. Here, we evaluated resistance status of T. ta...
Article
The two-spotted spider mite, Tetranychus urticae, is a polyphagous pest feeding on over 1100 plant species, including numerous highly valued economic crops. The control of T. urticae largely depends on the use of acaricides, which leads to pervasive development of acaricide resistance. Cytochrome P450-mediated metabolic detoxification is one of the...
Article
Full-text available
Adopting an Integrated Pest and Pollinator Management strategy requires an evaluation of pesticide risk for pollinator species. For non-Apid species, however, the standardized ingestion assays are difficult to implement. This hinders the consideration of non-Apid species in farm management strategies and government regulatory processes. We describe...
Article
Full-text available
Multiple acaricide resistance in Tetranychus urticae continues to threaten crop production globally, justifying the need to adequately study resistance for sustainable pest management. Most studies on acaricide resistance have focused on the acute contact toxicity of acaricides with little or no information on the behavioral responses elicited afte...
Preprint
Full-text available
The two-spotted spider mite, Tetranychus urticae , is a polyphagous pest feeding on over 1,100 plant species, including numerous highly valued economic crops. The control of T. urticae largely depends on the use of acaricides, which leads to pervasive development of acaricide resistance. Cytochrome P450-mediated metabolic detoxification is one of t...
Article
Full-text available
Insect G protein coupled receptors (GPCRs) have been identified as a highly attractive target for new generation insecticides discovery due to their critical physiological functions. However, few insect GPCRs have been functionally characterized. Here, we cloned the full length of a methuselah-like GPCR gene (Ldmthl1) from the Asian gypsy moth, Lym...
Article
Full-text available
The ocular albinism type 1 (OA1), a pigment cell-specific integral membrane glycoprotein, is a member of the G-protein-coupled receptor (GPCR) superfamily that binds to heterotrimeric G proteins in mammalian cells. We aimed to characterize the physiological functions an insect OA1 from Lymantria dispar (LdOA1) employs in the regulation of insectici...
Article
Full-text available
The polyphagous pest Tetranychus urticae feeds on over 1100 plant species including highly valued economic crops such as hops (Humulus lupulus). In the key hop production region of the Pacific Northwest of the USA, T. urticae is one of the major arthropod pests. Over the years, T. urticae control has been dominated by the application of various aca...
Article
Full-text available
Background: Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes stil...
Article
Tetranychus urticae Koch is a generalist pest of economic crops and is notorious for its rapid development of acaricide resistance. This poses a significant threat to the sustainability of integrated pest management (IPM) in cropping systems plagued by T. urticae. It is critical to evaluate the resistance status of T. urticae populations on crops a...
Preprint
Background Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, aged liver shows altered lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear....
Article
Full-text available
Mite growth inhibitors (MGIs), such as etoxazole and hexythiazox, are valuable IPM tools for Tetranychus urticae control in hops due to their unique mode of action and selectivity. Hence, it is necessary to standardize bioassay methods to evaluate the efficacy of MGIs, monitor resistance, and identify mechanisms underlying MGI resistance in the fie...
Article
Full-text available
The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abund...
Article
Full-text available
Class III peroxidases (CIIIPRX) catalyze the oxidation of monolignols, generate radicals, and ultimately lead to the formation of lignin. In general, CIIIPRX genes encode a large number of isozymes with ranges of in vitro substrate specificities. In order to elucidate the mode of substrate specificity of these enzymes, we characterized one of the C...
Article
Full-text available
Odorant binding proteins (OBPs) play critical roles in chemical communication of insects, as they recognize and transport environmental chemical signals to receptors. The diving beetle Cybister japonicus Sharp shows a remarkable sexual dimorphism. The foreleg tarsi of males are equipped with large suction cups, believed to help holding the female d...
Article
Full-text available
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable refe...
Article
Full-text available
The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we...
Book
The present work deals with the Nemouroidea fauna of China. It consists of two sections, general section and taxonomic section. In the general section, the historic review of the classification, taxonomi systems, morphology, phylogeny, biogeography and biology of Nemourodea are introduced.In the taxonomic section,14 genera and 206 species of Nemour...
Chapter
Full-text available
Insecticide resistance is a major challenge for effective and sustainable Integrated Pest Management (IPM). Recent advances in genomic and post-genomic approaches not only dramatically improve our understanding of new mechanisms with regard to insecticide resistance but also provide potential tactics to manage pest populations. In this review, we f...
Chapter
Full-text available
Entomology now is a diversified science discipline, deviating considerably from the incorporated principles of Molecular biology, Genetics and Biochemistry. It has provided necessary tools for transferring and evaluating genetic characteristics not only for a host of insects, but also for related host plants. The molecular approaches have enabled t...
Article
Full-text available
While trade-offs between flight capability and reproduction is a common phenomenon in wing dimorphic insects, the molecular basis is largely unknown. In this study, we examined the transcriptomic differences between winged and wingless morphs of cotton aphids, Aphis gossypii, using a tag-based digital gene expression (DGE) approach. Ultra high-thro...
Article
Full-text available
Background The functional and evolutionary diversification of insect cytochrome P450s (CYPs) shaped the success of insects. CYPs constitute one of the largest and oldest gene superfamilies that are found in virtually all aerobic organisms. Because of the availability of whole genome sequence and well functioning RNA interference (RNAi), the red flo...
Article
Full-text available
NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether...
Article
Full-text available
Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted...
Chapter
Full-text available
Insect cytochrome P450s are known to play an important role in detoxifying insecticides and plant toxins, resulting in the development of resistance to insecticides and facilitating the adaptation of insects to their plant hosts. Insect P450s are associated with enhanced metabolic detoxification of insecticides in insects, as evidenced by the incre...
Article
Full-text available
The G protein-coupled receptors (GPCRs) belong to the largest superfamily of integral cell membrane proteins and play crucial roles in physiological processes including behavior, development and reproduction. Because of their broad and diverse roles in cellular signaling, GPCRs are the therapeutic targets for many prescription drugs. However, there...
Article
RNA interference (RNAi) is a breakthrough technology for conducting functional genomics studies and also as a potential tool for crop protection against insect pests. The major challenge for efficient pest control using RNAi in the field is the development of efficient and reliable methods for production and delivery of double-stranded RNA (dsRNA)....
Chapter
Full-text available
Insect cytochrome P450s are known to play an important role in detoxifying insecticides and plant toxins, resulting in the development of resistance to insecticides and facilitating the adaptation of insects to their plant hosts. Insect P450s are associated with enhanced metabolic detoxification of insecticides in insects, as evidenced by the incre...
Article
Full-text available
Eighteen species of the genus Mesonemoura Baumann (Plecoptera: Nemouridae) in the world are recognized and keyed (for males). Two new species of Tibet are described: Mesonemoura lii and M. tibetensis. Remarks on their relationships with the closest species are given.
Article
We previously reported high deltamethrin resistance in bed bugs, Cimex lectularius, collected from multiple areas of the United States (Romero et al., 2007). Recently, two mutations, the Valine to Leucine mutation (V419L) and the Leucine to Isoleucine mutation (L925I) in voltage-gated sodium channel alpha-subunit gene, had been identified to be res...
Article
Full-text available
Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased level...
Article
Two novel P450 cDNAs, CYP6A36 and CYP6A37, were isolated from house-flies. Putative protein sequences deduced from the cDNA sequences shared 58% identity. Predicted protein sequences of CYP6A36 and CYP6A37 from pyrethroid-resistant ALHF house-flies were identical to their corresponding orthologues in susceptible aabys flies. Expression of CYP6A36 w...